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ASYMPTOTIC SYMMETRIES OF DE SITTER SPACE-TIME
By P. T. CHRUSCIEL

Institute for Theoretical Physics, Polish Academy of Sciences, Warsaw*
( Received October 7, 1980; revised version received February 12, 1981)

The genéral form-of the metric of an axially-symmetrical asymptotically de Sitter space-~
-time fulfilling a radiation conditicn was found. Using the Bondi-Metzner method, the
group of asymptotic symmetries of de Sitter space-time was found. The results obtained
in this work agree only partially with Penrose’s theory.

PACS numbers: 04.20.-q

1. Introduction

Transformations conserving the form of equations of physics are called symmetry
transformations. Noether’s theorem [1] states, that e‘ach s-parameter group of symmetries
provides s conservation laws. Finstein’s general covariance principle requires the descrip-
tion of physical quantities by covariant tensors, and the independence of physical equations
of the choice of coordinates. The Einstein group — the group of coordinate transforma-
tions of a four;dimensional space — appears thus to be the symmetry group,of each physical
theory. The infinite dimensional Einstein group contains an infinite number of one-param-
eter groups, providing an infinite number of conservation laws [3]. Only a few of them
possess a clear physical interpretation. In order to extract the physically meaningful con-
servation laws, one has to find a criterion for the selection of the appropriate coordinate
transformations. One possible approach is to restrict the coordinate transformations
to exact isometries. However, only very specifical space-times admit a non-trivial isometry
group, therefore such a requirement is too strong. One can weaken it by admitting approxi-
mate isometries. This is the approach used in the asymptotic symmetries theory. The
requirement that coordinate transformations preserve the form of the metric for r — o0
allows one to select the asymptotic symmetry group (AS group).

* Address: Instytut Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotnikéw 32/46, 02-668 War-
szawa, Poland.
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Bondi et al. [2] introduced the AS group as the group of transformations conserving
certain boundary conditions in the class of asymptotically flat solutions of Einstein equa-
tions (this method of studying AS groups will be referred to as Bondi’s method). Bondi
et al. [2] assumed axial symmetry of solutions, later Sachs [13] dropped this assumption,
and obtained the so-called Bondi-Metzner-Sachs group (BMS group) [4, 13, 14]. The
same result has been obtained independently by Newman and Unti [9].

The BMS group appeared also in Penrose’s conformal method of studying global
properties of solutions of Einstein equations [10], as the symmetry group of the boundary
of Minkowski space-time [6, 10] (or a space-time with a boundary homeomorphic and
conformally equivalent to the boundary of the Minkowski space-time). In the class of
asymptotically flat space-times (AF space-times) all solutions have the same boundary
as the Minkowski space-time. Thus it appeared that the problem of finding the AS group
of an AF space-time is equivalent to the problem of finding the symmetry group of the
boundary of the Minkowski space-time.

From the astrophysical point of view, “‘asymptotically cosmological” space-times
seem to be more relevant than AF space-times. The de Sitter space-time, or the Robertson-
-Walker space-times, admit a boundary at temporal infinity [7] while AF space-times
have a boundary at null infinity [6, 10]. Penrose’s theory states, that the symmetry gro{xp
of the boundary of a space-time admitting a boundary at temporal infinity is the group
of conformal transformations of the boundary. Such groups are finite-dimensional.
It seemed interesting to see whether the AS group is isomorphic to the symmetry group
of the boundary, for spaces with boundary at temporal infinity. This work is an attempt
to give an answer to this question in the case of the simplest cosmological model — the
de Sitter space-time. The comparison of the results obtained by Bondi et al. [2] and by
Sachs [13] suggests, that the most important property of the BMS group — the infinite
dimensionality — appears already in the case of “axial symmetry. For the sake of simplicity
the analysis has been limited to axial symmetry.

The results of Section 3 are obtained under the assumption, that the function y appear-
ing in the metric (3) has the expansion

¥ = ¥, 0)+c(u, O)fr+0*(1jr?), (1y
where O*(r’) means ‘“‘asymptotic smoothness™:
O*(r%) = O(r®)  80*(rP)jor = O*(rP™Y)  80*(r")jou = O*(rP),
B0*(r")[00 = O*(r").

