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1t is shown, under weak analyticity assumptions, that high energy bounds on the
imaginary and on the real part of a scattering amplitude are correlated. If in a theory the
Froissart bound on the imaginary part is substituted by a stronger one, then the bound on
the real part is improved as well. Applications of the result to various situations are discussed
and the case of the ¢* theory is explicitly analyzed. The resulting bounds on the real part
and on the phase are sensitive to the original deviation from the Froissart bound.

PACS numbers: 11.10.Jj

1. Introduction

Some applications in elementary particle physics lead to scattering amplitudes for
which the Froissart bound is modified. For instance, the possibility of a zero mass exchange
in the t-channel invalidates the proof of this bound. Another example is the fixed-# non-
-forward scattering amplitude F(E, t) in strong interactions. Axiomatic field theory proves
that F(E, t) is asymptotically bounded from above by £1n*? Eand by E* *for t < —& < 0
and for 0 < ¢ < 4, respectively [!, 2]. Constraints on the phase induced by these bounds
were obtained in Ref. [3].

The case of g* theory can serve as a third example. A strong upper bound on o(E)
was obtained by Khuri [4] by using the renormalization group method. He showed that,
at sufficiently high energics, the imaginary part of the forward scattering amplitude F(E)
obeys the following inequality

Im F(E) < const E'"* In* E, ¢))

where 7y is the anomalous dimension of the ¢ field at the ultraviolet-stable fixed point,
1t is a non-negative number, but its exact value is not known. For y = 0, (1) coincides
with the Froissart-Martin bound on the imaginary part of F(E). If y is positive, (1) represents
a stronger restriction.
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Relation (1) was obtained [4] by combining the renormalization group method with
rigorous inequalities due to Singh [5] and Jin and Martin [2]. Because of optical theorem,
(1) implies a bound on the total cross section

o(E) < const EZ¥"In* E. )

This approach, on the other hand, does not yield information on other quantities like the
real part or the phase.

We show in the present paper that a systeiatic use of the general principles (analyti-
city, polynomial boundedness, crossing symmetry, unitarity, etc.) together with the re-
normalization group approach does lead to constraints on the phase as well as on the real
part of the scattering amplitude at high energies. For example, we show that if the Frois-
sart-Martin bound on F(E),

{F(E)| < const E In* E, 3)

is supplemented with the stronger bound (1) on Im F(E), then also the real part of the ampli-
tude must obey a constraint which is more restrictive than the original inequality (3).
Details are given in Theorem 2.

We use the approach developed in Ref. [3], but introduce several new points. Firstly,
the method used in Ref. [3] to.investigate the phase is extended to the investigation of the
real part as well. Secondly, in addition to high-energy ecorrelations between the real part,
the imaginary part and the phase, we obtain a tight correlation between the rigorous
bounds on them.

The paper is organized as follows. We briefly review in Section 2 the renormalization
group approach which was used in Ref. [4] to obtain the bound (1). Then, in Section 3,
we list the properties of a scattering amplitude which follow from locality, crossing sym-
metry, unitarity condition, polynomial boundedness and other general principles of quan-
tum field theory. Theorem 2 (Section 4) establishes the asymptotic constraints which follow
for Re F(E)from (1) and from the general principles mentioned above. Similarly, Theorem 3
(Section 5) contains analogous bounds on the phase of the scattering amplitude. Section 6
contains concluding remarks. Proofs of the theorems are deferred to the Appendices A
and B.

2. Total cross section in ¢* theory and the renormalization group

When jt was shown that the renormalization group approach can be applied on the
mass shell [6, 7], a new means appeared for investigating the high-energy behaviour of
scattering amplitudes. One could also expect that the general requirements of analyticity,
crossing symmetry, unitarity, etc., when supplemented with the renormalization group
method, would be able to give more detailed information on high-energy scattering.

