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It is shown that the perturbative calculations in Regge limit in nonabelian gauge
theories are in agreement with the hypothesis of the reggeization of vector meson (gluon).
The infrared properties of the integral equations for various quantum numbers exchange
in the t-channel are studied in the spontaneously broken theory; the role of the Higgs particles
is investigated. Some connections with deep inelastic scattering are also discussed. Theintegral
equation describing the three gluon exchange in a colour singlet state is formulated and its
infrared properties are studied. It is argued that it generates a fixed branch point in j-plane.

PACS numbers: 12.40.-y, 12.40.Mm

1. Introduction

The problem of high energy scattering in nonabelian gauge theories (NAGTSs) has
been widely discussed in the literature [1-8]. The calculations have been performed for
various classes of processes in different approximation schemes. The picture which emerges
seems to prove QCD to be the theory of strong interactions.

In this talk we would like to present the results which have been obtained by various
authors [1-6, 8-21] in so called Regge limit of QCD, where s is large and ¢ fixed (by s and
t we denote the usual Mandelstam variables).

Perturbative calculations based on the usual Feynman techniques have been performed
up to the 12'" order in the leading In s approximation [1-3]. To avoid infrared divergencies
the gluon mass A has been introduced by means of Higgs mechanism, in some cases the
limit A - 0 can be taken and we again arrive at the massless theory. It has been shown
that for vector meson quantum numbers exchange in 7-channel perturbative results agree
with the hypothesis of the vector-meson reggeization in NAGTs [9-11]. This will be de-
monstrated in Section 2 in the two lowest orders of the perturbation expansion.

Next we shall briefly sketch the alternative technique for the summation of the pertur-
bation [4-6] series based on unitarity and analyticity. In this context we shall explain
the role of the Higgs particles in the whole scheme.

* Presented at the XX Cracow School of Theoretical Physics, Zakopane, May 29 — June 11, 1980.
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The picture which emerges is the reggeization of vector meson in NAGTs. We shall
next, in Section 3, use the Regge-like formulae for the scattering amplitudes to show how
one can derive the integral equations for various gquantum numbers exchange [4-6]. The
results for SU(3) are as follows: antisymmetric octet (gluon) reggeizes, symmetric octet
also has a Regge pole structure, singlet (the Pomeron) has a fixed branch point in complex
angular momentum j-plane. The integral equations for the octets exchanges suffer from
infrared divergencies (one has to keep 4 # 0) but in the Pomeron case all infinite terms
cancel out — this we shall explain in details — so one can take A = 0 limit.

Some connections of the Pomeron equation with deep inelastic scattering (DIS) will
be also discussed [7, 8, 15, 21].

The procedure presented in Sections 2 and 3 leads to the Gribov Reggeon calculus
of reggeized gluons [22, 23] with calculable vertices [5, 6, 15-17]."In our case for leading
In s approximation only the 2 — 2 vertices are needed explicitly. Using the rules of the
Reggeon calculus [22] we derive in Section 4 an integral equation for the three reggeized
gluon system exchange in a colour singlet state [19]. This amplitude has C-parity C = —1
and therefore differs from the Pomeron. Phenomenologically it can be responsible for the
behaviour of F; structure function in neutrino-hadron scattering for x — 0. We shall
investigate the infrared properties of this equation and argue that it generates a fixed branch
point in j-plane [19]. Some authors [15-17] go beyond the leading logarithmic approxi-
mation in order to construct a complete Reggeon calculus with all types of vertices. In
this paper however we will not consider this problem.

2. Reggeization of high.energy amplitudes

At the begining of this section we shall recall what reggeization of a particle in a given
theory means {10, 15}. We shall be working with the Sommerfeld-Watson representation
of the scattering amplitude

do e ™—g
A(Sa t) =8\ s . Fa)(t)a (21)
2ni sin 7w
where j = w+1 is complex angular momentum variable and ¢ denotes signature.
For the moment let us consider a fermion-fermion amplitude in any gauge theory.
In the first order of the perturbation expansion (one spin j = | vector meson exchange)
F (1) is nénanalytic in wt
F (1) ~ 6,0
If the higher orders remove this nonanalyticity and the amplitude F,(¢) will have a ¢ depen-
dent pole in w-plane (Regge pole) one would say that the vect¢r meson reggeizes [10]
v e—-imx(t)__
A(Sa t) ~ Sl(t)+1 SR Ot(t), (22)
sin wa(t)

where the trajectory a(r) is a calculable function of ¢, proportional to the coupling constant
g%, vanishing for 1 = A2 (1 — vector meson mass), and signature ¢ = — 1. Some authors
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{1-4] have successfully undertaken the efforts to calculate the scattering amplitudes up to
the 12 order of the perturbation theory. The calculations were performed in a leading
logarithmic approximation where terms (g2 In 5)" were picked up. These results were com-
pared [10] with the expansion of Eq. (2.2) and it turned out that for vector meson quantum
numbers exchange in the z-channel perturbative results were in agreement with the Regge

a b

Fig. 1. Fermion-fermion scattering in the first and* second order in &

pole structure of F,(¢). This means that vector meson in NAGT reggeizes. In fact reggeiza-
tion occurs in all gauge theories based on a semisimple Lie group [13], whereas in QED
photon does not reggeize.