In Section 3, the analycity in # and 6 of the functions ;, ¢ and the integration functions is
required for the existence theorem used. The AS group obtained in Section 4 does not
depend upon the analycity of § y,and the coordinate transformations need not to be analytical
but to have an expansion similar to (1). In Sections 4.2, 4.3 and 4.4 an expansion similar
to (1) for y is required up to the third order in 1/r.
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1.1. Penrose’s theory for the de Sitter space-time

Let (M, g) be a space-time M with a Lorentz metric g. An asymptote [6, 0] of M is
the triplet (M, ¥, Q), where M is a manifold with boundary 7, with a Lorentz metric g,
¥ is a diffeomorphism

Y:M > M\

and © a smooth function on M satisfying the following conditions:

L gy = Q*P*g,

2. Q; =0 VQ|; #0.

I will be called the boundary of the space-time M. When gV, QV,Q|; = 0 I will be
called the boundary at null infinity, when gV QV,Q|; > 0 (signature + — — —) I will
be called the boundary at temporal infinity.

The model for the de Sitter space-time is a hyperboloid in a five-dimensional space [7]:

S={v,w,x,¥,2)€ R%: =0+ w?+x2+y?+2% = a?}.
The metric of the de Sitter space-time fulfills the vacuum Einstein equations with
a cosmological constant 4 = —? = e or the Einstein equations with a zero cosmological
constant and a stress-energy tensor of a perfect fluid with a constant density
90 = R/(327) = 3/(8na?), (c=G=1)

and a constant negative pressure p = —g.
On the hyperboloid one can fix the coordinates ¢, ¥, 6, ¢:

v = asinh (¢/a), w = acosh(¢/a)cosy, x = acosh(¢/a)sin y cosb,
y = a cosh (¢/a) sin y sin 0 cos P, z = a cosh (#/a) sin y sin @ sin ¢.
In these coordinates the line element takes the form
ds? = di? —a? cosh? (t/a) {dy? +sin? y(d6? +sin? 8de?)}.
The asymptote of de Sitter space-time is the manifold

A= {—n/2, nf2] x S3
with the boundary
I=1"UI", I*={4n)2}xS’=5>

Embedding A4 in a five-dimensional space one can fix natural coordinates t’, ¥, 6', ¢’:
A={¢t,wx 2t e[—n2,n/2], w=cosy,

x =sin y ' cos @', y =siny sinf cos¢’, z = siny sinf sing’}.
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In these coordinates the line-element takes the form
ds? = dt'?— {dy'? +sin?y'(d0’* +sin0’d¢'?)}.
The diffeomorphism ¥ is
t’ = 2 arctan (exp t/a)— /2, (2)
K=y 0=0 ¢ =¢,
and the function Q
Q = sin (t' +n/2)/a.

VQ is a time-like vector on 7/, thus / is the boundary at temporal infinity of the de Sitter
space-time. J+ and I~ are three dimensional spheres, thus the symmetry group of the bound-
ary is the group of conformal transformations of a three-dimensional sphere, which is
isomorphic to the O (1,4) group.

2. The field equations

In order to find the most general form of the metric of an asymptotically de Sitter
space-time, a generalisation of the method developed by Bondi et al. [2] will be used.
Bondi [2] has shown, that every axially symmetrical metric can be written in the following
form:

ds® = (Vr~'e* —Ur?e®)du? +2e* dudr+2Ur*e* dud0
— 13 (e*d0* + e ¥ sin? 0d¢?), (3)

(where U, V, § and y are functions of , u and ), under the assumption, that  is a timelike
coordinate for all r > ry, for some r,. In this work a stronger assumption will be needed,
namely, if u is timelike for ry < r < ry, then the metric can be written in the form (3) for
all r > r,.

Coordinates u, r, 0, ¢ in which the metric takes the form (3) will be called Bondi’s
coordinates. A space-time will be called asymptotically de Sitter if, in Bondi’s coordinates

Ruv—Rg;:v!?‘ -0
r — Q0.

Statement 1:
If the stress-energy tensor 7, in Bondi’s coordinates fulfills the following conditions:
1. T, fulfills the energy conservation law (7"", = 0),
2. Topp =0,
3. T =T = To =0,
then Einstein equations resolve into three groups

(Tuv = gﬂ(Tyv - T;aguvl!z))
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1. main equations

Ry = Tu, Ry, = Tu, Ry, = Tzz, R33 = T33,

2. trivial equation
Ry = Twa

3. supplementary conditions
(Rzo_Tzo)QP =0, (Reo—Toe)b = 0,

{where P is any hypersurface r = const.).

Bondi et al. {2] have prooved a similar statement for a vanishing stress-energy tensor.
The proof of this statement can be carried on by replacing R, by R,, — Tuv in the proof
proposed by Bondi et al. [2].

The Einstein equations with a cosmological constant can be integrated in the same way,
since they can be treated as zero cosmological constant equations with an appropriately
modified stress-energy tensor. If the stress-energy tensor in the cosmological constant
equations fulfills the conditions of statement 1, then the modified stress-energy tensor
will also fulfill them.