However, the difficulty of a simultanepus use of these two apporaches is that they
apply to two disjoint high-energy regions [8]. The amalyticity approach is suitable at fixed
momentum transfer, but cannot be used at fixed scattering angle, in which case the negative
values of energy are'not related to the physical region of a crossed reaction. On the other
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hand, the renormalization group method applies-to non-forward fixed angle scattering,
but cannot be used at fixed momentum transfer, The reason is that, at sufficiently high
energies, a fixed ¢ amounts to the forward scattering angle, at which the four-particle
vertex function has a singularity.

The main idea which led to relation (1) was that this singularity might be not very
strong. If we use as a guide perturbation theory and its order-by-order properties in ¢*
theory, we can assume that the singularity is integrable in cos 6. Then, after some technical
assumptions, the following integral asymptotic relation for the scattering amplitude can
be obtained [4]

1]
_EE dtF(E,t) ~ const E' ™27, 4)

2m

Here, ¢ is momentum transfer squared and § > 0 is arbitrary.
This relation, combined with the asymptotic inequality due to Singh [5]

Im F(E, t) _ - t | E P L <9 s
-zl e ln o—— |, <
Im F(E, 0) 16m*|  E36(E) )
and with the Jin-Martin lower bound [2]
o(E) > const E™¢, ©)

gives the ltigh energy bounds (1) and (2) for the total cross section and for the imaginary
part of the scattering amplitude, respectively. The value of y is not exactly known, but some
estimates can be used. From the positivity of the propagator one knows that y >> 0; on
the other hand, combining the inequality (1) with (6) one gets y < 3.

3. Analyticity properties of the scattering amplitude

The amplitude of the forward scattering of two particies with nonvanishing masses
is a function of one complex variable, for which the laboratory energy E can be chosen.
For complex (unphysical) values of £, we shall use the symbol z.

We shall use the following assumptions on the forward scattering amplitude F(z):
(F1) F(z) is analytic in the upper half of the complex z-plane excluding the semicircular

disk of radius ry (r, is a positive constant). This domain will be denoted 2. F(2)

is continuous in the closure of 2. except possibly the point £ = 0.

(F2) F(z) is crossing symmetric, i.e.

F(z) = F*(—z%)
for every z from 2.
(F3) F(z) is polynomially bounded in @ for |z| - co.
(F4) F(E) satisfies the Froissart bound
IF(E)} < const EIn* E

for sufficiently high E. (F(E) is defined as lim F(E+ie).)

=0,
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(F5) The imaginary part of the amplitude Im F(F) is nonnegative for all sufficiently high E.
The optical theorem is taken in the form

Im F(E) = a VE*~b o(E)

where @ and b are positive constants.
For a closer discussion of the properties (F1)-(F5) see Ref. [9].
We recall now the basic theorem of Ref. [9], which will be systematically exploited
in the sequel.
Theorem 1. Suppose that F(z) fulfills the conditions (F1)-(F35). Let E; be a positive constant
such that
lim F(E)E**%~% = 0, @)

E-wx
. na . ma
the function g(E) = cos —5— Im F(E)—sin > Re F(E)

does not change sign for every E > E,, ®
and

| gBE™ *1dE) = w; ©)

Es

here, nis.some integer and a is real, — 1 << @ << 1. Denote u(E) and v(E) two functions which
are integrable on the interval (E,, E) for every E > E; and fulfill the constraints

a a
—3= 5 SHE) <vE) <i- . (10)

Define the quantity g(E) = Re F(E)/Im F(E). If the inequalitics
tg [mu(E)] < o(E) < tg [nv(E)] 1y

hold for every E > E, then positive constants ¢, and ¢, and an infinite sequence of energies
{E,}, Ex - oo with k — o0, exist such that the inequalities

Ep Ex

dE dE
e B " exp {2 J“(E) _L_‘} SIF(E| < 0B " exp {2 J‘V(E) —E—} (12)

hold for every k = 1, 2, 3, ... (We shall suppress the lower, fixed, integration limits in such
expressions.)
For proof of the theorem see Theorem 2 and Appendix B of Ref. [9].

