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BLACK HOLES AND TRAPPED POINTS
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Black holes zre defined and their properties investigated without use of any global
causality restriction. Also the boundary at infinity of space-time is not needed. When the
causal conditions are brought in, the equivalence with the usual approach is established.

PACS numbers: 02.40.4+m, 04.20.-q

Introduction

Black holes are usually defined as the complements of the past of some suitably defined
boundary at infinity. of space-time. However, to define the boundary at infinity causal
and topological conditions are needed to hold over space-time (see [1], [2] and [12]). Such
conditions may restrict severely the applicability of the definition. Thus in the classic
approach due to Hawking only isolated gravitating systems are accomodated and hence
his method is not useful in cosmological situations.

In this paper we shall try to define black holes and establish their properties without
use of the boundary at infinity. Our work is motivated by a theorem proved by the author
([2] theorem 3.1) which characterizes black holes uniquely by trapped points (to be defined
below). We do not impose any global causal conditions on space-time.

In Section 1 we define the black hole as a connected component of the set B of all
strongly trapped points. We are atle to prove the basic properties associated with black
holes, namely it is shown that B is a future set, the area theorem holds and for any point
not in B there exists a causal curve that attains unbounded values of its generalised affine
parameter when maximally extended from the point to the future. In Section 2 we see how
the imposition of causal restrictions on space-time makes our approach equivalent to the
usual one. Our approach depends essentially on the existence of strongly trapped points,
also to prove our theorems we need some additional hypotheses. We investigate these
points in Section 3. It is found that strongly trapped points are useful when the Penrose
cosmic censor holds and when the singularities are of strong curvature type. Our notation
is that of monograph [1].
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SECTION 1

By space-time (.#, g) we mean a Hausdorff, connected, real C® manifold with a C?
Lorentz metric g everywhere defined.

Definition 1. A space-time point is said to be strongly trapped if for every future-
-directed causal geodesic A entering J*(p) (the causal future of p) and in the causal future
of every point g on 4 the expansion @ becomes negative somewhere on A.

The above concept forms the basis of our theory of black holes. It is a stronger restric-
tion on space-time than the Penrose closed trapped surface concept. Also it is a streng-
thening of the trapped point concept used in [2]. A similar notion was used by Hawking
in one of his singularity theorems ([1] §8 theorem 3).

Definition 2. A black hole in space-time (.#, g) is a connected component of the set B
of all strongly trapped points in .#.

Proposition 1. Black holes in space-time (.#, g) are future sets.

Proof: Let us suppose p € I*(B,) where B, is a black hole, then p is in the chronological
future of some strongly trapped point and hence from definition it must also be strongly
trapped, thus p € B,. Therefore I+(B,) C B, and by definition ([1] p. 186) B, is a future set.

The above property means that once an observer enters a black hole it will never
be able to escape from it. This property is always attributed to black holes.

Now we shall investigate further the set B and its boundary B. Since B is a future set
its boundary is a closed, imbedded achronal three-dimensional C'- submanifold ([1]
prop. 6.3.1). Achronality means that no two points of B can be joined by a timelike curve.
Points of B can be divided into four disjoint subsets By, B., B—, By according to the following
criterion: for a point g € B there may or may not exist points p, r€ B with p € E-(q)-q,
r € E*(q)—q. E*(p) (E-(p)) is that part of the future (past) null cone of p which is generated
by null geodesics with endpoints at p. This is shown on the diagram below ([1] p. 187).

3)’ zp
I By | B- |3,
ge | —1|—
I B+ BO ir

We call the boundary B the event horizon and we denote it by H. In the following
theorem we shall see how the above general structure of the achronal boundary is simplified
when it is as event horizon.

Theorem 1. Suppose B is a black hole in space-time (.#, g), then the subsets B, and B,
of the event horizon H are empty.

Proof: It is instructive to give two proofs of the above theorem.

1. First we note that intD~(B), the interior of the past domain of dependence of B,
must be empty otherwise there would be a point p e (.#-B) such that all the future-directed
causal curves from p would intersect B and enter B by definition of the domain of depend-
ence D—(B). Since every point of Bis a strongly trapped point, all the causal curves entering
J+(p) would intersect some strongly trapped point hence p would also be a strongly trapped
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point. But this implies that g cannot be in (/#-B) but in B. Now consider the past Cauchy
horizon of B, H-(B):

H-(B) = D~(B)—I-(D-(B)) by definition
= B—I-(B) since int D-(B) = 0
=B by definition

By [1] prop. 6.5.3 H~(B) is generated by null geodesic segments that either have no
future endpoints or have endpoints at edge H-(B). Since edge H-(B) = edge B =0 by
{1] prop: 6.3.1 the generators of H-(B) and therefore of B are future endless. In this case
B, v B. is empty since B, is spacelike and at B, the generators of B leave B and thus
cannot be future endless.

