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BIFURCATION FROM THE MAXWELL SOLUTION IN THE
YANG-MILLS THEORY
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The Maxwell solutions to the Yang-Mills SU(2) equations with sources are analyzed
from the viewpoint of the bifurcation theory. The necessary and sufficient conditions for
the cylindrically symmetric bifurcation are given. An approximate expression for the bi-
furcating solution is written and its stability is proved.
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1. Introduction

The Yang-Mills equations are nonlinear, it seems to be intriguing whether there exist
phenomena typical for nonlinear theories. One of such phenomena, namely the loss of stabi-
lity of solutions at certain values of parameters, was established earlier [1]. A study of the
second appearance — local nonuniqueness of the solution — is the aim of this work.
This will be done from the standpoint of the bifurcation theory. Precisely, a neighborhood
of the Maxwell solutions (i.e. with the abelian holonomy group) will be investigated. It is
assumed that potentials and sources belong to a suitable (Holder, Sobolev) space and
satisfy the boundary (say, Dirichlet) conditions.

Bifurcation phenomena are closely related to the so-called zero-mode solution [2, 3];
this connection has been pointed out by Jackiw and Rossi [4]. The existence of the zero-
-mode solution satisfying certain (linearized) boundary conditions is a hint for bifurcation;
this is a necessary but not a sufficient condition.

The problem of the existence of bifurcation points is important e.g. for a semiclassical
approximation, since a change in stability and bifurcation are often related [5-7]. If the
solution is unstable near the bifurcation point, one must restrict the allowed quantum
fluctuations excluding those in instability directions [2, 3]; alternatively one should use
the branching solution as a saddle point.

* Address: Instytut Fizyki, Uniwersytet Jagiellofiski, Reymonta 4, 30-059 Krakéw, Poland.
(665)



666

This paper is an extension of my previous work [8] and contains some results unknown
and unpublished earlier. They are mentioned below.

The organization is as follows. Section 2 contains the Yang-Mills equations with
sources in a Minkowski space, their linearized form and some remarks about the bifurcation
theory.

In Section 3 bifurcation from a cylindrically symmetric Maxwell solution is discussed.
The main result is that bifurcation occurs at values of the coupling constant (critical values)
corresponding to an odd number of zero-mode solutions. The case of simple multiplicity
(simple bifurcation) is presented in more detail afterwards [8], and approximate expressions
for branching solutions are given; they are similar to those obtained by Jackiw and Rossi [4].
The simple bifurcation is over-critical. Explicit examples have shown that bifurcition
is connected to symmetry breaking.

In Section 4 the criterium of linearized stability [6, 7] is applied to bifurcating
solutions in the case of simple bifurcation. They are stable (at least under some assup-
tions about sources) above the critical values of the coupling constant, where the
Maxwell solution is unstable.

2. Preliminary remarks

The Yang-Mills equations are
anF:v+ gsabcAzF‘ctv = j‘:’ (1)

where Fp, = 0,49—0,45+gep.AnA; — the field strength tensor, A2 — the potential,
Jjs — sources of class C**# (Holder space) or W* (Sobolev space), k — a positive integer,
0 < p < 1. Lower case space-time Greek indices range from 0 to 3 inclusively and lower
case space Latin indices range from 1 to 3. The signature is (—, +, +, +). The upper
indices range from 1 to 3 and denote the isospin directions (the gauge group is SU(2)).
£ac 1S the completely antisymmetric tensor.

Because of the nonlinearity of (1) exact analytical solutions for j; # 0 are not known,
except the trivial ones with the abelian holonomy group.

I will restrict myself to the simplest possible case, that is, when

j: = 51116;1099 (2)

where ¢ — a static source and the boundary conditions admit"a Maxwell static solution
of the type 4, = J,10,0¢. It will be shown that even these restrictions allow for nontrivial
(i.e. with a nonabelian holonomy group) solutions. Define 4; by

Ao = da19+45 &)

where ¢ is the admissible Maxwell static solution. Inserting (3) into the static version of
Egs (1) and using the Coulomb gauge

0,Af =0 “)
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and linearizing about 47 = Ag = 0, one gets the following equations for linear perturba-
tions 54;, 4g of Al =0, 45 =0

ASAL—2ge,,04%,9 = 0, (52)
A0 A; —2ge,,5400,0 + g7(1—5,,) 9 647 =.0. (5b)

Note that Eqgs (1) are elliptic in the static case, as well as Eqs (5a, b). It is well known that
the imposed boundary conditions upoh solutions to nonlinear elliptic equations do not
insure a unique solution in general, although it is possible for particular classes of equations
[9]. 1t is rather difficult to study the global structure of the solution space, but locally (in
a suitable functional norm) this may be done quite easily.

