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SUPERENERGY TENSORS IN THE EINSTEIN-CARTAN
THEORY OF GRAVITATION*
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In this paper we study systematically a generalization of the notion of “superenergy
tensors” which has been introduced previously in the framework of the General Theory
of Relativity on the Einstein-Cartan Theory of Gravitation. It is shown, by means of ex-
pansion in the normal coordinate system that the generalization is analytically simple only
for the Einstein formulation of conservation laws.

PACS numbers: 04.20.Me

1. Introduction

It is known that in the framework of General Relativity Theory (GRT), the gravita-
tional field which is identified with the Riemannian connexion o', = {},}dx* does not
have any energy-momentum tensor. It has only so called canonical Einstein’s energy-
-momentum pseudotensor, ¢, with the following components, gt,’, in holonomic frames!
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In the normal coordinate system, NCS(P), the pseudotensor g, if we assume its analy-
ticity, is equivalent to the set of “‘the generalized normal tensors” [1-3). It is an equivalence
in the sense that the generalized normal tensors are the coefficients of the Taylor series
of the pseudotensor with the centre at the point P. Analogously, an analytic tensor field
is equivalent, in NCS(P) and in above mentioned sense, to the set of the tensors which
are called, following Veblen {i], “extensions” of this tensor.

In the papers [4, 5] the second generalized normal tensor belonging to the pseudo-
tensor ;¢ was used to construct the superenergy tensor .S of the gravitational field ", and
the second extension belonging to the metric energy-momentum tensor of matter 7" was
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used to construct the superenergy tensor of matter ,,S. The components of these tensors
were calculated, in NCS(P), according to the following, general definition

Jm (T, —T;)dy°dy* dyzdy
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for the field T of the class C’, r > 3. In the above expression P denotes the origin of the

normal coordinate system NCS(P) and v NC:(P) o; T, are the components of the

energy-momentum tensor or pseudotensor and a comma ““,”’ denotes partial differentiation.
The sign “*>” above tensors or other fields denotes the value of the considered field at the
point P.

70“,',.",“,9 mean the partial derivatives of the second order of the tensor or pseudotensor
with the components T’ calculated at the point P. These derivatives form a true tensor
[1-3].

From the superenergy tensor of gravitation, ,S, and from the superenergy tensor of
matter, .S, we constructed, in the above mentioned papers, so called *‘total superenergy
tensor” in GRT 'S,

'Si= . S+,S. 3

In the papers [6, 7] the global superenergetic quantities of a closed system, the physical
meaning of the superenergy and the superenergy tensor of the Einstein—-Rosen gravitational
wave were examined (all essentially in the framework of GRT). In papers [4-7] we also
gave some remarks about the superenergy tensors of matter and gravitdtion in the frame-
work of the Einstein-Cartan Theory (ECT).

The paper presented here is devoted to a systematic analysis of the superenergy tensors
in the framework of ECT.

2. The normal coordinate systems in ECT and the superenergy tensors in ECT

In the framework of ECT, the mathematical model of space-time is a differentiable
manifold U, [2]. The metric and connection of this manifold are determined by the Einstein—
—Cartan equations {8, 9]

81rG , 8nG ]
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In the above equations .t,,% = —ct;‘;f" denote the components of the canonical spin-
-tensor of matter, .t; T, are the components of the canonical energy-momentum tensor
of matter, T, and G,’, T ,',;’}, g, denote, respectively, the components of the Einstein
tensor G of the U,-geometry, the components of the modified torsion tensor 7 and the
components of the metric tensor g (See, c.g., [9]).
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The linear and metric connection w!; = I';dx" of space-time in ECT is physically
interpreted as the gravitational field. We will eall this gravitational field “Cartan’s gravita-
tion” or ‘“Cartan’s gravitational field”.

The Riemann-Cartan connection o, is not symmetric, i.e.,

Ty =:S;4 #0.

It is known [1, 2] that the construction of the normal coordinates, NCS(P) involves
only symmetric part of a non-symmetric connection. Therefore, in ECT, we can formally
construct, at every point P of space-time, two different NCS(P):

1. The normal coordinate system NCS(P; @) belonging to the Riemannian part
o = {E}dx” of the Riemann—Cartan connection «”, = I'“dx®;.

2. The normal coordinate system NCS(P; w) belonging to the symmetric part

if.‘; = I'(Jydx" of the Riemann-Cartan connection w?’,.
These two coordinate systems are holonomic and can have the same natural basis at the
point P.

