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Non-linear Klein-Gordon and Dirac equations in 4 dimensions are investigated with
the help of a global method based on the use of variable initial conditions. One arrives at
very stringent conditions for the existence and nonsexistence of stable particle-like solutions
of several wide classes of non-linear equations. It is shown that for any polynomial non-
-linearity there exist finite energy solutions with arbitrarily large sizes. On the other hand
suitable fractional non-linearities taken alone or added to polynomials satisfy the necessary
conditions for having only confined, non-dissipative solutions for any permissible finite
value of energy.

PACS numbers: 11.10.Lm, 11.10.Qr

1. Introduction

There is a rapidly growing interest among physicists in various types of non-linear
effects. Of particular interest is the existence of solitons, i.e. of peculiar, confined, non
-dissipative and shape preserving solutions of certain non-linear field equations (NLFE).
The literature concerning the properties of soliton solutions of several two-dimensional
NLFE (1 space and 1 time dimension) is already quite large. However, even here our
knowledge is quite far from being systematic and comprehensive.

In the last decade particle physicists got interested in soliton-like solutions of classical,
relativistic NLFE in the four-dimensional Minkowski space, hoping that they may provide
some physically interesting models for extended particles and explain the still rather
mysterious phenomenon of confinement. Unfortunately, our. knowledge about NLFE
in four dimensions is still very scarce [1-4]. Only very few explicit solutions of four-dimen-
sional NLFE are known. Morcover, their stability is sometimes disproved, sometimes
it is still not quite sure. There are also several non-existence theorems and a few existence
theorems proved for some special types of NLFE. Furthermore, we know several rather
weak necessary conditions for the existence of soliton-like solutions [5-11]. General
lack of a more systematic and comprehensive approach, which could provide at least
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more general and more restrictive necessary conditions, results in much confusion and
misleading or simply false claims.

- Among the most widely used methods of investigation of NLFE one should first
mention the variational calculus and its simplified versions which are based on the use
of some simple distortions of the solutions (if they are known) or on the use of suitable
trial functions [5-10]. These methods can provide only necessary conditions for a local
extremum of the action functional or a local minimum of the energy functional (EF).
For physical reasons, however, we are interested in energetically stable solutions which
correspond to a finite absolute minimum of the EF for a fixed value of charge Q. The
mentioned variational metheds are not sufficient to prove energetic stability of a solution.

Some negative conclusions obtained with the help of the variational methods are,
nevertheless, of a global character. For example one can exclude, already with the help
of so called pseudovirial theorems derived from the variational calculus, the existence
of any finite minima of the respective EF. On the other hand positive results concerning
the existence of a local minimum are often misleading if they are not supplemented by
somewhat more conclusive knowledge about the global behaviour of the EF.

Recently several authors applied the method of trial functions to a global discussion
of the behaviour of the EF at arbitrarily large values of suitatle distortion parameters
[12-14]. Although the results obtained with the help of such global analysis are much more
stringent, systematic and illuminating, the method itself has still some drawbacks. First,
one always works there with trial functions which are not solutions of the respective NLFE.
Second, one is using there only stationary trial functions. Therefore, one may raise several
doubts whether the global properties of the EF obtained for such trial functions are also
valid for the whole spectrum of true solutions including non-stationary ones. Contrary
to the current belief, in the case of certain types of non-linearities, non-stationary solutions
may have energies lying below the energies of the stationary sclutions with the same
value of charge. Some examples of such situations will be shown bclow.

In this paper another method of a global analysis of the NLFE, announced in a pre-
vious communication by the author [15], will be presented in some more detail. It will
be applied not only to non-linear Klein-Gordon but also to Dirac equations. The new
approach is free from the drawbacks mentioned above. The main idea consists in the use
of variable initial values of the field instead of the time-dependent trial functions. Suitable
initial values specify completely the solutions of the respective NLFE and, simultaneously,
fix the numerical values of the constants of motion: energy E, momentum P, angular
momentum J, charge Q etc. In this way one can study the general properties of the energy
spectrum of all solutions even without knowing their explicit time and space dependence.