In the first step the linearized equations (5a, b) are analyzed. Let us recall that the
solution of the full nonlinear equations (i.e. the static version of (1)) A7 =0, 45 =0
may bifurcate at this value of the coupling constant g, (or the charge g) — called from now
on the critical value — at which the linearized equations (5a, b) possess nontrivial solutions
satisfying the homogeneous boundary conditions [6, 7, 10, 11]. Note that this fact, although
necessary, is not in general sufficient [6, 7, 10, 11}

The sufficiency may be proved by using an analytical method, a version of the Lyapu-
nov-Schmidt procedure [11]. This was done in [8]. The crucial theorem in this procedure
asserts that the bifurcating solutions are in a one to one correspondence with the small
solutions to the Lyapunov-Schmidt equations. (The solution u(g) near u(g,) is said to
be small if u(g) tends to u(g,) when g tends to g,). The Lyapunov-Schmidt equations are
elements of an algebraic finite-dimensional system of equations for some (finite) number
of unknown parameters. This fact allows one also to use qualitative criteria for a sufficiency
based on the Morse theorem [7, 10] or degree theory [7, 10}; one of them will be applied
below.

The reduction from the infinite-dimensional differential problem to the finite-dimensio-
nal algebraic system of equations is sketched in the Appendix, since it is generally unknown
to physicists.

3. The cylindrically symmetric bifurcation

Let us differentiate covariantly both sides of Eqs (1) and sum after repeating indices.
Then

D,j* =0, (6)

where D, = 0,+g[A,, -]. Hence, taking into account (2) one gets 45>(x) = 0 whenever
o(x) # 0. Let us assume 42> = 0 throughout the entire domain. Since the vector potentials
obey the Coulomb gauge condition div 4° = 0, they may be expanded as follows

A = Z fJaM(r)eiklxkal Y, (s @), @
M

(Note that the vector harmonics Y}’, Y 1*7, Y9, forms the complete base for vector
functions of angle variables [13], but only the magnetic vector harmonics Y9, whose

components were written above, are transverse, div Y 24,(v, 9) = 81(ex:8,Y 1as(v, ¢)) = 0).
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Eqs (1) for 42® may be treated as additional constraints upon the space of solutions
to the rest of Eqs (1). There exists at least one set of solutions trivially satisfying these
constraints [12], namely that formed by a cylindrically symmetric component 4 and
cylindrically symmetric vector potentials 47 (which are defined by an expansion analo-
gous to (7)):

A7 = ; 1 (Nenxi0,Y;0(v). (7a)

(7a) can be rewritten as below
a a Xj a Xj ra
A7 = S7(r)euux,0,Y;0(0) = sisjz J1(1)0,Y;0(v) = &3 'é‘f (0, 2). ¥
7 7

This is the Sikivie-Weiss cylindrically symmetric form.
Recall that under the above symmetry assumptions one obtains from the Yang-Mills
equations [12]

Al =0, A4%2= 43 ©)
The constraining equations for second and third isospin components A2, A3 are then satis-

fied identically [12]. Taking (9) into account one gets substantially simplified Yang-Mills
equations

AA+ g (—2¢A;A;—244,A) = 0, (10a)
A4+ g AA+¢)* =0, (10b)

where 4 = 4(1,, A; = A? = A}, ¢ — the known abelian solution. The Frechet derivative
[7, 10, 111 at 4 = 4; =0 is

4, 0

1 0
F=10, (4+g%H {0 0]]. (1)
0 1

o o= O

Fis a hermitian elliptic operator in the (Sobolev, Holder) space, so ker F = ker F* = coker
F, dimker F < oo and its index is equal to zero, ind F = dimker F — dimker F* = 0.
The linearized equations (Sa, b) are as follows

S5A _ 0
(&)= @
A 0
(5—:1) - (o) )

with the boundary conditions

The following is now proved.
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Theorem 1. The values g2, for which the number of solutions of (12), (13) is odd, are the
bifurcation points.