To illustrate this let us consider the second order fermion-fermion amplitude (Fig. 1b).
In Feynman gauge for SU(N) theory one obtains in the first and second order

2
s 0 .0
(o= & 2, Dt gogon

m t—A%
2
g5 s ;. 6,1 2 N+1
Ax(s, 1) = = — L“ pie 14n®
2(5 ) 2 m2 ()[ N
in N*—4.,
+{ln=; - Z)Fwge T 0 page 2.3)
m* 2 2N?
Ng? d*k,
[ e T
2(2n)° kim22) (k= (pa—pa))* —2%)

where Tare group couplings of vector meson to fermion, 1 unit matrix (for singletexchange),
m and /A denote fermion and vector meson mass respectively, d;,;,- stands for fermion
helicity conservation.

In the second order only singlet and adjoint representations are exchanged, and in
fact both of them appear in Eq. (2.3) with nonvanishing imaginary parts. In other words
vector meson quantum numbers can be exchanged in the second and in the first order as
well. This is not true for QED since photon has C-parity C, = —1 and two photon state
can have only C,, = +1. There is no 3y coupling and as a consequence photon does not
reggeize.

In SU(2) theory the last term in (2.3) vanishes and the amplitude for vector meson
quantum numbers exchange (term proportional to T - T®) agrees with the expansion
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of Eq. (2.2) with ¢ = —1. But for N > 2, in SU(3) theory for example, there is another
term proportional to 7™ - T® which seems to spoil the reggeization pattern (2.2). This
term, however, arises from the contraction of the symmetric structure constants d,;, and
should be therefore identified with the symmetric octet exchange [11, 20], whereas the
second term in (2.3) comes from the antisymmetric octet (gluon) exchange. Symmetric
octet exchange, as seen from Eq. (2.3), is one power of logarithm down with respect to the
antisymmetric octet.

In the Clebsch-Gordan series for the direct product of two octets (adjoint representa-
tions of SU(N) group) octet (adjoint representation) appears twice

8@8 = 1®8,88,® ...

These two octets differ by generalized C-parity [24]: Cg, = —1, Cg, = +1 and there-
fore they should not be mixed in the fermion-fermion scattering amplitudes. Having this
in mind we see that up to the 2" order amplitude with gluon quantum numbers exchange
has Regge form of Eq. (2.2). In the symmetric octet case it can be shown that reggeization
also occurs [11, 20} but the relevant trajectory differs in mass term from that of Eq. (2.4).

There is another trouble about Eq. (2.3); in any realistic theory we would like to have
massless gluons, but the limit A — 0 for the amplitude (2.3) does not exist. We will show
however, that in renormalizable SU(N) theory with massive “gluons” and Higgs particles
the colour singlet exchange amplitude is infrared safe [6,‘ 10] and A can be put equal to 0.
For other representations this limit does not exist, but their infrared behaviour is crucial
for the finitness of the singlet exchange.

Now we shall come deeper into the question of the reggeization in SU(N) theory
and the Pomeron. In what follows we shall use the unitarity and dispersion relations.
This method was proposed in Refs. [4-6] and we shall only quote the results trying to
describe physics rather than technical problems. In order to regularize the infrared diver-
gencies in this approach one introduces Higgs particles [9, 25]. In SU(N) theory (N > 2)

A -——j—— A
k7LI/1 ,____07 >S1
K2y /2 g—-D;
= k3 ls¢—p,

k ; lb——.-Dn )S
B ey sinet 8 n+!

Fig. 2. Multigluon production in A+B scattéring; an illustration of Eq. (2.5)

B

the Higgs sector is more complicated than in SU(2) model. For instance in SU(3) it consists
of scalars in octet representation which couple to gluons with d,;. couplings and colour
singlets as well [13, 18, 25). It should be noted that the general approach to this problem
in massless theory in Coulomb gauge has been worked out in Ref. [16}.