For the de Sitter space-time, the main equations are! (from Bondi et al. [2]):

0 =Ry o By =12, 4)
0 = Ry, & [r*e®0™PU ], = 2r2B,, —2r%y,, +4r%y,y, —4rB, —4r?y, cot 0, ©)
20 = Rj2 = —Rpe 2" 24 R% eV, = —Rr?e*|44+*U, cot 02
+2rU cot 8+e*®~I[1 +(3y,—B,) cot 0+7y,,— B, — B2
+275(B2=72)]—r*eTPU 44 12U )24 2rU,, (6)
0 = R+ Rye " r 25 0 = 21(rp)oy — r* 3" PU 24+ r(1 +ry U,
—r*(cot 0/2—7,)U, +r(2ry 5 +2y, 41y, cot —cot O)U + 2 ~Y(B, cot 0— B,
“ﬂzz)-rth"("Yu +y)V +r2U4,2 Q)

Consider the structure of these equations, without, at first, worrying about the functions
of integration. Knowing y at one value of u, Eq. (4) determines B, Eq. (5) determines U,
Eq. (6) ¥V, and one can compute the u derivative of y from (7). Thus y may be found at the
next instant of u, and one can go again through the whole cycle. One can easily count the
functions of integration, which are all independent of r. In Eq. (4), § is determined apart
from an additive function H(u, 6), Eq. (5) determines U apart from two functions, L(u, 6)
and —6N(u, 0), the first being an addition to u itself and the second an addition to
r*exp {2(y—B)}U,. Eq. (6) determines V apart trom a function —2m(u, 0).

! The addition of a subscript to a function means differentiation with respect to the appropriate
coordinate (w = 0, r = 1, 8 = 2), unless specified otherwise.
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If one assumes y of the form

Yy = ')3(14, )+ c(u, Hjr+ ... (8)
one obtains
B =H-c*{@ErH)+ ...,

U= L+2He2m";’/r—e2(”";)[A(c)+20H2]/rz+ s
V = —Re*™r*[124(L,+ L cot 0)r* + ...,
¢ = 12y, exp [—2H]/R, A(c) = ¢, ~2p,¢c+2¢ cot 0. 9)

If one adds additional terms in expansion of p, Eqs. (4)-(6) determine expansion
functions of U, V, and f§ through the expansion functions of y and the integration functions
H, L, m and N. Higher order expansion functions of y may then be determined through
lower order expansion functions of y and the functions H, L, m and N from Eq. (7). The
exceedingly complicated supplementary conditions (expressions for R,, and Ry, may
be found in appendix to the paper of Bondi et al. [2]) are then constraint equations for
the functions :}, H,L, mand N.

The choice of y under the form'(8) does probably not give the most general form of
the metric of a space-time fulfilling the “asymptotically de Sitter” condition, as stated at
the beginning of this section. However, such a choice of y in Bondi et al. [2] lead to a metric
which was, “at infinity’’, the Minkowski metric + gravitational radiation. One would
be interested in similar solutions in the “‘asymptotically de Sitter”” case. The existencé of
terms increasing with  in y would cause drastic changes in the d6? and d¢? terms at infinity.
It is not probable that gravitational radiation could cause such strong effects. Therefore
the form (8) of the expansion of y may be interpreted as a “‘radiation condition”. It will
be seen in Section 4.2 that even such a condition gives rise to a change in the structure of
the boundary.

3. Boundary conditions

The metrics of asymptotically de Sitter space-times contain at least three arbitrary
functions of variables » and 6. In order to know whether different metrics correspond to
different space-times, one has to know whether it is possible to set to zero, by a coordinate
transformation, some of the functions appearing in the metric, for each metric.

One can get rid of the function L by performing a transformation

0 = a(u, 0), F = r(xsinafsin 6)/2,

where the function « is a solution of the equation «, = L(u, &) (this equation has always

a solution when L is suitably regular [8]). If the functions )c; and H are apalytical it may
be shown, using Cauchy-Kowalewska theorem [12], that one can always find a coordinate
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transformation of the form

u = a(@i, B)+a(@, B)[F+O(1[f),

~
Il

K(@, 0)r + o(@1, 0)+0(1/7),

6

g(d, 0)+ é(a, 0)/F+0(1]F), (10)

which leads to a metric with H = f(;) (f being an arbitrary function, in particular fcan be
equal to zero), or to a metric With;? = 0, H — arbitrary. For practical reasons, the coordi-

nates for which y = 2H will be used.