The natural existence of the two above mentioned kinds of the normal coordinates
in ECT follows from the two natural decompositions of the Riemann—Cartan connection
. In terms of components these two decompositions have the following form

r;, = {;;} + K8, (5)

F;Y = gy +1p = g+ S, (6)
S
In the decompositions (5) and (6) {4,} and I'j, are the components of the symmetric linear

connections @, and 5_“; respectively. From these two connections the connection
o¥ = {1}dx® is metric.

We may interpret physically the decomposition 1° as a splitting of Cartan’s gravita-
tional field w*, into Einsteinian gravitation o*, reducible by a suitable choice of the coordi-
nates and tensorial part, K, with components Kj.* (—) Kj,* are the components of the
cantortion tensor [9]).

From the fact that in ECT the connection between torsion of space-time and canonical
spin is purely algebraic, it follows that we can write the ECT equations in the two equivalent
forms:

1. In the form (4). In this formulation of ECT equations explicitly occur Cartan’s
gravitation w’, with the components I'%;, and the canonical energy-momentum tensor of
matter, 7, with the components T,’.

2. In Einstein’s form [9, 10]

oy~ 8nG |
G (w) = 4 com T, (7

G,'(w) denote here the components of the Einstein tensor G constructed from the Rieman-
nian part w¥, of the Riemann-Cartan connection w*, and ., T .. are the components of
the so-called combined, symmetric energy-momentum tensor of matter .., 7 [9, 11].
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In this formulation of ECT equations explicitly occur Finstein’s gravitation *, with
the components {/,} and the combined enérgy-momentum tensor of matter coml With the
components .,,7,.. The tensorial part K of the Cartan gravitational field w?, is, in this
formulation of the ECT equations, formally eliminated from the considerations.

In each of the two above mentioned formulations of ECT equations the gravitation
involved does not have any energy-momentum tensor but only a pseudotensor and in each
of the two above formulations of ECT equations there exist a specific energy-momentum
pseudotensor of appearing gravitation and a specific energy-momentum tensor of matter.
For example, in the formulation 1 of ECT equations, the energy-momentum tensor of
matter is the canonical one, .7, with the components

Y v aL
CT“. = Léﬂ_ 5(—![/”) VplP

(®)
Here ¥ describes the field of matter and L = L(¥, V¥) is the invariant Lagrangian density
of matter. The energy-momentum pseudotensor of Cartan’s gravitation w¥,, which occurs
in this formulation of ECT equations, is the pseudotensor .,z with the components {5, 6]

4
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This pseudotensor may be decomposed into three parts
ol = 5t+,T+0. (10)

In the decomposition (10) ;¢ denotes the energy-momentum pseudotensor of the Einstein
gravitation @, having the same components as the pseudotensor given by (1); T is the
energy-momentum tensor of the tensorial part, K, of the Cartan gravitation «”, having
the components ,T,’,

4
v c va, ¥ - LY. 1 .. a y . P & . v
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and O is the energy-momentum pseudotensor which involves energy of interaction of the
fields K and @",. The pseudotensor O has the following components

c* o (0
0} = —— g ° K.® K;°
2= e s () 1 L )
o ) .. Y .5 PP K
s ({# ﬂ} K2+ {av} K, ) + 3 N iSup {ay}] . (12)

The energy-momentum complex of matter and gravitation in the formulation 1° of ECT
is the complex K [6] having the components K, = v gl (ot +cT;). In the Einstein
formulation 2° of ECT equations, the energy-momentum tensor of matter is the so-called
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combined energy-momentum tensor .,,7 with the components [9]

8nG . . .
comT™ = omT™ = TV + & [—4.7%, ct?’fa]-Zcr‘.“.”.’ Tlap
. 1 . . ﬂ ae e
+ o Tap+3 84T 5 T gt T Tyap))s (13)

— oL
where Vg oT": = 2
uv.
of the Einstein gravitation @, appearing in this formulation of ECT equations is the pseudo-

tensor 3¢ which has formally the same analytic form as the Einstein canonical pseudotensor
gl given by (1).

The energy-momentum complex of matter and gravitation appearing in this formula-
tion of ECT is the complex gK [6] with the components

K, = Vigl GEl+ com T

It follows from.the above mentioned facts that in the framework of ECT we can
formally consider four different superenergy tensors of gravitation and four different
superenergy tensors of matter:

1. The superenergy tensor ,S(P; @;v) of the Cactan gravitation " constructed
from the ,t in the normal coordinate system NCS(P; @) and the superenergy tensor
SS(P; w; v) of matter constructed from .7 in the NCS(P; ®).

2. The superenergy tensor ,S(P;w;v) of the Cartan gravitation w’, constructed
from the ,f in the normal coordinate system NCS(P; w) and the superenergy tensor
<S(P; w; v) of matter constructed from T in the NCS(P; o).