4. Asymptotic constraints on the real part of the amplitude

We shall mostly be concerned with the case y > 0, when the relation (1) does not
coincide with — and is more restrictive than — the Froissart-Martin bound (3). The class
of functions possessing the properties (F1)to (F5) and satisfying the high-energy bound
(1) with some 7,0 < y < 3, will be denoted #,.
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Let F(z) belong to &,. Then, applying Theorem 1, we can find that the real part
Re F(E) obeys a bound, which is more restrictive than (3) and depends on the-value of y.
Details are contained in the following Theorem 2. Certain smoothness properties at infinity
are assumed, whigh are discussed in Remark 1.
Theorem 2. Let F(z) be an element of the class &, and let the following conditions be
satisfied:

(i) the sign of Re F(E) remains unchanged above some energy:

(ii) the limits (finite or infinite) lim Re F(E), lim Re F(E)E™", and lim o(E)E™*

E- o E- o E-w

for all £ €(0, &) and some positive g, exist.
Then either -

o0

§ iRe F(E)IdE converges, (13a)

or Re F(E) is bounded by one of the following two inequalities

¢, < |Re F(E)| < ¢, (13b)
IRe F(E)| < ¢;E* ¥+ In*E (13¢

for all energies higher than a certain value and for every ¢ € (0, &). Here, ¢4, ¢, and ¢;
are some unknown positive constants. If y lies between 0 and 1/2, ¢, can be zero; besides,
(13b) holds only if Re F(E) is asymptotically positive and (13c) holds only if Re F(E)
is asymptotically negative.
Proof: See Appendix A.

Theorem 2 yields the result which was announced in the Introduction: the inequalities
(13a), (13b) and (13c) amount to a single, y-dependent, high-energy bound on Re F(E)
which is analogous to the bound (1) on Im F(E). Indeed, to apply it, one needs no informa-
tion on Im F(E ) except the value of y. This is a merit wich respect to Theorem 1, which
correlates two quantities, g(E) and |F(E)|, which contain both the real and the imaginary
part of the amplitude (see (11) and (12))

Remark 1. There are additional COndlthl’lS (i) and (ii), which do not foilow from the
general properties (F1) to (F5). Among them, only the requirement of the existence of
lim Re F(E) is unavoidable. If the other ones are removed then relations (13b) and (13c)

E-w

are still valid on some infinite sequence of energies E, tending to oo with k — co.

Remark 2. For y between 0 and 1/2, it is interesting to compare the Theorem 2 with the

result obtained by Cornille [10] by means of dispersion relations. The statement of
Theorem 2,

—c;E'" 7" n’ E < Re F(E) < ¢,
can be improved, by a slight modification of the proof in Appendix A, so as to give

—c;E'" ¥ In®***E < Re F(E) < ¢,
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Cornille’s result, on the other hand, is that the integral

dE

Re F(E)—Re F(0)

converges. This implies that the following inequality
[Re F(E)—Re F(0)] < const E*"*' In***E

holds on some energy sequence tending to infinity.

5. Asymptotic constraints on the phase

We shall now investigate the asymptotic behaviour of the quantity o(E)
= Re F(E)/Im F(E), which is closely related to the phase. For F(z) belonging to' #,, the
asymptotic constraints on g(F) are given in the following theorem:

Theorem 3. Let F(z) be a function of the class #,. Suppose that the following conditions
are fulfilled:

(i) Re F(E) does not change. sign infinitely many times,

(@) | Re F(E)dE diverges,
(iif) the limits (finite or infinite) lim Re F(E)E™!, llm o(E) and lim (o(E){~'E**%7"
E-w E~w
for all # €(0, n,) and some 7, exist.
Then, depending on the value of y and on the asymptotic sign of the real part, the ratio
o(E) = Re F(E)/Im F(E) obeys different asymptotic constraints:
1) for Re F(E) asymptotically nonpositive,

if 0 <y <%, then lim o(E) < —tgny; (14a)
E-w®
if y> 1, then lim g(E) = —c and g(E) < —const E?*™!7" (14b)
E-w

for every n€(0, o) at least on some sequence of energies tending to oo.
2) For Re F(E) asymptotically non-negative,

if 3+ <y <1, then either lim g(E) < tgn(l—y), or lim ¢(E) = + o0, (14c)
E- E-w
if y > 1, then o(E) > const E*'~ 17" (1449)

for every n € (0, no) at least on some sequence of energies tending to co.
See Appendix B for proof.

Remark 3. The method gives no constraints on lim g(E) for Re F(E)>0and 0 < y < 1/2.

E- o

Remark 4. The theorem applies to the case y = 0 provided that the additional condition

(iv) lim F(E)E™' =0

E-w
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is required. The case y = 0 was examined in detail in an earlier paper [3]. Some of our
present conclusions represent a generalization of the previous results.

In analogy with Theorem 2, Theorem 3 also gives a y-dependent high-energy bound,
(14a,b,c,d), this time on the phase. We see from the theorem that if y is sufficiently high,
then ¢(E) cannot be finite at infinite energy and must tend to + o0 or —oco, while the rate
of its rise cannot be arbitrary (see relations (14b) and (14d)). Finite values of lim o(E) are

E-w

allowed only for y not too big (see relations (14a) and (14c)).

6. Summary

Analyticity and crossing symmetry of a scattering amplitude play a decisive role in
obtammg rigorous correlations between its imaginary and its real part, its modulus and
its phase, etc. However, they are not sufficient to yield physical predictions, for which
reference to some value of a physical quantity is necessary. Having the form of an inequality,
the Froissart-Martin bound is a very appropriate supplement to the analyticity property.

As thisbound, however, is not common to all field theories, the question arises how
the high energy scattering laws change if it is replaced by some other inequality.

We have investigated a special case of such a situation. We have started with Re F(E)
obeying the original Froissart-Martin bound (3), but with Im F(E) obeying the stronger
bound (1). The concrete high-energy behaviours of these two quantities are, of course,
mutually correlated because of analyticity, crossing symmetry, etc. It can therefore be
expected that high-energy bounds on them must also be correlated; indeed, once y > 0
in (1) is given, then Re F(E) could hardly saturate the original bound (3) when Im F(E)
is forced to remain small.

We have shown in TheoYem 2 that this is indeed the case. Analogous constraints on the
phase follow from Theorem 3.

Since the input information (1) on Im F(E) has been obtained within the framework
of ¢* theory, our results can be considered as general features of this theory. Nevertheless,
the formalism developed can be applied to every situation satisfying the original require-
ments, no matter in which context the input information on Im F(F) was obtained.

APPENDIX A

Proof of Theorem 2
Consider Theorem 1 with n = 0, a = 1. Conditions (7) to (9) read now

lim F(E)/E = 0, (A1)
E-o
Re F(E) does not change sign above some energy, (A2)

and

§{ Re F(E)E diverges. (A3)
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Let us suppose that these conditions as well as conditions (F1) to (F5) of Section 3 are
satisfied. In order to fulfill (10), we choose

1
— arctg o(E) for Re F(E) asymptotically negative,
A
WE) = v(E) =
— arctg g(E)—1 for Re F(E) asymptotically positive.
T

All the assumptions of Theorem 1 are now satisfied. Relation (12) reads

Ex
2 dE . =)
¢y eXp - arctg o(E)+1 E < |Re F(E))] \/1+Q (Ev)
Ey
2 dE
< ¢, exp —arctg o(E)+1 5 (Ada)
T
Ex
1 dE e
dyexp | | —arctgo(E)~1 |+ < IRe F(E)I V1+0 X(E)
Ex