2. Non-linear Klein-Gordon equations (NLKGE)

We shall now describe the general ideas and results of the method for the NLKGE
for a complex, scalar or pseudcscalar field in the four-dimensional Minkowski space.
The Lagrangian density is taken in the form

£ = dp*yp—Ux), o
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where U is some real, non-linear function of the real field invariant ¥ = y*y. The corres-
ponding NLKGE is

(O+U'w)yy =0 #)
where
o AU(K)
U'k) = et

For a given U(x) a solution of (2) is determined by the-following initial values of the field
at some fixed time #,:

oy(x, t)

P(x) = p(x, 1), i ¢(x) = at

&)

t=tgo
In general the functions ¢(x) and ¢(x) may have different, unrelated forms . However,
in the case of stationary solutions they are related by the formula
¢(x) = —iwg(x) C)

with real w. However, it must be noted that (4) is necessary but not sufficient to guarantee
the stationary character of the respective solution. A stationary solution y must satisfy
the much stronger condition

oy(x, 1)

ot

valid for all values of # and not only for one value ¢ = ¢,.
The energy and charge functionals can be now expressed in terms of the initial values (3)

= —ioy(x, 1) &)

E = [&’x[191*+ Vo> + U(9i")], (6)
i
0= f dxlg*d—p*el ™
It follows from (7) that
101 < | dxlp*dl, ®
and hence from the Schwartz inequality one obtains
0% < [ dx|p? - [ dPx|p)2. ®

Equality sign in (9) holds if and only if ¢ and ¢ are proportional to each other i.e. if (4) is
valid. In particular this is also true for stationary solutions which satisfy condition (5).

It can easily be seen that in order to provide finite values of F and Q, as well as of
other constants of motion, the functions ¢(x) and ¢(x) cannot be completely arbitrary but
must satisfy several rather obvious integrability conditions. Thus ¢ and.¢ as well as V¢
must be square integrable etc. Further restrictions on ¢ will be imposed by the condition
of finite value of the last term in (6) etc. We shall always assume that all such conditions
are satisfied by the initial values.

Consider now a closed system described by (2) which has a fixed finite value of Q # 0.
How does the energy E behave if one changes the initial. values keeping, however,



604

Q = const? In principle one can calculate the integrals involved in (6) and (7) for arbi-
trary permissible shapes of ¢ and ¢. However, this would be a very tedious and inefficient
way. Instead, we shall start from some arbitrary but fixed shapes of ¢ and ¢ which fulfill
all the necessary integrability conditions, and then we shall introduce the following class
of relatively simple but physically interesting finite distortions:

P(x) = (x) = co(x/a),
$(x) = (x) = beg(x/a), (10)

where a, b and ¢ are positive parameters. It can easily be seen that ¢ determines the size
and ¢ the supremum of the absolute magnitude of the initial field, both expressed in some
units fixed by the original shape function ¢(x). Similarly, b determines the rate of change
in time of the solution. Obviously, if ¢(x) and ¢(x) are permissible initial values, then the
same applies to ¢(x) and ¢(x). In order to have the same value of Q the parameters a, b, ¢
cannot be independent. In fact inserting @ _and ¢ into (7) one obtains the relation
a*bc? = 1. (an

Thus, one can eliminate ¢ and for any given ¢(x) and ¢(x) the energy functional becomes
a definite function of ¢ nad b alone. After a simple change of variables one gets

E(a, b) = Ab+Ba b +a° jd’xU(a”b” lp(x)), (12)
where
A= fd3x[¢12 >0, B= j'd3x}V<ptz >0. 13

The dependence on @ and b of the last term cannot be further analysed without knowing
something about the shape of U(x). Therefore, let us discuss separately some distinctive
classes of non-linear functions U(x).

1. Polynomial non-linearity:
Ulx) =k Y, o, (14)
n=0

where a, are real constants and «,, # 0 for some m > 1. In the polynomial case as well
as in other cases we assume U(0) = O in order to have E = 0 for the vacuum solution
y = 0. Of course, one can easily remove this restriction.

For the polynomial non-linearity (14) one gets

E(a,b) = Ab+Ba™*b™ ' +b" 'Y a,C,a”*"b™" @15)
where
C,. = ;d3x1¢|2"+2 > 0. (16)

General discussion of the form of (15) is greatly facilitated by the knowledge of its limits
when a and b are tending to their extremal values zero and + co. Taking account of (13)



and (16) one finds for E(q, b) given by (15):

lim E(a, b) = + o0 - sign ay,.

a-0

lim E(a, b) = Ab+aqCob™ !,

a—>®

lim E(a, b) = + o0 - sign &y,

-0

lim E(a, b) = +c0. an

bow
Thus, a finite and positive lower energy bound can exist only if
o >0, o, >0 (18)
For a — oo the limit is still depending on b, but for oy > 0 its infimum is finite

inf [lim E(a, b)] = 2 \/aOCOA = 2ml{Q| (19)
The last inequality follows from (9), (13), (16) after putting the coefficient at the linear
term o, = m?>. The equality sign is valid if and only if relation (4) holds.