3. The superenergy tensor 3S(P; ;v) of the Einstein gravitation & constructed
from the ;¢ in the normal coordinate system NCS(P; @) and the superenergy tensor
©MS(P; @; v) of matter constructed from the .7 in the NCS(P; @).

4. The superenergy tensor 3zS(P; w;v) of the Einstein gravitation @, constructed
from the ;¢ in the normal coordinate system NCS(P; ) and the superenergy tensor
“"S(P; w; v) of matter constructed from the ., 7T in the NCS(P; w).

All the above superenergy tensors can be constructed in NCS(P; @) or in NCS(P; w)
in the same way as described in Section 1 (See also [4, 5}).

From considerations presented up to now it follows immediately that, in the frame-
work of ECT, we can also formally introduce four different superenergy complexes:

1. The superenergy complex ,S: = \/!gl [zS(P; @; D)+ 2"S(P; @; v)] of the Einstein
gravitation ¥, and matter described by .7, constructed in the normal coordinate system
NCS(P; o).

2. The superenergy complex ,S: = V |g| [,S(P; @; )+ S(P; @; 7)] of the Cartan
gravitation ¥, and matter described by _T, constructed in the normal coordinate system
NCS(P; o).

3. The superenergy complex ,S: = v ig] [zS(P; ; D)+ 2™S(P; w; v)] of the Einstein
gravitation o¥; and matter described by 7, constructed in the normal coordinate system
NCS(P; w).

(see [13], [I5]), and the energy-momentum pseudotensor
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4. The superenergy complex ,S: = v g] [oS(P; @; D)+ SS(P; w; v)] of the Cartan
gravitation ¥, and matter described by .7, constructed in the normal coordinate system
NCS(P; w)

From all the considered up to now superenergy tensors of gravitation the simplest
analytic form has the tensor 3S(P; @; p) and, in consequence, the simplest analytic form
has the superenergy complex ,S.

This complex in terms of components, has the following form:

v 1ol v ~ LTy comgty ~ - [T i~ . V(ig) - pre -
1S = VIgl [38,2(P; &; )+2mS,(P; @; )] = VIglo* — g) (2 k[4K' (. Krioisy

—28,K1K o+ 26K o K3 5= 3Ky Ky

ulx
* %
2K K]+ VoV com Tl +5 Kt comTe' =5 Koty com T} (14)

In the above expression % denotes the covariant diffgrentiation with respect to the
connection w’, = {~}dx* and Kﬂ'v';f mean the components of the curvature tensor of the
connection @*,.

The analytic forms of the other superenergy tensors of gravitation and of the super-
energy complexes considered in this paper are too complicated to be given here. The very
complicated forms of these objects (about 20 times more complicated than the forms of
2S(P; ; v) and ,S) are caused by the non-vanishing torsion of space-time in the domains
occupied by matter.

3. Discussion of the results and conclusions

From the mathematical point of view all the superenergy tensors considered in the
previous section, especially the four superenergy complexes described there, are equally
good. However, the physical and, especially, practical arguments distinguish the super-
energy tensor 3S(P; @; v) and the superenergy complex ,S(P; @; 7) as having the most
useful properties.

The physical argumentation in favour of the tensor 3S(P; @;v) and the complex
S(P; @; v) goes as follows:

1. The test particles which establish a local, inertial frame of reference in ECT (spin-
less test particles and photons) move along the geodesics of the Riemannian part o of
the Riemann-Cartan connection w?,.

In consequence, the coordinate system NCS(P; @) is the local, inertial frame of refe-
rence in ECT with the origin at the point P while the coordinate system NCS(P; w) does
not have any physical meaning.

Thus, from the physical point of view, one should expand the tensors and other
fields and construct superenergy tensors in the coordinate system NCS(P; w). Therefore,
the construction method distinguishes the superenergy tensors ,S(P; @; 0), ~S(P; @; ?),
3S(P; @; D), “°"S(P; ®;7) and the superenergy complexes ,S(P; &;7) and ,S(P; @; D),
all obtained in NCS(P; @; v).

2. From these tensors, the tensors 3S(P; @; ) and ,"S(P; @; ) and, therefore, the
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complex ,S(P; @;v) are additionally distinguished by the fact that their components
can be always easily measured (indirectly) from observations of spinless test particles.
This is easily seen from the equations of motion of spiniess test particles in ECT and from
geodesic deviation of the world lines of such particles {13-15]. The components of the super-
energy tensors ,S(P; @; v) and SS(P; @; p) are more difficult to measure (indirectly) from
observations of test particles and they not always may be measured from such kind of
observations because, in ECT, not all components of torsion can be measured from obser-
vations of test particles [16].