2 dE
< d, exp J [— arctg g(E)— 1] 5 (A4b)
T
for Re F(E) asymptotically nonpositive and nonnegative, respectively, and for every
k=1,2,... Here, ¢, ¢, d, and d, are some unknown positive constants.
From (Ada, b) the following statement simply followsx
(i) for Re F(E) asymptotically nonpositive,

o0

if gl_g}o Re F(E) = — o0, then J{% arctg Q(_E)+1] dEE = +00; (A5)
(ii) for Re F(E) asymptotically nonnegative, the right hand side of (A4b) is bounded, i.e.,
;im Re F(E) < oo, (A6)

and thus,
if Ffim Re F(E) = const # 0, then J [—2— arctg Q(E)—-l] de = const. (A7)

Here, the existence of lim Re F(E) has been assumed. If, moreover, lim inf |o(E)| > 0,

E-w E-w .
the implications (A5) and (A7) are replaced by equivalences and, in the case (7), the limit

lim Re F(E) is different from zero.
E-w

To prove Theorem 2, we use the following two auxiliary statements.
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Statement 1. Let F(z) be a function of the class &, and let the limit lim Re F(E)/E exist.

E- oo
Then
lim Re F(E)/E = 0. (A8
E—
Proof: If Re F(E) changes sign above every energy, then (A8) is trivially satisfied, because
of the existence of lim Re F(E). Thus, we suppose that Re F(E) has a definite sign for large

E-c
enough energies.
1) Assume first that Re F(E) is asymptotically nonnegative. Then

o

Re F(E
f zlfa)dE converges for ae(—1,0) (A9)
if
" n \dE
, E)— I D . Al
J (arctg o(E) mE) = =+ (A10)

To prove this, we use Theorem 1 with n =0, ae(—1,0). We can put u(E) = w(E)

1
= —arctg ¢(E). Condition (7) of Theorem 1 reads
T

F(E)

lim =0

Eeon EZ"‘a
and is satisfied because of the Froissart-Martin bound (3). The sign of the linear combina-
tion

na . ma
g(E) = cos > Im F(E)—sin > Re F(E)

is definite, as required by condition (8), because « is negative. If now (9) were satisfied,
then (12) would hold and (A10) would imply a contradiction with (3). Thus, (9) cannot

hold and, consequently, | g(E)E*~'dE converges. This implies that also (A9) is satisfied.

[+o]
Reversing now this implication, we obtain that if | Re F(E)E*™'dE diverges, then for every
constant T > 1 an infinite sequence {E,}, E, — oo, exists such that

Re F(E,) < nt Im F(E)/In E, (A11)
for every k = 1,2, 3, ...
Now we can prove the Statement. If { Re F(E)E*™'dE diverges, then (A8) follows
from (All) and from (2). If the integral converges, then (A8) follows immediately.

2) If now Re F(E) is asymptotically nonpositive, we use Theorem 1 with n = 0.and
a = —1. Condition (7) reads now

lim F(E)E™® =0

E—-w
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and is satisfied thanks to (3). The validity of (8) follows from assumption (A2). Condition

(9) requires the divergence of the integral | Re F(E)E-2dE. But if this integral diverged,
then (11) would imply a contradiction with ‘the Froissart-Martin bound (3). Therefore,
the integral must be convergent and, by this, (A8) is satisfied. The proof of Statement 1 is
completed.

Statement 2. Suppose that (Al), (A2), (A3) and (F1) to (F5) are fulfilled, the limits
lim Re F(E) and lim o(E)E™* for all £ (0, &,) and some positive ¢, exist, and lim inf |g(E)|

E-+o E-w E~ o
> 0. Then
if lim Re F(E) = — oo, then Re F(E) > —C E* Im F(E) (Al2a)
E- ¢
and

if lim Re F(E) = 0 and Re F(E) is asymptotically nonnegative,

E—w
then Re F(E) < D E* Im F(E) (A12b)

for every ¢ € (0, &) and all Eabove a certain value, C and D being some positive constants.

