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ON THE POMERON EQUATION FOR LARGE k?

By M. Praszarowicz
Institute of Physics, Jagellonian University, Cracow*
( Received January 23, 1981)

Solutions of the Pomeron equation are investigated for large gluon virtual mass 3.
Effects of the running coupling constant for this equation are studied; it is also shown that
large k3 solutions of the Pomeron equation agree with the small x limit of the DDT equation.

PACS numbers: 12.40.-y

Much progress has been recently achieved in understanding the high energy behav-
iour of nonabelian gauge theories (NAGT) — specifically in QCD. One can distinguish
two regimes in which the theory has been investigated: (@) hard scattering regime in which
all kinematical invariants are large — l'ke deep inelastic scattering (DIS); for a review
see Ref. [1] and references therein, (b) Regge limit, where the invariant squared energy
s is large but other invariants (like ¢) remain fixed [2-7).

In the hard scaftering region one calculates amplitudes in a leading logarithmic [1, 8]
approximation summing a series of the form

oo

A=Y a0, )

n=0

where Q72 is a large, positive energy scale in a given process.
In the Regge limit [3, 4], on the other hand, the series for the amplitude has the follow-
ing form:

A=Y aXgns), @

n=0

1
where large logarithms of s (in DIS log s is equivalent to log — [2, 8}) are summed up with
x

some coefficient functions containing full information on all other kinematical variables
(like Q%) [3, 4, 7]. Since 5 — o0, th's Iimit corresponds, in DIS-language to x — 0.
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In this paper we show that the results for suitably defined parton probabilities calcu-
lated in both regimes, by means of two different calculation techniques, coincide in a region
where s, 0? — o0 but x is small. First we consider an approximation in which the running
coupling constant effects are neglected in both regions. In the Regge limit the Pomeron
equation [6, 7] describing colour singlet exchange can be diagonalized by the Mellin
transform, and its solution for large k? can be obtained by approximating the transform
of the kernel by the pole term.

Then we ask how the running coupling changes this integral equation and its solu-
tions. The replacement g2 — ag(Q?) corresponds to the inclusion of some next-to-leading
log s terms important in the large kZ limit. We find that the Pomeron equation “improved”
in that way can be written as a differential equation whose solutions are governed exactly
by the pole term of thé Mellin transform of the kernel.
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Fig. 1. Full photon-parton cross-section in DIS as a sum of ladder diagrams convoluted with the Born
photon-parton cross-section

In DIS one extracts a leading log Q? contribution (1) by summing ladder [1, 8] dia-
grams (see Fig. 1) in the axial gauge, in a kinematical region
B2 < ki) < k3l < o kR < Q3 3
X~B,<B1<...B <], @
where we have introduced Sudakov parametrization for integration momenta (Fig. 1):
kn = 0,q + B0’ + ko

!

q = q+xp,

2

I #
P =rp+ (~)q-

s

The Q? behaviour of this process does not depend on the photon-parton Born cross-
-section aff,’f“ and therefore one defines the universal 02 dependent parton distributions
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D, _x(x, u2, 0% {1, 8]. The well known DDT equation for parton distributions [1] can
be solved by performing the Laplace-Mellin transform of D, _g(x, 2, 0% in x and in the
“time’’ parameter ¢ defined as

Qz
s [ dK® ag(K®)
R J—k_z 47

The Laplace-Mellin transform converts the integral DDT equation into an algebraical
one, which can be easily solved in the x — 0 limit where one can neglect quark-gluon
mixing terms. If we neglect the running coupling constant effects parameter ¢ becomes {8]:

£ T ey
and the solution for Dg_ g(x, u2, Q%) reads:

1 /1 2,,2\1/2 j_’_ﬁ*—'T
DG-oG(x, ”2, QZ) = —“('B—Q—_‘/i‘_) Il (2 g2 an—z'ln ";)a
H

x \ Inl/x

where N is the number of colours, 7,(z) is the modified Bessel function of the first kind [9].
In the Regge limit one is concerned mainly with hadron-hadron collisions where the
forward amplitude for, say, proton-proton scattering can be represented (Fig. 2) as [6]:

F1(k1l)f(3a kf.u k%.L)FZ(kZ.L)
32 , &)
ki, - ki,

Im A(s, t = 0) = f d*k,, d*k,,
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Fig. 2. Graphical illustration of the Eq. (5)

where F(k,) is the proton wave function and f(s, k2 1 K3 1) describes the propagation of
gluons in a singlet colour state. Equation (5) can be treated as a definition of f(s, k2., k3,)

whose properties have been investigated in Refs. [4, 6, 7].
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As we see from Eq. (5) the function f(s, k2., k%)) can be treated as a probability of
finding a gluon (in fact a reggeized [2, 7, 10] gluon) with transverse virtualness k3, in
a dressed gluon with virtualness k7 | in a process with an external energy scale s — co.
The function f(s, k2., k3,) as it stands in Eq. (5) cannot be compared with the gluon
distribution” Dg_g(x, k2, k3,) since all integrations over the longitudinal degrees of
freedom have been carried out, whereas in the parton distributions Dg_, ¢ longitudinal
momenta are fixed [1, 8]. These remaining integrations over dx or d2k,, are performed
when Dg_g(x) or f(k%,) are convoluted with a photon-gluon cross-section & ORN(x) or
proton wave function F,(k,,) to obtain the total cross-section. So in order to compare

the quantities calculated in both regions one has to integrate Dg_g(x', p?, 0%) over dx’'
2

up to x = —QS— and f(s, k3, k3,) over dk3, up to Q2. Quantities obtained in such a way

represent the full gluon-gluon transition functions integrated over the last cell (see Fig. 1, 2)
over the transverse and longitudinal degree of freedom, and should coincide in a small
x region.

In the Regge limit the kinematics is a little different than in the hard scattering regime;
relation (4) still holds, whereas an integration over d2k;, extends over the whole kinematic
range [4, 6] (although the dominant contribution comes from the region where all k2, ~ M?,
M— proton mass [6]). Since we want to compare the asymptotic behaviour of the functions
Dg (%, 4%, Q%) and f(s, k?,,k2)) in a region where both approaches are applicable, we
have to impose relation (3) on the function f(s, k7, k3,) pushing ik?,] - p?and |k3,| - Q.
Graphically this would correspond to the replacement of the upper blob in Fig. 2 repre-
senting the proton wave function F,(k,,) (see Eq. (5)) by photon-gluon cross-section
02" from Fig. 1.

A few words should be said about the equation for the function f(s, k7., k2,) which
can be derived assuming reggeization of the vector meson in NAGT [4, 6] (for another
derivation see Ref. [7]):

(@ —2a(k;y _L))fw(kl.u %J.) = ”ki.l.‘s(kh—kgl)

¥G

~2 2 !
g
2 s Kk 1, kDKL, K31),s ©)
where the gluon trajectory has the form
~2 27,1
g d’k}
k2 — _ & k2 _ — 7
(Z( J.) 47‘C _LJ‘k,J-z(kL_kl)z ( )
and the kernel is given by
K(ky, ki) =2 kiukl (8)
(k) =2 Gk
Here by f,(ki,, k3,) we have denoted the Mellin transform of f(s, k3, k2):
do
JGs, ku, k;.L) = |5 ) fw(kl.l.9 k%.L)' ®
2ni \Q?
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Equation (6) describes the perturbative Pomeron obtained in pure, spontaneously
broken SU(N) theory, in a leading log s approximation (but within this approximation
it is exact in the whole range of k2). In what follows we shall suppress the “transverse”
indices for the integration momenta.

Since for the colour singlet exchange in the z-channel all amplitudes are infrared safe
[6, 11], we have put all gluon masses in Eq. (6-8) equal to O (this is why there is nothing
wrong about the infrared divergence of the trajectory (7)). In other channels, however,
these divergences do not cancel each other [3, 4, 12}, but their exponentiation is crucial for
the infrared safety of the equations with singlet exchange.

One of the most important features of the effective kernel

’ 1 ’ 47t 21 722(2) 0.1
Keglky, k') = 2 Kk, K')+ 3 a(k )k "0 (K — k),
of the Pomeron equation is scale invariance
da’k’ , a*k’ ,
'k“;"z’ Kok, k') = “‘I‘(‘ff K e(aky, ak’). (10)
Due to (10) one can diagonalize Eq. (6) by the Mellin transform
k2 dv a
Sulki, k3) = (?1)—2 JE&' (kD) pulv; K3), (11)
2

converting the integral Pomeron equation into the algebraic one. The solution for ¢, (v)
reads
(k3)"
w(V) = — g, 12
Pal¥) a)—gzK(v) (12)

: 1
K@) = —2Zrg=p(-v)—p(d+9)+ —,

where yp = 0.577... is the Euler constant and w(z) a digamma function [9].

One should emphasize here that (12) is an exact solution for the function g¢,(v),
however in order to invert the Mellin transform (11) one has to make some approxima-
tions.