One can ask whether there exist coordinates in which )3, L and H disappear simulta-
neously. Under the basic assumption of this paper, that all coordinate transformations
preserving the form of the metric for r — oo are of the form (10), it can be shown that

such coordinates do exist only for very specifical 3.
Assuming the coordinate transformation @#78¢ — urf¢ of the form (10) (urfi¢ are so

chosen, that H = 9/2) and demanding that in coordinates #70® y = H = 0, onc obtains,
in the highest order in /7, the following set of equations for the expansion functions:

(a) K?e*'{Ro?/12+g2} = R/12,

(b) K2e*"(Raj/12+g3} = 1,

(c) sin*d = K* Psin’ g,

(d) RK&*/12426+Kg> =0, & =c¢en, g=eg,
(e) Ke'{(1+RKa/12)uz+Kggz} = 1,

R
(0 T a5+ 885 = 0,

(g) (RK&/12+ 1oz +Kggz = O. (11)

From (11g), (1if), (11b) and (11e) one obtains

1
(gl) A = — 8,

o 1
(f') oz = e(e"’K 2~ Rg* 1Y, ¢

i
H

() g =,

1
(¢') ga = Rg/l12. (1)
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It appears, that the Eq. (11a) is automatically fulfilled when (11¢") and (11f’) are ful-
filled. From (11b"), (11f"), (11g"), (112’) and (11c) one obtains

g2 +Rg2/12 = Rsin® gsin™2 @ exp {—4y(x, g)}/12,
g = —Rup/12, g5 = oy (12)
Let
% = (R/12)'5, « = (R[12)"%.
Now Eq. (12) reads
(@) g2+g? = sin® gsin™2 8 exp { —4y(a, g)},
(b) gz = —a5
(©) g = az. (13)
Egs. (13b) and (13c) show, that the function
h = a+ig

is a holomorphic function of the variable X+ i0. Clearly, K # 0 for any & and 8, thus Eq.
{11c) shows that g(iz, § = 0) = 0. Then h|;_, = «, so the expansion coefficients of k are
real. It follows that (A(x+if))* = h(x—if) (* denotes complex conjugacy).

Expressing g by £ in Eq. (13a) one obtains

h'(x+i0)h'(x—if) = sin® {{h(x+i0)— h(x—i0)]/2i}
x sin”2 @ exp { —4y(x, )} (14)

Using
lim sin {{A(xX+i0)—h(X—i8)]/2i} sin™' 8 = K'(X) (15)

50
and the regularity of y for & = 0, one obtains from (14)
K(%)? = I'(X)? exp { —4y(2h, 0)}. (16)
A necessary condition for the existence of solutions of Eq. (14) is thus
exp {y(u, 0)} = 1.

This shows that if we do not impose any supplementary conditions on the form of
asymptotically de Sitter metrics, then, in general, one cannot find coordinates in which

L, H and ; disappear simultaneously.
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4. AS transformations

4.1. AS transformations for general asymptotically de Sitter space-times

Assuming the transformation urf¢ — irf¢ in the form (10), and demanding ; = 2H,

y = 2H, in coordinates urfp, @rdP respectively, one obtains the following set of
equations for the transformation functions:

(a) K2e2;'2§i:Ra§/12+gf— = R/12,

(®) K2 2 [Ro/12+] = 1,

(c) sin®@ = K2~ 2679 sin? g,

(d) RK&Z[12428+K3 =0 d=da §=eg,

(6) K& I[(1+RK#/12)o;+Kzgz] = 1,

(f) Rogos/12+ g5 = O,

(8) (RKG/12+1)az+Kggs = O. (17

These equations are Egs. (11) with (a, g) replaced by (o, g)—-)c;(ﬁ, 0). Thus the
analysis can be carried out exactly in the same way as for Egs. (11), and one obtains
D — (g2 4 o2)e$®9 6y GsinT2 g, (18)
g: =~ g = O 19
Eqgs. (19) show, that there exists a harmonic function ¢(%, ) such that
g=¢% a=0¢5 ($szt+0sm=0), (20)
;; can be calculated from
1
g = (12/R)*¢g
then K is obtained from
1

K =sin0sin™" gexp {y(a, g)— 77;(9, X)}

and Eq. (17d) determines &. Lower order equations determine lower order expansion
coefficients, and one obtains a realisation of the AS group of the de Sitter space-time.
There are simpler transformation groups isomorphic to this group. Composing two AS
transformations, one obtains

u = a(i, 0)+a(@, B)/F+ ... = (@, 0)+olah, )i+ ...,
2, 0)+ g, D)fr + ) +alatafr+ ..., g+gir+ OIEr+a+ )

= (&, g)+ (i, 0)jr + ...,
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r = K@, 0)f+o+ ... = K(@, 2)K(u, O)r +v(u, O)+ ..., 1)