2. Let # be a convex normal neighbourhood of a point ¢ € B. Consider any point
pin I"(g). There must be a future-directed timelike curve from p to some point of 4 -B-#",
.otherwise all the future-directed non-spacelike curves from p would enter B and by the
argument in the first proof p would be a strongly trapped point what would be a contradic-
tion since all the strongly trapped points are in B. Thus I-(q) C I-(.#/-B-%") what implies
by [1] lemma 6.3.2 (/i) that g€ B, U B_ i.e. B, U B, is empty.

The above theorem means that H is generated by future endless null geodesics.

Now we shall introduce a hypothesis concerning singularities of space-time. Singulari-
ties form a part of the boundary of space-time, so-called b-boundary, which is generated
by endpoints of causal curves that are incomplete with respect to their generalized affine
parameter (GAP, see [1] p. 259).

Definition 3 (Tipler [8]). A point p on the b-boundary is said to be a strong curvature
singularity if for every causal geodesic A(#) which intersects p, all linearly independent vortic-
ity-free Jacobi fields along A(¢), which are normal to the tangent vector of A(f), define
a volume (or area) element which vanishes as 1 approaches p.

Hypothesis. All the b-boundary points are strong curvature singularities.

Strong curvature singularities were introduced by Ellis and Schmidt {7] and their
properties were investigated by Tipler [8]. Bielinskii, Khalatnikov and Lifshitz were able
to construct a general solution of Einstein’s equations around such a singularity [9]. It is
clear from the proofs of singularity theorems that space-time can be extended at most
as far as the strong curvature singularities, it may happen however that an observer falls
into some other singularity before strong curvature singularity could be reached. To prove
our hypothesis one must perform an extension of space-time through all singularities
that are not of strong curvature type. This, in the author’s opinion, can be achieved.
A remarkable work on extending space-times was done by Clarke [15].

Now we are in position to prove the main property associated with black holes.

Theorem 2. Let (a) the hypothesis hold, (b) R,k°%® > 0 for all null vectors k, then
the expansion © of null generators of the event horizon H in space-time (.#, g) is non-
-negative.

R, is the Ricei tensor, the condition (b) is called null convergence condition and by
Einstein’s equations it means essentially that the energy density is non-negative.
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Proof of theorem 2: By theorem 1 we know that H is generated by future endless null
geodesics. We shall first prove that all these generators are complete. If not, then some
generator of H, say A, runs into a singularity. Consider now a point p somewhere on 1,
p € By. All the future-directed timelike geodesics from p enter B since H is a boundary
of a future set. Now consider the future-directed null geodesics originating from p: since
they all must intersect at p all of them must enter B except for A. Thus all the future-directed
causal geodesics that enter J*(p) intersect some strongly trapped point eficept for A. How-
ever, by hypothesis 1 runs into a strong curvature singularity thus the expansion @ on 4
becomes negative to the future of every point on A. Therefore it is clear that p must be
a strongly trapped point. This is a contradiction since all the strongly trapped points belong
to B by definition.

Suppose that @ is negative on some null generator of H at a point p. Since the generators
of H are future endless and complete, by Raychaudhuri equation and the null convergence
condition there is a focal point on H to the future of p. This is a contradiction since at
a focal point null generators of H intersect and enter B what is impossible by Theorem 1.

Theorem 2 is a generalization of the famous Hawking’s area theorem ([1] prop. 9.2.7).
Thus we have established for our set B all the main properties associated with black holes.

To have a clear correspondence with the standard approach to black holes we would
like any observer outside the set B to be able to avoid black holes and “escape to infinity’.
This is established by the following theorem:

Theorem 3. Let B be the set of all strongly trapped points in (#, g) and let the hypo-
thesis holds, then for every point p e P = .#-B there is a future-endless causal curve
from p that attains unbounded values of its generalized affine parameter (GAP).

Proof: Suppose that there is no future-directed causal curve originating from p that
attains unbounded values of its GAP, then all the future-directed causal geodesics entering
J*(p) must be incomplete and thus they must all run into a strong curvature singularity.
Hence it follows from definitions that p is a strongly trapped point but this is impossible
since p €. #-B.

We see that using straightforward arguments we were able to establish all the essential
properties of black holes. However it is clear that our method depends heavily on the
existence of the strongly trapped points and validity of our hypothesis; we shall investigate
this matter in Section 3.

SECTION 2

Now we shall relate our approach to the black holes with the classic one proposed
by Hawking [1]. In his method the event horizon H is defined as the boundary I—(#+, .#)
of the past of some suitable boundary at infinity of space-time. The black holes are three-
-dimensional sets #(7) defined by #(1) = F(1)-I~(F*,.#), where F(z) is an appropriately
constructed foliation of the space-time by spacelike non-intersecting surfaces parametrized
by the parameter 7.