Proof. We will apply the following theorem (Th. 4.2.3. in [10]). Suppose that the operator
(1+ A, L)X+ T(X, 2) = 0 satisfies the following hypothesis.

i) (1+4oL) is a Fredholm operator of index zero,

ii) dimker (14 A,L) is odd,

iii) ker (1+40,L) n Range (1+1,L) = {0},

d
iv) the nonlinear part T(X, 1) is a C* mapping with T(0, 4,) = WT(O, o) = 0.

Then A, is a point of bifurcation for this equation.

We must show the validity only of i), iii) and iv), since if) was assumed. Note that
in our notation

1, 0
1 00
“ 0 0 1

where G(x, y) is the Green function for the Laplace operator 4 vanishing on the boundary
0Q, and g3 = 4. (This representation is defined by the Schauder inversion [1, Ch. 2.2D)).
Then i) and iii) are consequences of the hermiticity and ellipticity of F. The nonlinear part
in (10a, b) and their first Frechet derivative vanish at 4 = 0, 4 = 0, so iv) is satisfied.
That proves theorem 1.

We obtain more information in the case of a simple eigenvalue g2 using the Lyapunov-
-Schmidt method. One can then get [8] in Vajnberg-Trenogin’s notation [11, Ch. 21-25]

Lo, =0, n — a positive integer number,
Ly, =0,
Ly, #0, L #0.
The reduced Lyapunov-Schmidt equation is
¢(L3ol*+Ly,4) =0, (14)

where 4 is defined by g2 = 1+g5 (g2 is the critical value corresponding to the one-dimen-
sional kernel of F). The small solutions of (14) are as follows

— LA

& =0, 52,3=i\/ (15)
Ly

The Lyapunov-Schmidt theorem assures us now that there are two bifurcating nonabelian

solutions, approximate expressions for them can be obtained from the construction of
branching equations (14) [8].

Hence in the case of simple bifurcation we have the trivial solution

Ay = 0,10,09 (16)
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and the nonabelian, bifurcating from ¢ at g,

() o
A3 0 0
’_fg = ° i\/_z‘“l O +o) an
il |6 [0
4, |b 54
A (0] 4]

where

) — 0 as x = 0, ¢ is the known abelian potential (see formula (12b) in [8]),
X

54 — the solution of the linearized equations (12), (13), L,,, L3, are constants proportional
to the numerator or the denumerator correspondingly on the right hand side of (23).
Let us return to the second and third isospin components of Egs (5a, b)

—2g8A}0,p =0, 2g6Ald,p = 0. (18)

It is evident that nonzero solutions 647> exist only under some symmetry assumptions
about ¢ (e.g. a cylindrically symmetric ¢ induces a form of 547 as in (8)). It seems to be
interesting whether bifurcation is always related to symmetry (spatial or gauge) breaking.
Our examples (see below) suggest the affirmative answer, but in general th's problem is

unsolved (not only in the Yang-Mills theory — see [14]).
. Remark 1. It is possble to obtain subsequent terms of the expansion (17) using the
Lyapunov-Schmidt method [I1], but the computat'ons are then much more involved.
Remark 2. For a spherically symmetric ¢, insert:ng 64; = Z fi(reix,0,Y;6(r) into

J

(12), one gets

d> 2d 1
— + — — —J(J+1)— +g*¢* = 0.
(d,z t— o I 5 +eTe )fj(r) 0 (19)
(19) may have a nontrivial solution f,{(r) # 0 only when
JJ+1)
f e HOLE S j FAOFDav. @0)
Q 2

It follows that g must be large enaugh.

We now present two examples of the s'mple bifurcat’on, assumirg that the domain
is a ball bounded by a sphere of a radius R, and deal ng only with the smallest poss.ble
critical value g2.

1. The potential is constant, ¢ = @o. Then

Ei3iXy const J3,5(go@or)

0A4; = , 04 =0. 21
i 372 21
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The expression for 4, is as in (17), with 64, from (21). The critical value g, is given by
min (g:‘tan (g@oR) = gpoR).
2. The ball r < R is uniformly charged with a charge density 6. Then

1
8A; = ex,const J (gl lo)r? 3‘—8);,—/—2 , 04=0. (22)

&o is given by min (g: Jy;5(lgllo|R35) = 0), Jy,; — the Bessel function, Aj are given
by (17) where 64, is as in (22).