One can now draw several general conclusions concerning polynomial non-linearities.
The necessary conditions for the existence of a finite lower energy bound given by (18)
are still insufficient for the existence of a minimum at finite values of ¢ and b. In order
to have a minimum of E(q, b), the coefficients a, cannot be all non-negative. Because of
(18) the NLKGE with the simplest non-linearity of the form

U = aop*yp+a,(yp*y)’ (20)

cannot produce any minimum and hence cannot have stable, particle-like solutions at
ail. The lowest degree of the polynomial in ¥ which can form an absolute minimum for
a suitable set of coefficients a, is three. For example, if

0 >0, o, <0, «,>0, =0 for n>2 21

and |a,] is large enough, a minimum can appear.

Since (19) holds for any polynomial, one can see immediately that even if for some
polynomial non-linearities there exist stable, confined solutions, there exist for the same
value of Q also unconfined (dissipative?) solutions of arbitrarily large sizes and finite
energies. Such states of the field can be produced e.g. at collisions between two confined
solitons. However, for physical reasons we are interested in finding such NLKGE which
have -only confined, non-dissipative solutions. If follows from the above global analysis
that no polynomial non-linearity can fulfill this requirement.

II. Logarithmic non-linearity:
U(x) = agx—ax In k. 22
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This non-linearity is of particular interest because it is the only case for which explicit,
stationary, confined solutions are known for arbitrary o, > 0, & > 0 and for the whole
spectrum of frequencies —oc < w < + oo, The stationary solutions of the Gaussian
form

w(x, t) = Nexp { —0?2a—a/2rt—iwt} 23)

and their Lorentz transforms describing freely moving solitons have been found quite
long ago by Rosen [16]. The factor N in (23) is a constant independent of w but depen-
ding on the particular values of «, and a. Similar Gaussian solutions of the non-linear Schré-
dinger equation of quantum mechanics with the same non-linearity (22) have been exten-
sively studied by Birula-Bialynicki, Mycielski et al. {17].

1t is to be noted that all the stationary solutions {23) have the same size which is inde-
pendent of w. However, the supremum of || as well as the values of rest energy and charge
depend on w. Putting for the sake of simplicity #y = 1 and & = 1 we find

E(®) = Ng(2w®+1) exp (—w?),
Q(w) = Now exp (—w?), (24)

where Ng and N, are some positive constants. It is interesting to note that the values of
rest energy E(w) and charge Q(w) cannot exceed certain limits. Thus

0 < E(w) < 2Ngexp (—1)
—Ng2 " exp (—3) < Q) < N2 "% exp (). (25)

To each permissible value of Q # 0 lying within these mimits there are two frequencies
w;, w, such that

w,) = Qwz) = Q (26)

Hence, for each permitted value of Q there are two different stationary solutions with
different energies E(w,) and E(w,). Only the solution corresponding to the lowest value
of energy satisfies the necessary condition of energetic stability and provides also the lower
bound for the energy of a single Gausson with charge Q.

What can be said about the energy spectrum of other solutions of the NLKGE with
logarithmic non-linearity (22)? In order to answer this question let us apply our global
analysis to the present case. One finds

E(a, b) = Ab+Ba™?b" '+ Cy[ap+a(3 In a+In b)]p™*
~ab”™! | |pi® In |p)*d>x. @n
Hence

lim E(a, b) = +o0, lim E(a, b) = + o -sign o,

a—0 a-w

lim E(a, b}y = — oo -signa, lim E(a, b) = + 0. (28)

b0 b—
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For any choice of a one of the limits is equal to — co. Therefore, the energy functional for
the logarithmic non-linearity has no finite energy bound for any value of Q. Thus we sce
that the solutions of Rosen do not satisfy the condition of energetic stability. This
instability is caused by the existence of some non-stationary solutions corresponding to
arbitrary low negative values of E. For o > 0, which is the necessary condition for the
existence of confined Gaussian solutions, the troublesome solutions are characterized by
very slow rate of change in time of the initial field, or simply speaking by small |$| and
large |¢| An example of a limiting case, namely an explicit solution for Q = 0, displaying
some unphysical behaviour has been given by Schick [18].