We invert the Mellin transform (11) in a limit where

2
E > 1,

so that one can deform the integration contour closing it in a left-hand half-plane. Then

fo(k}, k3) is given in terms of the sum over the poles on the negative real axis, whose
o2

positions are in general complicated functions of & , but the dominant leading log k?
w
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contribution comes from the most right pole at

~2 ~2\2
T ((2)
) )
The solution of the Pomeron equation in this approximation is given by

g

~2 2 27 0
£ 1) = & —k—-["] . (13)

o (k3 LKk}
In other words the leading log k* formula for f,(k, k3) — Eq. (13) — was obtained
by approximating the Mellin transform of the kernel K(v) by its pole term
1
K@)~ —.
v

To invert the w-transform (9) we use the Hankel formula for 1/I'(z) which yields:

2
g°In "2 T T2
0 \/~ S k3
k2L kD = [———-1, (L [g*In In—).
f(S 1 2) lnkg 1<2 g llQan%_
ki

According to our previous remarks in order to compare the gluon distributions calcu-
lated in both limits we have to integrate D _ g(x") over dx’ and f(k3) over dk3. For inte-
grated gluon distributions we obtain

1 Q2
1
F(x9 Q2) = J‘dx'DGﬁG(x,’ /"2’ QZ) = [ dkif(;‘ ’ ﬂz’ k%) ’
x ‘:2

£

2 n+1
© ( g*ln Q—2 In ~1~>
F(x, 0%) = Z S (14)
(n+Dl(n+1)!
n=0

From (14) we see that, as in fact it should be expected, both quantities have the same
asymptotic form for s, Q% large and x small.

In the hard scattering region renormalization effects have been taken explicitly into
account [1, 8] and therefore the running coupling constant appeared in the DDT equation.
In the Regge limit the leading log s approximation does not require renormalization, since
renormalization effects are non-leading in this region [3, 4}

Now we come to the question; how the running coupling constant affects the Pomeron
equation [6] and its solutions [10, 13]. This we can do by replacing g%/4n in Eq. (6) by
as(k?). We should point out here that we have no systematic way to include the next-to-
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-leading terms in the log s expansion (2), however one can argue that this replacement
sums up all the leading log s and log Q? terms for the scattering amplitude.
So if we replace
~ 1672
g - (15)
(%3* N—%n)In ka
1

(n; number of flavours) and perform the Mellin transform

dv (kK3\""
K kD) =|—(-2) @ 16
Pall, k) f - (k§ Pal) (16)
we obtain a differential equation for the function @,(v)
d . g’ .
d— (pm(v) = %o(")K(")a
v 15

g% = 4NI(F N3 np. an
Equation (17) can be exactly solved giving

- 1 > _
PulV) = — exp (— — K(v)> ,
w w

i K(») = K(®v), (18)
dy

where the explicit form for K(v) is given by

K(v) = —2ygv—In <F(1 +v)> +Ilnv

r(—v)

i .
The factor — comes from the inhomogeneous term in the integral equation (6) for
w

Jolk3, K3).
Although ¢,(v), given by (18), is an exact solution of the Eq. (17), it is valid only
2

for large k% , because the equation itself is valid only for large k2, since we have approxi-
1

mated ag(k3) in Eq. (6) by its asymptotic form (15).
The function ¢,(v) has a pole at v = 0 and it can be seen that the leading log k3
behaviour of f,(k?, k3) is governed not approximately, like in the case of the “fixed”

1
coupling constant (see Eq. (12)), but exactly by — pole term of the kernel K(v).
Vv

If we look at Eq. (18) we realize that ¢,(v) is singular exactly in @ = 0, whereas for
the “fixed” coupling constant the leading singularity [4, 6] was a branch point in @ > 0.
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This change in position and character of the singularity is caused by the logarithmic term
introduced into the effective kernel by ag(k?) (so in fact it is due to our approximation valid
only for large k3).

Now we can invert the Mellin transform (16):

-2 k2
2 .2 €Xp (-g— Inin ——%)
ki ¢ w ki /

G r ( g )

w

fw(kf» k%) =

Finally we get the result for the integrated gluon distributions defined in Eq. (14):

1 2sn+1

(g'z In —Inln —~—2~)

F(x, 0% = S S
’ (n+Hn+1)

n=0

To sum up: we have shown that two different calculation schemes in the Regge and
hard scattering regions give the same results for the gluon distribution functions in a limit
where s, Q? are large but 5/Q? remains small. In the “fixed”” coupling constant case solu-
tions of Eq. (6) for large k2, can be obtained by approximating the Mellin transform of the
kernel K(v) by its pole term, whereas in the case of the running coupling constant the
“improved’” Pomeron equation (valid only for large k3) solutions are given exactly by the
pole term of K(v).

The author is grateful to Doctor J. Kwiecinski for numerous discussions and remarks.
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