) 1111 ..
where p, v and ¢ are functions of a, «, g, g, 0, K and of the derivatives of «, g'and K. Egs.
(21) show, that the group of transformations

u =@, 0), 0=gGb), r=K(®,0)F (22)

is isomorphic to the AS group (one assumes that the freedom in lower order coefficients,
if there is any, is irrelevant from the physical point of view). When « and g determine K
univocally, one obtains another group of transformations isomorphic to the AS group:

i =a(u,0), 0= gu,b0). (23)

The AS group is usually identified with its realisation (23). For the boundary condi-
tions

limy =y limf=7y/2 lmU=0 (24)

¥ oo r— o r->w

one obtains, for the AS group, the group of transformations

X = ¢9(x> 9)= g = qu(x’ 9)9 ¢xx+¢00 =0 (25}

or, since holomorphic functions are complex gradients of harmonic functions

Z=f(z), z=x+i0, (26)

f — any holomorphic function.

Solutions (40)~(42) are also of the form (25), thus the group (25) contains as a subgroup
the group of conformal transformations of a three-dimensional sphere leaving the ¢-angle
unchanged (which will be called the axi-symmetric O(1,4) group).

The choice )‘3 = 2H does not seem to be any better nor worse than the choice ; = 0,

H — arbitrary, or H = 0, 30/ — arbitrary, or H = f()c;). Therefore one would be interested
in knowing what would be the AS group obtained for another choice of boundary condi-

tions. Unfortunately, all attemps to solve the differential equations for the case y  2H have
failed. This is due to the fact that the equivalent of Eq. (19) for cases ; # 2H have multi-
plicative terms &9 and & which complicate these equations considerably. However

one can show, under certain assumptions, that all these groups are isomorphic.
Let Z, be a coordinate transformation:

Zf(;a ')o)’) : Ll}‘@d) - u'rlo/d)/,

(where urf¢, u'r'6'¢’ are so chosen, that y = 2H, H' = f(3') respectively). Having one
{;(', 2 resulting from such a transformation for a given }c;o, one can obtain a transformation

2 The subscript 0 does not mean differentiation here.
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leading from )3 to )3’ from the formula:
Zf(;’ 3)”) = gf(%, ;,) ° Zf(;O’ Vo) ° g1/2(;a )o’o)s

(where g;e G, — the AS group for boundary conditions H = ), and gf()? 5 7a) I8
a coordinate transformation leading from a metric with a function ;1 to a metric with
a function y,). This shows, that one can find a Z ; transformation for every y and 7/,
provided that there exist ;0 and %, such that g, ,2(;, ;0) and g,(%, ;’) exist.

Let {y} ;: ? be the set of all possible y functions which can be obtained by a G, trans-
formation from the metric with H = ;o/Z, and let {;’}go, be the set of all possible ; functions
which can be obtained by a G, transformation from the metric with H' = f(yy), and yj is

such, that the metric with H’' = f(7,) can be obtained from the metric H = %,/2 by a Z p
transformation. If there exists a bijective mapping ¢

° e o,
oL = O @7
0 (]
the mapping
o O, h Q. 0, ,0, OI
G232 81520157 ) = gy(e(y), e(¥)) = Z(y', 0(¥))
° 812(1: ¥) © Z7 (s €(1)) € G

is a homomorphism between G,,, and G,. The mapping

G gg(e() 07)) = 120 ¥) = Z7 ' e('))

> g,(e(7), 2(7)) ° Z;(3, e¥)) € Gypa

is the homorphism inverse to /, thus G,,, and G, are isomorphic. Similarly, one can show
that the AS group for boundary conditions )3 = 0, H — arbitrary is isomorphic to G,,,.

One can provide arguments for the existence of the mapping (27). For any given ;
the problem of finding Z f(;, y") can be reduced to one partial differential equation, depend-
ing only upon 7. Since y € {y} ;: 2, for some 7y, there exists a solution Z(y, 3") for every
ye {)3'}){0 .- Changing the boundary conditions on any fixed non-characteristic surface
of the differential equation for Z f(‘)):, 3), one obtains all possible y'. Similarly, for a given
}3' € {;’}7{0,, the solutions of the differential equation for Z}l(;, ;’), depending only upon
¥, may be found for all y e {;};1: 2, This suggests that, {;};ﬂ’ 2 and {;'}gﬁ, should have “the
same dimension”’, Now if, for different ;, we arbitrarily choose to adopt some fixed bound-

ary.value for the solutions of the Z f()?, y) equation on some arbitrarily fixed non-charac-
teristic surface, this should provide the one-to-one correspondence between elements