Proof: The implication (Al2a) is proved in the following manner. Because of (AS), the
assumption that lim Re F(E) = —oo implies that the inequality

E-vax

c
{o(E)} < cotg = < const E (A13)
k
holds for every ¢ > 0 at least on some infinite sequence {E,} tending to infinity with & — oo.

Since lim o(E)E™* is assumed to exist, (A13) holds at all energies above some value and
E-w

for every ¢ € (0, &). This immediately leads to (Al2a). The implication (A12b) is proved
analogously.

We are now in a position to complete the proof of Theorem 2. Let us assume that all
thé¢ assumptions of the theorem are satisfied. Then the assumptions of both Statement 1 and
Statement 2 are fulfilled, too. Further, (A1) is a simple consequence of (1) and of State-
ment 1. Condition (A2) is exactly the assumption (i) of Theorem 2. In this case, the state-
ment of Theorem 2 follows independently of the validity of condition (A3). Indeed, if
Re F(E) does not obey (A3), we automatically obtain (13a). If, on the other hand, (A3) is
satisfied, we can prove that either (13b) or (13c) follow. We shall show this for Re F(E)
asymptoticaily nonnegative (the proof in the other case is analogous).

Relation (A6) implies that there is a constant ¢, such that

Re F(E) < ¢, (A14)
for sufficiently high E. Using now Statement 2, we arrive at the following conclusion:

If lim Re F(E) = 0 and lim inf [g(E)| > 0,. then

E- E—-cc

Re F(E) < ¢ E* Im F(E) < ¢;E'~?"**(In E)® (A15)
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for sufficiently high E and every ¢ € (0, &), ¢ and ¢, being some unknown positive con-
stants (notice that the latter inequality follows because of (2)).
If now lim Re F(E) is nonvanishing, a positive constant ¢, exists such that

E- o
Re F(E) = ¢, (A16)
for sufficiently high E. If, on the other hand, lim inf |o(E)| is not positive, then

E-w

lim ¢(E) = 0, and for every ¢ > 0 a constant E, exists such that o(E) < ¢ for all E > E,,

Es
and, consequently,

Re F(E) < ¢ Im F(E) < const E'~*"(In E)?,

where the latter inequality is again a consequence of (2). But this asymptotic constraint
on Re F(E)is already included in (A15). Furthermore, from (A6) we can see that in the case
of y < 1/2, the absolute upper bound on Re F(E) is (13b). Combining (A14), (A15) and
(A16) we obtain the relations (13b) and (13c).

APPENDIX B

Proof of Theorem 3
Let Re F(E) be asymptotically nonpositive. The assumptions of Theorem 3 ensure
that (Ada) holds. Besides,
lim Im F(E)E**"!™" =0 (B1)

E->ow

for all # > 0. From (A4a) one can see that
E

2 . dE'
const E exp {— | arctg o(E’) a
/A
— ~ < Im F(E). (B2)
Vi+0%E)
Combining (B2) with (Bl) we obtain that
E
) 2 - dE' | 2
lim —arctg ¢(E)+2y—n 7 T In(1+¢*(E))p = — (B3)
E- o T

for all n > 0, provided that this limit exists. For 5 sufficiently small, the existence of this
limit follows from assumption (iii) of Theorem 3.
Let us first consider the case of lim g(E) > —co. Then the term } In (1 4 g?(E)) remains

E- o
finite and (B3) holds only if
2 , dE’
—arctg g(E')+2y—n I —00. (B3)
n

This can be satisifed only for y < 1/2. Then, (14a) follows directly from (B3’).
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If lim @(E) = —o0, then the asymptotic behaviour of the Lh.s. of (B3') is controlled
E-~w

by the term % In (14 ¢*(F)). Relation (14b) is now a simple consequence of this fact.
Relations (14c) and (14d) are proved in an analogous way.
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