1I1. Fractional non-linearities
Some authors claimed that NLKGE with

U(x) = x(ao—ax”), 29
where ¢, > 0, 2 > 0 and the exponent
0<u<2/3 (30)

have stable, confined solutions [24]. Let us calculate the corresponding expression for
E(a, b):
E(a, b) = Ab+Bb " 'a™?+a,Cob™ ' —aC,a™ ™" 1, 31

For the respective limits of (31) one gets

lim E(a, b) = +o0, lim E(a, b) = Ab+ayCob™"

a=0 a-w

lim E(a, b) = — o0, lim E(a, b) = + 0. (32)
b-0 b0
1t follows that the energy is not bounded from below and, therefore, the solutions of the
respective NLKGE do not satisfy the requirement of energetic stability.
Consider now another type of fractional non-linearity given by

U(k) = ax' ™ 33)
where o > 0 and the fractional exponent u satisfies the condition
0<u<l/2 (34)
For this case one finds
E(a,b) = Ab+Ba~%b" ' 4+aC_,a*p" L. 35)
where
C.,= [dipi* >0 (36)

For the respective limits one gets:

lim E(a, b) = +, lim E(a, b) = + o0,

a-0 a~r o

lim E(a, b) = +o0, lim E(a,b) = +oo0. 37

b=0 b w
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Thus we see that for o > 0 all four limits are equal to 4+ oo and, therefore, the function
E(a, b) must have a positive absolute minimum at some finite values of @ and b. Since
(37 holds for any permissible choice of the shapes of ¢(x) and ¢(x), we infer that the re-
spective NLKGE should have only confined, non-dissipative solutions. Both squeezing
the size to a point and expanding it to infinity require infinite amount of energy.

IV. Polynomial + fractional non-linearity
The last — highly encouraging result — can be generalized to more complex non-
-linearities of the form

m k
Uk) = x( Z K" + Z Bix™™), (38)
n=0 : i=1
where
O<u; <..<u <1/2 (39)

and a,, B, are some real constants. It can easily be checked that if a,, > 0 and B, > 0,
then again all the four limits are equal to + co. Therefore, we can draw exactly the same
conclusions about the confined and non-dissipative character of all solutions of the respec-
tive NLKGE corresponding to finite values of E and Q like in the previous case.

Explicit solutions of NLKGE belonging to this type with k¥ = 2, m = 0 have been
found by the author [22]. They have very interesting bag-like (or droplet-like)'forms with
sharp boundaries. It can easily be seen that, although U(k) given by (33) and (38) is finite
at small x and U(0) = 0, the first derivative U’(x) which appears in the equations of motion
becomes infinite for k — 0O:

lim U'(k) = + o0. (40)

k—0

Since U’ plays the role of the squared effective mass, it is evident that in the case of functions
satisfying (40) the effective mass tends to infinity when the absolute magnitude of the
field decreases to zero. U’(x) can also be interpreted as the potential of forces. It generates
very strong (confining) forces which become infinite on the surface separating.the field
from the surrounding vacuum. Some mechanism of this kind has been postulated on
intuitive grounds by physicists working on the bag model [25]. Here it is explained as the
effect of addition of a fractional non-linearity which satisfies condition (40).

Morris [20] has then given another proof, based on Coleman’s definition of dissipative
solutions [1], that the NLKGE with a fractional non-linearity belonging to this class
cannot have dissipative solutions at all (strictly speaking: uniformly dissipative solutions).
The strong confining properties of fractional non-linearities have been confirmed by the
numerical studies of collisions between two respective solitons in two-dimensional Min-
kowski space [21].

3. Non-linear Dirac equations (NLDE)

Consider Lagrangian densities of the form

£ =i/ 20§70y~ (" ®)y) - WPy, (41)
where yp denotes now the four-component Dirac spinor field. The non-linear term is assum-
ed to depend on the simplest scalar field invariant yy which may, however, have either
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sign. In order to have invariance under charge conjugation, the function W must be even
in yyp, i.e. it may depend on the absolute magnitude

k= [{Pyl. (42)
The respective NLDE have the following form

(—in0"+V()y =0 43)
with

V() = W()+xW'(x). (44)

Since Dirac equations are of the first order in the time derivative, the solution of (43)
will be specified by the initial value of the field:

P(x) = y(x, o). 45)

The initial value ¢ fixes also the numerical values of all the constants of motion. For the
energy and charge functionals one has:

E = i[2 [ &x[(§y - Vo—(VP) - 79) + W(K)P ], (46)
Q = [d’xg’yp. (47)