3. Moreower, from the superenergy tensors of gravitation considered in this paper,
only the superenergy tensor 3S(P; @; o) with the components 3S;(P; @; b) admits a simple
and interesting physical interpretation as a “relative energy-momentum’’ (= superenergy)
tensor of the field of tidal forces described by the Riemann curvature tensor with compo-
nents K,,;" [15}

Such physical interpretation of the superenergy tensor 3S(P; w; D) is possible because
the components of the tensor 3S(P; @; v) are quadratic in K,,;:. The superenergy tensor
»S(P; @; v) contains, among other things, the covariant derivatives of Riemannian cur-
vature, the torsion and contortion tensors and their covariant derivatives. In consequence,
this tensor does not admit as simple and interesting physical interpretation as the tensor
=S(P; @; D). It is interesting that the tensor 5S(P; &; p) mainly consists of the Maxwellian
“relative energy-momentum” tensor of the Riemann tensor [4].

The practical argumentation in favour of the superenergy tensor 3S(P; @; v) and the
superenergy complex ;S(P; @; ) is obvious: only the tensor 3S(P; @; 0) and the complex
.S(P; @; v) have a simple analytic form.

On the other hand, it seems that the remaining gravitational superenergy tensors
and the remaining complexes considered in this paper, especially the tensor ,S(P; @; 1)
and the complex ,S, are too complicated for practical calculations.

Resuming one can say that in the framework of ECT there exist two different energy-
-momentum complexes?:

1. The energy-momentum complex K: = \/!gl(wt+cT) of the Cartan gravitation
and matter,

2. The energy-momentum complex ¢K: = v Ig| (Gt comI) of the Einstein gravitation
and matter,
and two distinguished, by the construction method superenergy complexes:

1. The superenergy complex ,S(P; ®;7) of the Einstein gravitation and matter,

2. The superenergy complex ,S(P; @; v) of the Cartan gravitation and matter.

It seems that from these two superenergy complexes only the superenergy complex
.S(P; @; v) has unquestionable physical meaning and it may be used in practice as the
superenergy complex of matter and gravitation in ECT.

The superenergy complex ,S(P; @; p) does not have such satisfactory properties as
the complex ;S(P; @, v) and it seems to be too complicated for any practical calculations.

The author wishes to thank Dr A. Staruszkiewicz for useful, critical remarks.

2 Both of them give the same results for global quantities of a closed system [5].



746

REFERENCES

[1] O. Veblen, Invariants of Quadratic Differential Forms, Cambridge at the University Press, Cambridge
1933.
[2] J. A. Schouten, Ricci-Calculus, Springer-Verlag, Berlin 1954.
3] A. Z. Petrov, New Methods in General Relativity, Science Publishers, Moscow 1966 (in Russian).
[4] J. Garecki, Acta Phys. Pol. B8, 159 (1977).
[51 J. Garecki, Acta Phys. Pol. B9, 291 (1978).
[6] J. Garecki, Acta Phys. Pol. B10, 883 (1979).
[71 J. Garecki, Acta Phys. Pol. B11, 255 (1980).
(81 A.Trautman, On the Structure of the Einstein-Cartan Equations, Istituto Nazionale di Alta Matema-
tica, Symposia- Mathematica 12, 139 (1973).
[91 F. W. Hehl, Gen. Relativ. Gravitation 4, 333 (1973); 5, 491 (1974).
[10] A. Trautman, Elementary Introduction to Fibre Bundles and Gauge Fields, Preprint IFT (10/78,
Warsaw 1978.
[11] F. W. Hehl, Rep. Math. Phys. 9, 55 (1976).
[12] W. Adamowicz, Doctoral Dissertation, Warsaw 1980.
[13] A. Trautman, §6 in Lectures on General Relativity, Prentice-Hall, Inc. Englewood Cliffs, New Jersey
1965.
[14]1 F. A. E. Pirani, Introduction to Gravitational Radiation, in Lectures on General Relativity Prentice-
-Hall, Inc. Englewood Cliffs, New Jersey 1965.
[15] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, San
Francisco 1973,
[16] W. Adamowicz, A. Trautman, The Principle of Equivalence for Spin, Preprint 1FT/16/74, Warsaw
1974.
[17] F. W. Hehl, Phys. Lett. 36A, 225 (1971).
[18] F. W. Hehl, Phys. Rev. D10, 1066 (1974).
{191 J. M. Nester, Phys. Rev. D16, 2395 (1977).