Let us consider a multigluon production in A+B— A'+B'+D;+D,+ ... D,
collision where A(A’), B(B’) stand for gluons, quarks or hadrons (see Fig. 2). We will
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show that in the high energy limit this amplitude can be written in a Regge form [5]

23
(51 )a(kl )
2
m Dy

Ayozin(s, t) = sTihy = Vipi(K11s K21) - 'y}:'i‘nﬂ(knl’ Kys11)

12 42
li._A‘
Sn+1 a(knilz-l-)
N i (2.5)
T2 2 BB’ » :
ky+ 11— A

where '\, is a coupling to the external particles and 7} are Lipatov-Dickinson vertex
functions describing the emission of gluons (or Higgs particles) [4-6}.

a,u au a,u a; u'
= /
by by’ b,v by’
Fig. 3. The leading contribution for gluon-gluon scattering (each ggg vertex is a sum of three terms)

In the first order the dominant contribution comes from the gluon exchange (see Fig. 3)..
In what folows we assume that also external particles are gluons

W , 28
AsG-c6(s: 1) = g t__";t.‘zfaja’fb’jbgmz’gvv‘? (2.6)

where we have suppressed Lorentz and colour indices of Agg.gg. Amplitude (2.6) should
be contracted with the polarization 4-vectors of external gluons

- -

- s*P - p S
s(p’s)'_‘_(*—pa S+%ME,>9

where 5 is a spin vector of a particle at rest. Formula (2.6) gives the leading contribution
only for transverse polarizations, whereas for longitudinally polarized gluons we have
in fact to count all 9 terms which are represented by the graph in Fig. 3. This leads effectively
to the replacement (for ¢ ~ 1?)

5 4 —1 for transverse polarizations
, —> ’ = . . . .
Buu Aata’Aa —1 for longitudinal polarizations

where by A, we have denoted polarization of a particle A (transverse A, = 1, 2 and longitu-
dinal 4, = 3). The quantity a;, is usually included in the definition of the vertex function
I'ya [4-6].
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The next step is to calculate the imaginary part of the second order amplitude [4, 5].
This can be done via unitarity since we know the leading form of the first order amplitude
3k kg

Im Afszs)—»A"a"(S, = % E J(2”)45(PA+PB*kA'*ka) m 2“&7277)3
A’ B’

A’B’

i ik g%
s geteay stz Tan T 4T

(ka1 —2%) (kgoy —2%)

The sum goes over gluons and Higgses in the intermediate states (the summation over
the indices 7, j is understood).

In order to calculate the full 2" order amplitude we shall use dispersion relations
with one subtraction [4, 5]. The result for octet exchange is given by

2.7

. s . in
AAB—'A'B' = r:&A' _;‘P r;;Br (1 + (In S— —2‘) a(t)) . (2.8)
Formula (2.8), as should be expected, is in agreement with our reggeization conjecture (2.5).
One thing however should be noted at this point. Suppose that only gluons occur as inter-
mediate particles A’, B’ in Eq. (2.7), then App_a-(s, t) would be proportional to
whereas from (2.8) it is clear that

Appoam € ay, " a;,

(remember that each vertex I'\ 4. includes @ 24)- This matters, of course, only for longitudinal
polarizations (since a;,-3 = —3).
We can rewrite a7, in a form

ai, = —a;,(1-39,,,3)-

It turns out that 4 a,,8,, 3 term is cancelled by the diagrams with Higgses emission,
so that in fact longitudinally polarized internal gluons do not contribute to the scattering
amplitude. Not only Higgs particles regularize infrared divergencies, but also cancel the
contribution from the unphysical polarizations of the intermediate gluons.

The next step is to calculate the 4, ,., amplitude. In the lowest g3 order this ampli-
tude can be represented as a sum of five terms (see Fig. 4) each being a priori a different
function of s and ¢, and having a different group factor.

It can be seen, however, that the energy momentum dependence of graphs (b) and (c)
or (d) and (e) differs only in s'gn. Consider graphs (b) and (c): for diagram (c)
P& =5, = 2pa.pp whereas for (b) p& = —2papp =~ —s5, if 1< 5(i.. po = pa), so that both
graphs have the same energy-momentum dependence. The group theoretical factor for
sum of these two graphs can be therefore calculated using Jacobi identity [18] (see Fig. 5).
The resulting group factor is exactly the same as for graph (a) of Fig. 4. The same procedure
can be repeated for the lower parts of diagrams (d) and (e). Hence the amplitude 4, _,,,
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has the following form: a group factor as for “central’ gluon production of Fig. 4a multi-
plied by a function of s,, 5%, Pc.,» Pc-r Which is the sum of the contributions of all diagrams
(a)—(e), that is

1
c D o - o
Azziei(s, t) = sTxy Y 72 Yee(Peys Pers) ———3 I'pp~
Pc— Pc—4
A A A A A ¢ A A c A
¢ L b Lg
D = --—D + — -+
cl Cl cl
BI
b B 8" B 8' B g’
a b ¢
A A A A
c ¢
L
g ¢ 8 8B ¢ &
d e

Fig. 4. One gluon production in gluon-gluon scattering

The explicit form of the functions y2c(Pcy, Pers) can be found in Refs. [4-6]. The above
reasoning can be extended [4, 5] for a multiparticle production amplitude 4, _, ., yielding
formula (2.8) in the lowest g2*” order and can be represented by a graph on the r.h.s. of
Fig. 2. The horizontal lines represent real QCD gluons (or Higgs particles), whereas the

—
[
—

Fig. 5. Jacobi identity for graphs 4b and 4c

vertical lines stand for some “complex’ objects obtained by a summation of a number
of diagrams like those depicted in Fig. 4. These objects are just reggeized gluons and their
properties will be sketched in Section 3.