By Theorem 3 from every point pe P = .#-B there is a future-directed causal curve
from p of unbounded GAP. The past I-(1) of this curve can be thought of as the past
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of a point not in space-time but belonging to the boundary at infinity #* of .#. This way
of defining the boundary «of space-time, relying only on the causal structure of (#, g),
was developed by Geroch, Kronheimer and Penrose [10]. However, their approach can
be applied when space-time is past- and future-distinguishing i.e. I=(p) = I-(q) < I'*(p)
= I*(g) <>p = g, in other words, when every point of .# is uniquely determined by its
past and future. This is a global causality condition and it implies that there are no closed
causal curves. Pasts (futures) of future (past) endless curves are called TIPs (TIFs). Hence
under the above mentioned causality condition every point of the set P = .#-B is in the
closure of some TIP which is the past of a causal curve of unbounded GAP. Thus we
can write P = I~(S+,.4): = { ) I=(4,), where 4, is a future-endless causal curve of un-
peP

bounded GAP originating from p. To be able to define three-dimensional black holes
we must impose the condition of stable causality which means that there are no closed
causal curves and that a slight perturbation of light cones does not introduce such curves.
Stable causality is equivalent to the foliation of .# by non-intersecting spacelike surfaces.
Thus we can define 4 black hole as a connected component of the set (1) = FL(1)-1(SF+, H)
where T parametrizes a spacelike foliation &(1) of 4 (see [1] §9). Thus once global causality
conditions are brought in, our approach can be related to the standard one.

SECTION 3

In this section we shall investigate the existence of strongly trapped points what is
crucial for the applicability of our definition. We shall indicate the connection of our
approach with the validity of the cosmic censor hypothesis.

First of all we prove the following theorem:

Theorem 4. Let F be a future set in spacetime (.#, g).

Suppose that

(a) the hypothesis holds,

(b) there is no future-complete causal geodesics in F, then every point of Fis a strongly
trapped point.

Proof: Let peF, then every future-directed causal geodesic A entering J*(p)
is contained in F and hence A is future-incomplete. Thus by our hypothesis the expansion
© becomes negative on 4 to the future of every point g on A. Thus by definition p in a strongly
trapped point.

The above theorem establishes existence of the stromgly trapped points.

According to the Penrose cosmic censor hypothesis ({41, {16]), from the initial regular
data no space-time singularity can arise that is visible from the infinity.

We adopt the following definition of the cosmic censor:

Definition 4 (see [2] def. 1.3). The strong cosmic censorship holds in space-time
('/I{ H —é) if

(a) there are no future-incomplete endless curves in the complement of the set B of
all black holes in space-time .#.

(b) all the causal geodesics entering B are future-incomplete.
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Since .#£~B can be thought of as the past of some boundary at infinity of space-time
A, condition (a) excludes the possibility to see the singularity from that infinity. Condi-
tion (b) excludes the situation occuring in the Kerr and Reissner-Nordstrom space-times
where there are observers that enter the black hole and which can obtain information
dbout the singularity and are able to carry it to a component of the boundary.at infinity
of space-time.

It is clear from Theorem 4 that-when the cosmic censor holds and the hypothesis
is valid the strongly trapped points exist. ,

From the definition 4 it follows that when the cosmic censor holds, a causal geodesic
is future-incomplete if and only if it enters B. Hence we have the following lemma:

Lemma 1. A causal geodesic is future-incomplete if and only if it intersects a strongly
trapped point.

The above lemma can be adopted as the definition of the cosmic censor.

Another convenient formulation of the cosmic censor is that space-time is globally
hyperbolic (see [4]). In this connection we note the following theorem which indicates
once again the relation between the cosmic censor and the concept.of strongly trapped
points.

Theorem 5. Let (a) space-time be globally hyperbolic,

(b) R,k%k" > 0 for every non-spacelike vector K,
then every causal geodesic intersecting a strongly trapped point is future-incomplete.

The proof of the above theorem is given in paper [2] Theorem 2.1. Finally we remark
that some promising attempts to prove the cosmic censor have already been made [13].

Conclusions

We were able to define black holes and investigate their properties without use of any
global causality condition. Also we were able to show that the additional hypotheses needed
for our approach were not too restrictive. From our work it is clear that once the cosmic
censor and the hypothesis are proved, black holes are uniquely characterized by trapped
points. However in the author’s opinion the investigatiori\of these hypotheses will require
different techniques than those of Penrose and Hawking exploited above, for example
the global analysis methods developed by Fischer and Marsden [14] could be useful.

The author would like to thank Dr M. Demianski for reading the manuscript and
helpful discussions.
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