of {;3}50’2 and of {&"}go,.
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It is interesting to understand why the results obtained above differ from the predic-
tions of Penrose’s theory. In coordinates where L = 0, the metric of an asymptotically de
Sitter space-time takes the form

ds* = [—Re*"r*[12+0(1))du® + [2¢*¥ 4+ 0(1/1*)]dudr
+0()dudd — r*{[r* + O(1/r)]d6? +sin® 6[e =2 + O(1/r)]dd?). (28)
Performing a coordinate transformation
sinh (t/a) = sinh (u/a)+F cosh (u/a)/e,
sin y = {(1+7 %a?) cosh® (u/a) + 2« cosh (uja) sinh (u/x)/F} ™4/,
F=er (29)
one obtains, for large ¢
ds® = [140(e™"*]dt* + O(1)dydt — a®e*/*{[ 1+ O(e™*)]dy* + O(e™ %)
x d0dt+0(e™"")d0dy +sin® ye~ *¥[(e*’ + O(e™"*))d0>
+(e” P +0(e7) sin® 0dg2]}. (30)
Performing the coordinate transformation (2) one obtains the metric of the boundary
by passing to the limit 1 - +n/2:
ds® = dy*+sin? ge *H{e740% + ¢~ %7 sin? 0d¢?}, (31)
where
H = H(x In {(cos y+1)/sin 3}, 0),

7 = (o In {(cos x+1)/sin 3}, 6).

It may be shown, using Cauchy-Kowalewska theorem, that, for all analytical y, H =i )
(or for all analytical H, y = 0), each of the metrics (3 1) is conformally equivalent to the me-
tric of some three-dimensional hypersurface embedded in a four-dimensional space, given
by the equation r =r(y, 6) (ry6¢ — standard four-dimensional spherical coordinates). Such
hypersurfaces are not conformally equivalent, thus the boundaries of space-times of the
family of asymptotically de Sitter space-times are different for different spaces. If one
wants to compare the results of this method with Penrose’s results, one has to limit the
analysis to those of asymptotically de Sitter space-times, boundaries of which are three

dimensional spheres, that is to spaces, for which there exist coordinates, in which y = H
=L =0

4.2. Analysis of solutions in the case y= H=L =0

In the case y = H = L = 0, the function ¢ from the expansion of y disappears
(c= (IZ/R))?O), thus one obtains
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Now in U appears a term Ao(g) In r/r-"(Ao(é) = ?:2 +2¢ cot 0), and V has In?r/r3 terms.
In Eq. (7) one obtains a term Aé((z}) In2r/r* from the r* exp {2(y—pB)}U?%/4 term; other
terms containing In?r appear in the form In2r/r%, or with higher powers of 1/r, which shows

that Ao(é) = 0. The regularity conditions for ¢ show then that ¢ = 0. Subsequently y is
of the form

y = 3/r3+3/r4+o*(r‘5). (32)

From the main equations (4)—(7), one obtains

@) B = —362/(4r%)— 12e¢)(Tr)+0*(1r®),

by U = 2N/r3+3A0(3)/(2r“)+4Ao(3)/(5r5)+o*(1/r6),
() V = —Rr*/124r—2m—(N,+N cot 8)/r
3 3 3 33 4
— (3¢ cot O+ cy5—20))(2r1) + V(e, o)fr* +0*(1/r) 3,
(d) R2/3 = 430+N2—N cot 6 (33

and from the supplementary conditions

3 3
(@) RAy(c)[2 = my+3Ng <> (csin 0)y = 2 sin® O(m,+3N,)/R,
(b) 4mo+R(N,+ N cot 6) = 0 < R(sin ON); = —4 sin Gmy,. (34

With any given m = m(y, 8), Eq. (34b) determines N univocally (the integration
function N, = f(u)/sin 6 must be equal to zero from regularity conditions). Then Eq. (34a)
determines ¢ univocally, from (33d) one can determine ¢. If one expands y in O(r~ " D),
Eq. (4) determines B in O(r~"*%), Eq. (5) determines U in O(r~"*?), and Eq. (6) deter-
mines ¥in O(r™™). The ¢ function of the expansion of y appears in 8 in r~®** and lower
terms, in Uin r~™*Y and lower terms, in ¥ in r~®~ ") and lower terms. Eq. (7) determines
¢ algebraically through m and ¢, for i = 3, ...,n—1. In this way, for any given suitably
regular m, one can determine the functions y, f, U and V univocally. Unfortunately, one
cannot state anything about the convergence of such series.