Here we shall not come into the details of the higher order calculations [1-5]. The
main features of these calculations are as in the lower orders, namely: longitudinal polariza-
tions and Higgs particles emission cancel out, and the result agrees with our conjecture
(2.5). Therefore in what follows we assume that formula (2.5) can be understood as an
infinite sum of perturbation series in a leading In s approximation. The procedure presented
above leads to the full Reggeon calculus [22] of reggeized gluons with calculable vertices
[15-17].
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3. Integral equations for Regge exchanges

Now we come back to gluon-gluon (or in general hadron-hadron) elastic amplitude.
So far we know that for gluon quantum numbers exchange this amplitude has a Regge pole
given by Eq. (2.2). However the most interesting are, of course, colour singlet channels
responsible for physical amplitudes in hadron scattering [6].

Once we have established the form of the n-particle production amplitude (2.5) we
can derive the elastic amplitude via unitarity (see Fig. 6). In gluon-gluon scattering one can

” H

i
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I, D l
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Fig. 6. Imaginary part of gluon-gluon elastic amplitude in terms of the multiperipheral-like multigluon
amplitudes of Fig. 2
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Fig. 7. Two vertex product projected onto the irreducible representations of SU(3) group

have singlet, symmetric (8;) and antisymmetric (8,) octets, and higher representations
exchanged in ¢-channel. The behaviour of those amplitudes is governed by the product

of two vertex functions (see Fig. 7) [5]

- - "5 - - Ngz - - -,
E YE’(kus ki'L)ylj‘)j?(kiL—qs ki,—q) = T {K(l)(ku., kyys Q)Pfji'j'(l)
D
+K(sa)(Eu., kiys a)P ijir j’(83)+K(85)(EiJ.a Ei’L; é)P ijl"j’(8s)}s
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where P;;;. »(11) are the group theoretical projection operators, u denotes the representation,
and the functions Kk, k’; g) are given by [5, 20]:

KWk, k'; q) = Ki(¢") ~2K(k, K'; g),
KWk, k'; q) = K$(q")— K (k, k'; g), (€X))
where p = 8, or 8, transverse indices are suppressed. Here

(k2 =2 (K =)’ = A + (K = 2) (k= q)* ~ )

Kk, k'; q) = 3.2
(ks K 9) T (
is singular for £k — k', 4 = 0. The nonsingular parts are given by [5, 20]:
KQ(@") = 29"~ % 2,
K (g = =22,
KE(g?) = ¢*= 4 22, (3.3)

The difference in mass terms between K®*¥ and K®9 is caused by the emission of
Higgs particles belonging to the symmetric octet [20]. It should be noted that the singular
parts of K and K®* are the same and that the singular part of K" is two times larger

than for octets.
In order to study the analytical structure of the elastic amplitude we shall make
partial wave projection of this amplitude:

«©

(B¢ 42 1 s s\ (]
Fc) (q ) = ; d 1—2 1’2— Im A2—>2(S’t)5

1 : i
o =j-1. (3.9)
The amplitude presented in Fig. 6 is given in terms of an infinite series which can be

treated as the iteration of a certain integral equation. This equation is usually written for
the function f{(k, k~q) defined by the equation [5, 6]:

(k, k' — q)

F(”)(qz)‘:..— _7—1— Ng2 ~ delK(n;:)(qZ) Cw
“ 20 2(27T)3J (K2 =21 (k' —g)* = 4%)""

and reads
[ =) —a((k= L k=) = e

', k' - g). (3.5)

N Ng? " d*k'K®(k, k' q) w
22n)* J (K= (K —q)*=2%)"°
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Let us check the infrared properties of Eq. (3.5). If we put 4 = 0 for u = 8, or 8, we obtain
Kk, K';q) ¢ .1 Ko k=g’
K k—q)* KK -g T (k=K LK T (K—q)
where by k we have denoted Euclidean transverse momenta. If £ is constant the second
and the third term on the r.h.s. of Eq. (3.5) reproduce the trajectories (2.4) on the Lh.s.

of Eq. (3.5). The remaining first term in Eq. (3.6) is not cancelled and therefore 2 — 0
limit does not exist for octet amplitudes. Keeping 4 # 0 for 4 = 8, and 8, we obtain

(3.6)

w 1
K®(q*) o—a®(g?)’

f9k, k—q) = (3.7)
where

N § (l-l)( )j dzk

22y ) S (=g = A2

so that the amplitudes for octet exchanges have a moving Regge pole [5, 10, 11, 20].