Remark 3. The Coulomb potential ¢ = g/r on R? (except possibly a small ball near
the origin, in order to ensure the smoothness). '

The function spaces of Nirenberg-Walker-Cantor [15] which are correct in this non-
compact case (in th's sense, that they ensure that all coefficients L;, in (17) are finite) do not
contain nonzero solutions of the linearized equations (since the decreasing condition at
infinity is too strong). So the Coulomb potential does not bifurcate.

4. Stability

Supposing simple bifurcation one can prove that the bifurcating solutions exist above
the critical point g5 (an over critical bifurcation) for some charge distributions.
Indeed, one can show that [8]

L, = | dXGAC 9D

Lo 2 f !j;d}dfz(ﬂ»(}))z EAGN ()G M)

(23)

where G(X, ) is the Green function for the laplacian 4 vanishing on the boundary. Expres-
sion (23) is pos‘tive e.g. for an everywhere positive (or negative) charge density, In this
case gZ—g2 > 0, since solutions must be real. That fact is important for stabiLty, as will
be proven below.

Theorem 2. The bifurcating cylindrically symmetric solutions are linearization stable for
sources such that L, is negative, whle the Maxwell potential is stable below g5 and
unstable above g3 (where g2 is the smallest critical point).

~

— é
Proof. At first note that the bilinear form { (64, 64)F ( )dV (see Eqgs (12)) is negative
2

A

64
) b ¢ X . .

for g2 < 0, so the eigenvalues 2 of the problem F v)= A Y are all negative. This means

that the Maxwell solution is stable [6, 7). The operator F depends analytically on g2, and
when g2 in\creases, the largest eigenvalue A,,,, increases also. As g2 crosses the critical value
g2, 2., crosses 0 and above g3 is positive, which corresponds to an instability of the abelian
solut'on ¢. (It was assumed that the eigen-problem mentioned above is correctly stated,
i.e. Anax is an isolated eigenvalue). The first assertion of our theorem follows now directly
from the Th. 3.1. ([6], p. 39) which states that b.furcating solutions are stable when they
appear above the critical value which is precisely our case, since L;p < 0.
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5. Conclusions

The results of this paper are indicative of a “phase transition’” at certain values of the
coupling constant. The potentials then change from a Maxwell solution to a composition
of the Maxwell and nonabelian part; so the holonomy group increases. Note that the field
strength tensor has nonzero magnetic components in addition to electric components.

The bifurcation phenomena seem to be related to symmetry breaking.

The cylindrically symmetric solutions are both stable in the case of simple bifurcation
(for some charge distributions). This is in contradiction to the Jackiw-Rossi [4] statement
about the stability of the bifurcating solutions. They conclude that one of the bifurcating
branches is stable while the second must be unstable. Their conclusion is incorrect (see
[5-7] for a general analysis of the stability questions in simple bifurcation), but in any case
stability in the Yang-Mills theory with sources demands further explanations.

APPENDIX
Suppose that our nonlinear problem has the following form
F(U =0, ) YU+AT(U, 1) = 0, (AD

where U belongs to a suitable Banach space, say Holder C¥*#(Q), Fis the Frechet derivative
at U = 0, T is nonlinear and satisfies the following

TWU =0, 4) = % T(U, Ag)y=0 = O. (A2)
The kernels of F and F* are finite when the symbols of F and F* are injective (this is the
case, e.g., when F, F¥ are elliptic operators). Suppose that at A = A, ker F = ker F* # 0,
and for A sufficiently near-4,, dimker F = dimker F* = 0. Denote by f; the elements of
ker F(k = 1, 2, ... dimker F), multiply (A1) by them and integrate on . Then we obtain
a system of equations

§ £LF(0, ))—F(0, A)JUdV +4 [ £, T(U, )dV = 0 (A3)
2 2

which gives itself a restriction upon the space of solutions of (Al).

Inserting into (A3) the expansion analogous to (8) in [8] instead of U, one can easily
conclude that Eqgs (A3) constitute an algebraic system for n = dimker F unknown functions
&), k =1, ..., n. For details see [11], Chapters 21-25.
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