For any stationary solution y of (43):
(—iy- V+V()y = wyoy- (48)
The initial field ¢(x) generating a stationary solution must, therefore, satisfy the condition
(—iy - V+V())p = 0ye9. 49

Obviously, (49) is a weaker condition than (48), so it is only the necessary but not sufficient
condition for the stationary character of the respective solution,

The initial field ¢(x) cannot be arbitrary but must satisfy several rather obvious
integrability conditions in order to give finite values of E, Q and other constants of motion.
Furthermore, it is well known that in semiclassical theory of Dirac fields the energy can
have both signs. Thus, if the initial field ¢(x) generates a positive energy solution, then
the charge conjugate field ¢(x) generates the corresponding negative energy solution. For
the free linear Dirac field the positive part of the energy spectrum is separated from the
negative part by a finite gap. Moreover, one assumes that all the negative energy states are
occupied and form the physical vacuum. We shall assume that the same should apply to
physically permissible NLDE. In other words the positive part of the energy spectrum
must have a finite and positive lower bound. This is obviously a condition imposed on
the functions W(x). Functions W(x), for which the positfve and negative energy spectra
are not separated, should be rejected.
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We shall also make the tentative assumption that for the positive energy solutions
of physically acceptable NLDE the kinetic energy term is also positive (like for the linear
case):

B =i2[d°x(§y- Vo—(V9)  y¢) > 0. (50)

Suppose now that we have some initial spinor field ¢(x) which fulfils all the integra-
bility conditions and gives a finite value of Q and positive and finite values of E and B.
We shall again study the energy spectrum of all solutions of (43) applying the method of
variable initial conditions. Let us consider the following simple class of charge preserving
distortions of ¢(x):

-3/2

p(x) = ¢(x) = a”>*p(x/a). (51)

After substitution (51) the energy (46) becomes (for any fixed shape of ¢(x))a function
of the size parameter a:

E(a) = Ba™ '+ [ d’xW(a " *k)@o. (52)

Further discussion of the dependence of (52) on « is not possible without some specifica-
tion of the form of W(x).

I. Polynomial non-linearity:

W) = io oK', a,#0, m=1 (53)
The function E(a) has now the form
E(a) = Ba™ '+ i a,a™", (54)
where
r,={dx"pe. (55)

One can see immediately that

lim E(a) = +oo-signa,l,, lim E(a) = opl. (56)

a0 a—+ o

Therefore, the necessary conditions for the existence of a positive lower energy bound are:
ool >0, 0,[m>0 57

If all the terms in (54) are positive and B > 0, no minimum can appear on the curve E(a).
Because of (57), NLDE with the simplest polynomial non-linearity W = ao+o,x cannot
have any stable, confined and non-dissipative solutions. For higher polynomials involving
also negative terms a,I", < 0 some minima at finite values of @ may appear. Changing then
the shape functions ¢(x) we could find the lowest positive value of E which would then
correspond to solutions having the property of energetic stability.
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Unfortunately, because for any polynomial the second limit (56) is always finite,
it follows that for any value of Q there exist unconfined solutions of finite energy but
arbitrarily large sizes. Thus no NLDE with purely polynomial nonlinearity can have
only confined, non-dissipative solutions of finite sizes.

11. Logarithmic non-linearity
W(k) = ao—aln k. (58)

The function E(«¢) has now the form:

E(a) = Ba™ "+ Ty(0p+3aIn a)—a [ d’xpg In w. (59)
Hence
lim E(a) = +o00-sign B, lim E(a) = +w -signal,. (60)
a0 a—o

Thus the necessary conditions for the existence of a finite, positive energy bound are
B>0, afy>0 (61)

for any ¢(x) which generates positive energy solutions. Since both the limits (60) are then
equal to + co, these are also necessary conditions for the respective NLDE to have only
confined and non-dissipative solutions.