For u = §, this result was expected on the ground of the perturbation theory calcula-
tions presented in Section 2, hence for u = 8, (3.5) as a sort of self consistency check is
often called a bootstrap equation. The ngw result is that the symmetric octet also has a pole
[11, 20), but is one power of logarithm down with respect to the p = 8, exchange (sece Eq.
(2.3)). This is reflected in the s‘gnature factors of Eqg. (2.2). Since ,antisymmetric and
symmetric octets differ by their generalized C parities [24] their signature factors are

a(u)(qz) —

also different. They are respectively exp (—i % o) (qz)) / sin (3 na'® (¢%)) and i - exp

(—i -Z* a® (q2)> / cos (3ma® (¢%)).

In the singlet case there is a complete cancellation of infrared divergencies [6]. Trajec-

tory «(t) defined in Eq. (2.4) is logarithmically divergent, but since there are two sources
2

of this divergence, namely & —» 0 and k — g, trajectory a(g?) is proportional to 2 In —Z; }

On the r.h.s. of Eq. (3.5) the infrared divergencies come from three regions of phase space:
k* k2
) K >k giving ((2 In 5 +21n —;’—

KM = KD 2K, These logarithms and the trajectories on the Lh.s. of Eq. (3.5) cancel
out.

)- M (k,k—q). Factor 2 is just because

_qz k2
2) k' — 0 giving 2(k'2 >+ PeETE + finite terms),
-9’ (k—q)*
) kK - q giving 2< - —-+ﬁmte terms+ ————>——— ). In cases 2) and
q*(k' (k—q)* (K'—q)*

3) the infrared divergencies also cancel because K'!’ and K"’ have opposite signs.
Th's proves that the integral equation (3.5) for the singlet exchange — the Pomeron —
is infrared safe and we can put 1 equal to 0.
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Unfortunately, in'the singlet case one can solve Eq. (3.5) only for ¢ = 0. Let us rewrite
Eqg. (3.5) in the following form:

1 d* [ Ng K . , L
+ gf(pz)z [(2) ks, K3 0)+ 25(KD)6P ey — k )] LELED). (8)

As one can easily check the effective kernel appearing in Eq. (3.8) is scale invariant
and therefore the Pomeron equation can be diagonalized by a Mellin transform [6].

ki = 4 [ g
The solution for ¢(v) reads
k v
¢w(v) = 5\] ) 4 (3'9)
w— (2 )2 K®)
1
KO = =Zyg—y(l =)=y +v)+ —, (3.9)

ye = 0.57721... Euler constant, ¢(z) digamma function [26].
The Mellin transform of the effective kernel of Eq. (3.8), K(v) is a symmetric function
of v with respect to vo = 4. Therefore if one performs the inverse Mellin transform inte-

grating over dv along a certain path there is a “pinch” of singularities and as a consequence
2

fu(k%, k%) has a branch point in @, = a;g—)z 21n 2 and a cut along the positive real axis
in w-plane [6). The result w, > 0 (i.e. jo > 1) yields the Pomeron intercept above unity
and therefore contradicts unitarity. This is of course due to our leading logarithmic approxi-
mation.

It was argued [6] that for the nonforward scattering the position of the branch point
does not change. The discussion of this equation can be found in Ref. [6].

Since the Pomeron equation describes the propagation of gluons in a colour singlet
state and does not depend on couplings to the external particles one can compare its solu-
tions with the solutions of DDT [8] equation for small x [21]. It is well known that in a small
x region the dominant contribution for DIS amp! tudes comes only from gluon exchanges
[7, 8]. So one can compare the solutions f,(k3, k3) for large k5 with the gluon distri-
bution functions [8] Dg_g(x) calculated for small x(x oc s7%).

In DIS one takes into account running coupl:ng constant effects wh'ch are non-leading
in the Regge limit, and therefore neglected [15]. If for the moment one also neglects running
coupling constant in the DDT equation, one will find that the result in both limits for
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fulk3, k3) and Dg_g(x) is proportional to the modified Bessel functjon [21]

Ng® 1. ki

This result was obtained by approximating the kernel K(v) by its pole term (see Eq. (3.9));
K(v)~ L .
v
One can attempt to include next-to-leading In s term in the expansion for the ampli-
tudes in the Regge limit [27]. This can be done by introducing the running coupling con-
stant into the Pomeron equation [7, 21]:

Ng? 16n? g2
— = .
2n)? K2 k2
bln - 4nln—
ki ki

This replacement introduces a new scale into the effective kernel of Eq. (3.8) which

is no longer scale invariant and therefore cannot be diagonalized by means of Mellin
2

. . . k
transform. However, if we perform Mellin transform with respect to the variable 7(—;—,
1
then the integral equation (3.8) can be converted into the differential one [21]:

d ) = 7 K 3.10
= Pull) =~ pa(K() (3.10)
and the solution is given by
1 Ez ’ 4
P.(v) = —expl — | K(G)dv' ). (3.11)
W w

It should be stressed that Eq. (3.10) is valid only for large k3 since we have approxi-
mated running coupling by its asymptotic form {7, 8]. Therefore the solution (3.11) is also
valid only for large k2.