In the case m = const. (= 7y = f = U = 0) one obtains an exact solution of the
field equations with a cosmological constant:

ds? = (1—=Rr?[12-2m/r)du?® + 2dudr + r*(d6* +sin® 8d¢?)

which is the Weyl-Trefftz [5] metric. One interprets the 2m/r term as the gravitational
field of a point mass in a space with a “background” de Sitter metric [5]. In the generak
case one can then interpret m = m(u, 6) as Bondi’s “mass aspect™ [2].

3
3 The exact form of V is irrelevant for our purposes.
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4.3. AS transformations in Bondi’s coordinates, in the case ;: H=L=0

Assuming the AS transformations for the boundary conditions

(@) lim r’y = (3:(14, 9),

r-*ow

3
(b) lim r®f = —3c%/4,

(©) lim r*U = 2N(u, 0),
(d) im Vr™3 = —R/12 (35)

of the form (10), one obtains the system of Eqgs. (17) with )3 and ; set to zero.
These equations can be solved as follows: from (17b), (17¢), (17g) and (17f) one
obtains

B 1
(b') gz = Rg/12,

1
(") a; = e(1—RK?g12)'?3 K, &= +1,

(f/) 85 = Oy
1
() = —g (36)
Differentiating (17c) with respect to # and using (36b"), one obtains
1
(¢') Rgj12 = —6K; sin O(K*—sin® 0)7'2K™!,  § = sgn (sin g). (36)
Differentiating (17c) with respect to 8, using (36¢’) and (36f’), one obtains
(@) K;+RKZ/12 = R(K*+2KK; cot §—1)/12. 37N
Substituting (36¢”) in (36¢") and (36g"), using (36f') one obtains
@) 126K sin 0
g = oo
8% = RK(K—sin20) 7
(K cot §—~Kjp)sin 0
e’ oy = 36
) o= KT in? 6172 (36)
Integrability conditions for o show that
R
(b) (In K)+ o (InK)z = 0. 37D

A change of variables # = (R/12)'/%% leads to
(@) K2+K? = K*+2KK;cot §—1,
®) (In K)zz+(In K)z = 0. 37)
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Every analytical solution of Eq. (37b’) may be written in the form
In K = f(x+i0)+ f(x—i), (38)

where fis an arbitrary real analytical function of a real variable. Substituting (38) into
(37a") one obtains

4 (Z+i ) (R—i0) = 142i(f (R +i8)—f'(X—iB)) cot §
—exp { —2[f(X+i0)+f(x—iB)]}. 39
Since
lim {(f"(x-+i0)—f(xi0) cot 0} = 2if"(x)
Eq. (39) on the hypersurface 6 = 0 reads
4" +4f'* = L—exp {—4f}.

This differential equation can be reduced to a first order equation by change of varia-
bles

p=dfldx=f', f" = pdpldf.
Solving for f, one obtains 3 independent solutions of equations (37a’-b")

K = (1—2té" cos §+12e 2")”2

VR/12 2 = —1In (1-21¢" cos D+ 1262, (40)
g = arcsin (sin §/K);
= (1—2Be™* cos § + p2e~ 2112,
\/R 12a = %+In (1 —2Be™* cos §+ e~ 2%)}2, (41)
g = arcsin (sin §/K);
K=1 @RIV 0 =3x+y, g=20. (42)

The AS transformations form a three parameter group generated by transformations
(40)-(42). The Lie algebra of the realisation (23) of the AS group is spanned on three vectors

¢, = 8/otl,_o = —e*[cos B 8/0% +sin § /301,

{2 = 00Plg=o = e *[—cos 8 0/0%+sin 8 §/08],

{3 = 0[dyl,=0 = OJOK. (43)
Their commutation relations are

[Eb Cz] = -2, [Cn Cs] = —{y, [Cza Cs] = {,. (44)
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The Lie algebra of the axi-symmetric O(1,4) is spanned on three vectors

ny = —cos 8 8joy+ctg y sin 6 3/06,

N, = —sin y cos 6 9/0t—th t cos @ cos y /0y +th t sin /sin y 8/06,

3 = cos x 6/6t—th t sin y 8/dy (45)

with the following commutation relations
o] =05 [n2amsl = =0y, [1515] = —ma (46)
The mapping
JC) =ni+m, fG)=m-—ny f(ls)=n;

is an isomorphism between the Lie algebras (43) and (45), hence the group of transforma-
tions (40)~(42) is locally isomorphic to the axi-symmetric O(1,4) group.