111, Fractional non-linearity

W(k) = ax™" (62)
with
0<u < If2
In this case one finds
E(a) = Ba ' +al _, a™, (63)
where
r_, =[d’xgex™" (63")
It follows that
lin}) E(a) = +w -sign B, lim E(a) = + o0 -signal _,. (64)

The necessary conditions for the existence of a positive lower energy bound are
B>0, of_,>0 (65)

which must be valid for any initial shape functions ¢(x) which generate positive energy
solutions. Again, since both limits are then equal to + oo, these are also necessary condi-
tions for the respective NLDE to have only confined, non-dissipative solutions.
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1V. Polynomial + fractional non-linearities

W(x) = niﬂ:O k" + iil B, (66)
where
2, #0, P #0, m>0; O<u, <.. <u <12 (66")
From the respective form of E(a) one gets
linz) E(a) = + o -signa,l,,; lim E(a) = +oo sign i1, (67)

Thus the necessary conditions for the existence of a positive lower energy bound are
amrm > O’ ﬁkrk > 0 (68)

These are also the necessary conditions for the respective NLDE to have only confined,
nonrdissipative solutions. Like in the analogous case of NLKGE we see that addition of
a suitable fractional non-linearity to a polynomial can, drastically change the properties
of solutions.

There is one delicate point in the above analysis of NLDE. In fact all the necessary
conditions for the existence of a lower positive energy bound can be satisfied with fixed
coefficients «, and B, if the integrals I, and I _,, defined by (55) and (63") have the same
sign for all permissible values of ¢(x) which generate positive energy solutions. It is by no
means clear that this condition of sign stability is always satisfied. Perhaps it should be
regarded as an additional restriction imposed on the type of non-linearity.

Some explicit solutions of NLDE with a fractional nonlinearity of the form
W = ay+ox ™" have been found by the author [19]. Like in the similar case of NLKGE
these solutions have bag-like (or droplet-like) forms with sharp boundaries. The rest frame
solutions, which are stationary, have spherically symmetric charge distributions. For these
explicit solutions the invariant @¢ is everywhere non-negative and vanishes in the same
region of space-time where the charge density ¢*t¢ is zero. For these explicit solutions the
integrals I'y and I'_, as well as B are positive, so (65) implies that the constant « must be
positive. Unfortunately, these conclusions apply only to particular solutions of particular
NLDE and do not allow for any immediate generalizations.

However, there is a way to ensure that all the integrals I',, and I _, are positive. In
fact, one can apply the strategem used by Johnson in his field theoretical formulation
of the bag model [23]. Thus instead of the Lagrangian density # given by (41) one can
use a modified Lagrangian % obtained by multiplication of £ by the step function 0(py):

Z = 0@ L(p)- (69)
The Euler-Lagrange equations of motion which follow from (69) are:
0(py) [—iny+V(©)p]+3(Py) [L()p+if20(Fy)y"y] = O. (70)

This equation will be satisfiéd if and only if the factors in brackets, which multiply 6(Fy)
and &(y), vanish separately. The first equation obtained in this way coincides with our
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previous equation of motion (43) supplemented by the subsidiary condition $y > 0.
The second equation has the form of a boundary condition

lim [ Z(p)+i20Fpn Ty = 0. (71)
w0
Of course, one should take in (71) the value of Z(y) which is acquired for the solution y
of the respective equation of motion (43). Taking (43) into account one gets

A (72)
For all the types of non-linearities considered in this paper

dim [xW ()py] = 0. (73)

-0t

Hence the boundary condition (71) simplifies then to the form:

_im [o,(py)y"y] =0 (74)

wy=0+

which is independent of the particular choice of W(x). The time derivative appearing in
(74) can be eliminated with the help of the equations of motion. Thus we arrive at the
following boundary condition for the initial values ¢(x):

dim {[(Veh) - yo— o'y - Volyeo+V(eT) -y} = 0 (75)

yvo—0

which must be satisfied by any initial value.
Using the modified Lagrangian density # we arrive at the following new form of the
energy functional

E = [ d*x0(@¢) [i/2@y - Vo—(VP) - y¢)+ W(K)Pe]. (76)

The initial field must satisfy the condition ¢¢ > 0 and the boundary condition (75) on
the surface @@ = 0. It can easily be seen that if these conditions are satisfied by ¢(x),
they are also satisfied by the changed initial values ¢(x) defined by (51). The analysis of the
modified energy functional (76) runs completely parallel to that performed before, but all
the integrals I',, I'_, are now positive definite. In this way the mentioned difficulty with
signs of these integrals is removed.

It can easily be seen that the method of variable initial conditions can be used also
for the investigation of NLKGE and NLDE with more complicated non-linearities involv-
ing transcendental functions. E.g. in the case of superpositions of exponential functions
multiplied by polynomials one arrives at results similar to those obtained above for pure
polynomials. Applications of the method of variable initial conditions to other fields
different from complex scalars and Dirac spinors, as well as to some systems of various
interacting fields will be presented in another paper.
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