Function ¢,(v) has a pole in v = 0 and it can be seen that leading In k2 behaviour
of fu(k?, k%) is governed not approximately (like in case of Eq. (3.9)) but exactly by a pole
term of the kernel K(v). This leads to the essential singularity in w, = 0. In this approxima-
tion (large k3) the Pomeron intercept is j, = 1.

Comparing the results for the solutions of the DDT and running coupling constant
“improved” Pomeron equations we find that they are proportional to [21]:

/ 1 k2
I (%\/gzln;InInTz).

It is worthwhile to. note that we have introduced the Pomeron equation assuming
the reggeization of the vector meson in NAGT. Although the amplitudes with colour
quantum numbers exchange are unphysical, and therefore infrared divergent, their beha-
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viour is essential for the infrared finiteness of the colour singlet exchanges. We have seen
that divergent parts of the kernel of the Pomeron equation and the trajectories, which are
formally infrared divergent cancelled out.

The multiperipheral-like equation (3.8) because of the scale invariance of jts kernel
generates a fixed branch point in j-plane at j, > 1. The asymptotic freedom corrections,
valid only for large k? remove this scale invariance and push the leading singularity in
-plane to 1.

4. Three gluon integral equation

In this section we shall present the detailed derivation of the integral equation for
the exchange of the system of three reggeized gluons being in the colour singlet state
[19], and therefore having the generalized C-parity [24] C3g = —1 (in the Pomeron case
Cp = 1). This amplitude can contribute to the “nonsinglet” structure function F; in deep
inelastic neutrino scattering for x — 0 [19]. This contribution is donleading in the In Q?
expansion but may be enhanced at x — 0 since it corresponds to the Regge singularity
with intercept above 1. But as we shall see the three gluon equation is interesting by itself
because of mathematical complexity; noncompactness and nonseparability of its kernel.

In order to derive this equation we shall use the Reggeon calculus in w-plane [22].
The main ingredients of this calculus have been already presented in the previous sections.
We shall briefly remind the basic rules of the Reggeon calculus.

One Reggeon exchange amplitude, as seen from Egs. (3.7) and (2.2) is given by

Y4
5 o(t)

1-2% o—at)

F$9(t) =
So with each Reggeon line carrying transverse momentum k we shall associate the
propagator
n 2
= a(k?)

G(k, a(k?)) = 4.1

K2

Factor (w—afk?))~! according to the Gribov rules appears for each one Reggeon inter-
mediate state, whereas for each two or three Reggeons carrying momenta k,, k, or
ki, k3, k3 one has the following factors:

(@—a(ki)—a(k3))™"  and  (0—a(k]) —a(k3)—a(k3) .

The interaction of two Reggeons beeing in the u-th representation of SU(N) group
is given by the coupling

Ng2 ,
- K®(ky, k3 @)yy2

k,=k,—q and k}=k,—g,
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where y,.,- is the signature factor associated with the “emission” of two Reggeons 1
and 2'. As it was previously mentioned, one Reggeon exchange amplitude has signature

¢ = —1, hence the resulting signature factor is
—; “iza
1!1_0 e
Vla(“) = . =
singe e=-1 ¢
sin — o
2

With n-Reggeon emission one associates the signature factor [22]:

Ti2 n = Im(nla)inay) ... inda,))
so that

Vi2 = S (4.2a)
. T LT
sin — o, - sin — o,
2 2 -

oty _ (4.2b)

. 7 .o . om
sin — oy + Sin — &, * $IN — 03
2 2 2

Y123 =

In the leading In s approximation we keep only terms (g2 In 5)" and therefore expanding

L . . . bd
sin 5 2 in the denominators of Egs. (4.2a, b) we notice that the resulting terms _— « and

the appropr;ate 5 -« from the Reggeon propagator (4.1) cancel out. So in the weak coupling

limit we obtain [10, 19]:

V12— L (4.3a)
Y123 = — (o +°fz:f‘053) = —w, (4.3b)
and
pi 3 i 1
Gk, k™)) - G(k™) = TS (4.3¢)
—4

In this approximation we do not consider nonleading interactions as 3 —» 3, or more
Reggeon lines than the minimal number needed to exchange given quantum numbers
in r-channel (one for i = 8 exchange, two for the Pomeron, three for the C = — | singlet).
Using the above rules one can easily obtain Eq. (3.8) for the Pomeron.