4.4. AS transformations in “natural boundary” coordinates, in the case
y=H=L=0

Since the boundary of the de Sitter space-time is a 3-dimensional sphere, the coordi-
nates in which “the boundary looks like a 3-dimensional sphere” seem to be appropriate
to study asymptotic symmetries. Using the coordinate transformation (29) one obtains,
for large ¢

ds? = (1-2me™*"|(asin® y)+ ...)d1* +(dme~>"*[sin® y+ ...)d1dy
+(@Ne™2%(a sin? y)+ ...)dtd0—e*!*d,Q2,
d3Q% = (142me™>"(a sin® )+ ...)dx* +(4Ne™*/*(a® sin y)

3
+ .. )dxd0+sin® y{(1+2ce™>¥sin® y+ ...)d06*

3
+sin? 0(1—2ce™>%/sin® y+ ...)d¢*}. 47)

From the assumption that the metric functions are expandable in powers of 1/r in
Bondi’s coordinates, it follows that the metric functions are expandable in powers of e~ /%,
Thus one should assume AS transformations of the form

x = h(#, H)+I§(Z, Be =t ..,
= (7, 0)+ g B)e M+ ...,

- 1
€ = A7, 0)eP+ A D)+ ...,
<>

1 -
t=1i+aln Atade A+ .... (48)
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The djdi and dOdi equations read

_ _ i .
Obviously & # 0, g # 0, hence
1 1
h=g=0
which means that

2 — 2 -
x=h+he ™+ ..., 0=gtge ¥y ..

The requirement d3Q* ——> d;Qf (where d;Q] is the metric of a three-dimensional

sphere) shows that # and g must be functions of a conformal transformation. Let X be the
conformal factor

d Q2 = K%d,0%.
The dj? equation shows that
A = K-,

Lower order equations determine lower order expansion functions. The AS group
is thus the group of transformations

I = h(x, 0), 0= gz 0),

where h and g are functions of a conformal transformation. This group is isomorphic
to the axi-symmetric 0(1,4) group.

5. Conclusions

~ Penrose’s theory results suggested that, in the case of space-times with boundaries
at temporal infinity, AS groups were finite dimensional. This result is confirmed in this
work (see note added in proof). The AS group for asymptotically de Sitter space-times
appears to be the group of conformal symmetries of the three dimensional sphere. This
result is apparently in perfect agreement with Penrose’s theory, at least at the level of
subgroups of AS groups leaving the ¢-angle unchanged.
The three-dimensional matrics 31 are not conformally equivalent for all 3, H = /2.
It can be shown, using Frobenius-Dieudonné theorem [8], that metrics 31 admit conformal
symmetries only for very specific y. Penrose’s theory provides the AS group for a family
of spaces, when the spaces of the family considered admit a common boundary. This is
not the case for the asymptotically de Sitter family of spaces, as considered in this paper.
To be able to use Penrose’s theory one should divide the family of asymptotically de Sitter
metrics into classes, two spaces belonging to the same class when their boundaries are
conformally equivalent. Using Penrose’s theory one would obtain different AS groups
for different classes, subject to whether the boundary of the metrics of a given class does
or does not admit any conformal symmetries. Therefore the agreement between Penrose’s
theory and Bondi’s method is only apparent in the case of asymptotically de Sitter spaces.
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It should be of some interest to explain the differences between: both methods which have
appeared in this work. The results of Section 4.4 can be generalized to the case without
axial symmetry if one considers only space-times with the same boundary as the de Sitter
space-time. Using the method of Section 4.4 one obtains, for the AS group, the group
of conformal transformations of a three-dimensional sphere.

The author is very grateful to doc. dr M. Demianski for his help in the preparation
of this paper.

Note added in proof

1. At the end of Section 3 it is shown that a necessary condition for the existence
of solutions of equation (14) is

exp {y(u, 0)} = 1.

However this condition must be satisfied by the function y in order that the metric
be regular at the axis 8 = 0 [2]. It can be shown, using Frobenius-Dieudonné theorem

[8] that the set of equations (13) has a solution if and only if ; satisfies the following condi-
tion:
’;xx+;90 =0
To achieve this, one reduces the set of equations (13) to the Frobenius form by intro-
ducing a new dependent variable p = g3, and the integrability conditions for this set of

equations provide the above condition for .

2. In Section 4.1. it is shown that any harmonic function provides a solution of the
set of equations (17) (see equation (20)). This is equivalent to the statement that if % is any
holomorphic function of the variable z = x+i0 then the functions « and g defined by

g=Imh o=Reh

satisfy the set of equations (17). The condition 0, 0 € [0, 7] requires that / transforms
bijectively the strip Im z € [0, ] into itself. This restricts strongly the admissible 4 functions,
and it can be shown that this reduces all the possible transformations to the three-param-
eter group obtained in Section 4.3.
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