Now we shall come to the question of the three gluon cxchange ampl.tude, whose
partial wave projection can be written as below (see Fig. 8):

3
o) = rroe (N T(w: ky. | S Fo(ky kg Ky
A0 = d*kio T ki ks ky) Folky ky, k).
v o ’ (1) — ch”'?

i=1
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Here T is the 3 reggeized gluons-two hadrons amplitude, F, is the vertex function which
can be expressed in terms of the infinite momentum wave function [28], w is the signature
factor in the weak coupling limit (4.3b), and G(k2) is the Reggeon propagator of Eq.
(4.3¢c).

Folky koks)

Fig. 8. Three reggeized gluon exchange amplitude

The leading In s expansion of the amplitude T in terms of Reggeon diagrams is depic-
ted in Fig. 9. Using the Reggeon calculus, with y,,.= 1 one can write down, as in Pomeron
case, the integral equation for the amplitude 7" defined below

3
T(U); k19 k2: k3) = ((D— Z oc(klz))T((o; kl’ k2’ k3)

i=1

Fig. 9. Perturbative expansion of T(w) defined in text in terms of the Reggeon diagrams

It should be stressed that each pair of two interacting Reggeons is in the symmetric
octet state, so that all three reggeized gluons are in the C = —1 singlet state. Therefore
the corresponding interaction vertex is just K®9). But, as we shall see, the amplitude 7
has no infrared divergencies and therefore we can put 4 = 0. In this limit, however, there
is no difference between K®)) and K@),

The integral equation for the amplitude T reads [19]

3

3 3 3
[o— ¥ ak)IT(w; ki, kzy k3) = Folky, ka, ka)+ § T[] d*kid® (¥ ki=4) ¥
i=1 i=1 i=1 I=1

x [G(ki2 VGt DK (kes kpe 1 Kavs ki gy ki D8P = kD] T(@3 ki, Ko k), (44)

where k, = k, ks = k, etc.
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The kernels K(k;; ko1, Kio g, kiays k/.;) (here by / we denote the number of the
gluon line, / = 1, 2, 3) for massless theory are given by

Ng2 [ 2 ktz—lk;i1+ktz+1k;31:'
— 2| —k !
2(23)3 (kis1— ks 1)2

To shorten our notation we define new kernels V,

Vi = G(ki2 )G(ki% K.

Ky(kps ks, kg, ki ys ki~1) =

Now Eq. (4.4) can be written symbolically
[o—o(l)—a()—a(3)]T(w; 1, 2, 3) = Fo(1,2,3)+(V,+V, + V3)®@T(w; 1/, 2/, 3').

In what follows we shall put 4 = 0. This implies that k,+k,+k; = 0 and k| +k,
+k5 = 0. Again the infrared properties of Eq. (4.4) can be studied as in the Pomeron case.

The infrared divergencies introduced by the propagators G(k?) coming from the region
ki, »0orkj,, =k (i.e kj_y = k, and k;_, — 0) are cancelled by appropriate zeros
of the kernel (K3 and K3 have opposite signs) exactly in the same way as in the Pomeron
case (see Section 2).

Another source of divergencies in the potentials V; is the region where k;.; — k;,
(i.e. kj—y = k;—y, k; = k;). Consider k; — k, (k3 — k,), then there are two divergent
terms in the whole kernel ¥, +V,+ V; which reproduce trajectory ofk?) standing on
the L.h.s. of Eq. (4.4)

k3
1) in Vs i T@s ks ko, ko),
3 (kr“kl)zklz ( 1 2 3)

k2
2) in ! T(w; ky, ko, k3).

Vat s
2 (ky— k)

k2
So again trajectory and the singular part of the kernel (both proportional to 2 in -}:})

cancel out. We should remind that in the Pomeron equation factor 2 which guaranties
this cancellation is just the strenght of the kernel itself (see Eq. (3.1)), whereas here there
are two divergent terms in V; +V,+ ¥; which add up to produce the needed factor 2.
The same can be repeated for k5 and k3. This proves that Eq. (4.4) is manifestly free from
infrared divergencies. So in what follows we shall keep A = 0.

It is easy to check that Eq. (4.4) has a trivial solution if F, = donst. Then the trajec-
tories and the appropriate parts of the kernel cancel out and the solution reads

T(w) = %).

This trivial solution generates a fixed pole in j-plane at j, = 1. In what follows we shall
try to find out the position of the most right singularity in j-plane.

The main difficulty with Eq. (4.4) is, that because of 6*)(k,—k;}) function its kernel
has an infinite Schmidt norm, and therefore the Eq. (4.4) is not of Fredholm type. The
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equations with such kernels were investigated by Fadeev [29] by means of so called Fadeev
decomposition. We shall explain how it works in our case.
Consider an equation

wT(w; 1,2,3) = Fo(1,2, )+ + ¥V, + V)@ T(w; 1,2, 3), (4.5)
where V; contains V; and some combination of trajectories. One defines quasi two-body
amplitude #,(1, 2, 3) as below:

1,(1,2,3) = Fp(1,2,3)+ V,(2,3) ® 1,(1, 2/, 3) (4.6)

and similarly for ¢, and ¢5. As we see from Eq. (4.6) ¢, is defined in such a way that interac-
tion takes place only between the second and the third line.

Now we decompose wT—F, into three parts with inhomogeneous terms given by
t; [19,29]:

3
oT-Fy =0 Y TV

i=1
T = 4+ VTV + TP+ TP). (4.7)
Functions 7 have_the same analytical form
TG = t(w; ki k-1, kiv 1),

they differ only by the order of arguments.
So far we have not specified the form of the kernels ¥;. The only constraint is the
infrared finitness of Eq. (4.7), and we present two possibilities below:

oT = Fo+[Vi—a(D)+a(2)+a(3)]®@T
+[Vy—a(2)+a(3)+a(1)]®T
+[Vi—a(3)+a(D)+uD)]I®T, (4.82)
oT = Fo+[Vi+4+ e+ a3)]®T
+[Va+3 e +3a()]®T
+[Vs+3 a()+3 22)]®T, (4.8b)

(compare with Eq. (4.5)). Sign ® is understood as the convolution in case of V; and as
a multiplication in case of «(i). To be more specific we shall rewrite Eq. (4.7) using the
decomposition of Eq. (4.8a) [19]:

Hw; ks kyy —ky—k) = to(k, ko) + Ng® 4K,
w (D; ; s — - = ) ’
v O TV 2amy® ) KKy +k)?

K2k, + k) + (k) +k)k:
X [—k2+ i 1+(k? +k( )‘2+ )ﬁl] [t(w; k, kK, —k—KkD)—taw; k, ky, —k—ky)
17 R

+1(w; ki, k, —k—k)—t(w; ky, k, —k—k)+Ho; —k—k}, ki, k)
—t(w; —k—ky, ky, k)]
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The analytic properties of #(w) can be investigated by means of Mellin transform

di ., .
Hw; ks k,, —k—k,) = %(k Yt(w; A; x4, n),

k; k
X;=-—, n=—
kil k|
giving
x/2(x+n)2+(xf+n)2x2
wi(x, n) = to(x, n)+ 2(2 X _[x'z(x in)? [ 1+ (;c’——x)z ]
x [l(x', n)—t(x, n)+t( j ul )( Y-t ( xﬂz’ x)( Bt
x| x|~ ixl
n 3 x'+n YR S x+n 21
—H<|x'+n|’ |x,“*_,”)(x +n) t(]x—!—nl’ ——|x+n|>(x+n) ] 4.9)

where by x, n; k we have denoted 2 dim vectors and indices w and A have been skipped.

Unfortunately, due to the lack of separability of the kernel this equation cannot
be solved in a close form. One can however argue that Eq. (4.9) generates a fixed branch
point in j-plane [19] since, as in the Pomeron case, there is a pinch of the integration
contour in complex A-plane. However, the most interesting thing, the position of the
singularity has not been found yet.

The integral equation formulated above, after the Pomeron equation is another
example of the physical amplitude which can be calculated by means of the QCD-based
Reggeon calculus. The structure of this equation is much more complicated than in the
Pomeron case, but the qualitative result is the same, namely the fixed branch point
in j-plane.

5. Summary

We have shown that the perturbative calculations in NAGTs [1-6] support the hypo-
thesis of the vector meson reggeization [9-15]. The calculations were performed in the
framework of the spontaneously broken theory [25] and we have shown that the Higgs
particles produced, say, in gluon-gluon scattering cancel the contributions from unphysical
longitudinal polarizations of gluons. The leading contribution comes always from spin
one gluon exchanges in f-channel, so that Higgs particles can be produced but never
exchanged.

The integral equations describing the nonsinglet exchanges are infrared divergent
f4, 5], so we have to keep 4 5= 0, contrary to the singlet case {6, 19] where we can put 4 = 0.
The symmetric octet amplitude has a Regge pole structure [11, 20] as well as the anti-
symmetric one [2-5, 10], whereas the Pomeron is described by a fixed branch point in
J-plane.
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Using the results for 8, amplitudes we have established the form of the interaction
vertices for the QCD based Gribov Reggeon calculus [22] of reggeized gluons [14-17].
Then we have used th's calculus to formulate the integral equation for three gluons beeing
in a colour singlet state [19]. We have argued that this equation generates a fixed branch
point in j-plane at j, 2 1. It should be noted that the gluonic degrees of freedom have
the high intercept even for nonvacuum quantum numbers.

The author is indebted to Doctor J. Kwiecifiski for numerous discussions and helpful
remarks and to Doctor T. Jaroszewicz for reading the manuscript.
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