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RELATIVISTIC SOLUTION FOR ONE SPIN-1/2 AND ONE SPIN-0
PARTICLE BOUND BY COULOMB POTENTIAL

By W. KROLIKOWSKI
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A relativistic solution is given for a quantum-dynamical system which, like e~ or
e~w*, consists of one Dirac particle and one Klein-Gordon particle bound by Coulomb
potential. A new fine-structure formula follows -displaying explicitly the mass dependence
of energy spectrum in the relativistic two-body problem.

PACS numbers: 11.10.Qr, 11.10.St.

So far, in quantum mechanics we know only a few relativistic solutions for particles
bound by Coulomb potential. In particular, such a solution for two Dirac particles is still
lacking because the relevant relativistic wave equations [1, 2] give rather involved systems
of radial equations [3]. In this note we find such a solution for a dynamical system which,
like helium ion e~ or electron-pion atom e-nt, consists of one Dirac particle and one
Klein-Gordon particle.

First, we recall the respective relativistic wave equation [4]. Denoting

Dy = py+pmy, Ky = Vpi+m} &)
we can write such an equation in the free case as follows
(E=Dy—K)) (E=D; +K;)yo(Fy, T3) = 0 @
or explicitly
[(E~a- py~pm,)* —p} —m31yo(F1 F2) = 0. 3)
In the Coulomb case we substitute E - E—V¥ in Eq. (3), obtaining
{E=VY’~2E=V) (@ py+Pm)+&- [Py, VI+Pi—Pi+mi—milp(Fr72) = 0. (4)
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In the centre-of-mass frame where p, = ~p,=pand Fi—F, =F, we get multiplying
Eq. (4) by (E-V)"V/2;

—m%
vV

- m
[E—V—2(oc~p+ﬁm,)+ bi

] JE=V y() = 0. (5)

In the case of equal masses m; = m, = m, Eq. (5) can be reduced to the Dirac-like equation
(but for the internal motion)

[E-V=2G " p+Bm)]VE—V p(F) = 0 ©)

giving for V' = —a/r the Sommerfeld-like formula [4] as its exact solution

2y~1/2 ~\2q1/2
E=2m[1+(ndfy)} , y»—:[(j—&-%)z— (g)J , %)

where n, = 0,1,2, ... and j = 1/2, 3/2, ... In the opposite case of the one-body limit
when m,/m, — 0 and V/m, — 0, Eq. (5) transits into the usual Dirac equation with energy
¢, = E—m,, implying for ¥V = —ua/r the usual Sommerfeld formula. Note that for finite
masses m,; < m, the Dirac equation with ¥V = Ta/r follows (in some approximation)
from Eq. (5) only at a/r < m,. It is the reason why for finife masses Eq. (5) cannot have
the same behaviour at r — 0 as the Dirac equation, unless V/E is neglected before r — 0
is discussed.

Now, we go over to the general case of different masses #1;, # m,. Since the Coulomb
potential V' = Fo/r is a physically reliable static interaction up to the first order in «,
we expand the effective interaction appearing in Eq. (5) into powers of «, retaining the
first-order terms only

mi—m? E*+m?—m?

E-V+ = 2 ~ 2V e+ O(a®) (g —m,), 8
— £ -+ 0) (my =my) ®
where
m o m
Veff =V 2 = ¢ " ’ Tegr = U 2 (9)
my+m, r my+m,

because of E = m, +m, + O(a?). Obviously, in the case of m; = m, we get Eq. (6) exactly,
while in the case of m,/m, — O the Dirac equation with energy ¢, = E—m, follows. Note
that in the physically required approximation given in Eq. (8) we neglect V/E before the
limit of r —» 0 is applied in order to fix the bebaviour of Eq. (5) at r —» 0.

Under the approximation (8), when eliminating from Eq. (5) angular coordinates
in the standard way [5], we obtain in the representation where

. (0 —i 1 0 +
=) el ) oven(g)

the following system of two radial equations:

d k
(‘— ¥ —)fi"‘ <—1—j: ¢Verr)f¥ = 0. (11)

il
~ 1Ny

&,

dr ¥ a
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Here

—_— 1 E*+m}—m?

£ + 1 2
=rvE-V g, —=m+ 12

f rv Y P my 2E (12)

and k = &(j+1/2) with ¢ = +1 corresponding to the parity P = (~1)"%2, When
V = —ajr, Eqgs. (11) imply the asymptotic behaviour

.
f:t ’:'O '.'Y, fi r:@ exp (‘” ;) ) (13)
the latter for bound states, where
y =[G+~ 1%, a=+a*a . (14)
Thus, substituting in Egs. (11)
r
fEf=r exp(— ;) vt (15)
we get for Coulomb bound states the equations
d yFk 1y 1 o,
(a+'7“2)f“(ﬁjff)ﬁ=°’ 19
where -
ot = Y e (17)

are polynomials. Inserting the polynomials (17) into Eqgs. (16) we determine energy levels E
corresponding to quantum numbers n, = 0, 1, 2, ... and j = 1/2, 3/2, ... (and degenerate

with respect to P = +1)
2mE z
— ) =144, (18)

2, 2 2
E“+m7—m;

where
m, 72
Zege \ i
eff 2
A =( ) = ! =0 (19)
A N
[ 2 my+m,/)

Thus, the explicit energy-spectrum formula for our dynamical system is

2 2\271/2y1/2
E=’x{1+[1—(m1xm—>] } : 0)

_[a=Ami+(1+Am37]"?
¥ 1+4 ‘

where

(1)
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Expanding Eq. (20) into powers of & up to a* we obtain the new fine-structure formula

2 4 2 —
(" TR A7) my m(m,—m,)
=M-L_ P B T T S % s
E 2n? 2n4< M) {]+2 LT ]} 0@, (22

where n = n,+j+%+=1,2,3, ... and

1 1 1
M=fn1+n“12,—‘=—'+—‘. (23)
Eoomy m
Eq. (22) displays explicitly the mass dependence of the fine-structure terms in the relati-
vistic two-body problem considered in this paper!.
In the case of equal masses when M = 2m and u = m/2, Eq. (20) reduces to the Som-
merfeld-like formula (7) and Eq. (22) gives

@2) (2/2)*( n
E=2m|1- - -3 o). )
m[ 2n? 2n* \j+1 ¢ +0@) @4
In the one-body limit of m,/m, — 0, Eq. (20) transits into the Sommerfeld formula
a \2]12 .
= E-— = 1+ —— , = (it 12 1/2 25
& m; mx[ (”H‘*‘Y) ] y =[G+ —a"] (25)

(to see it cf. Eq. (18)) and Eq. (22) implies

_ ‘ « ot fn o
gy = E—mz = My 1'— 27;2 - 5"11 ;:;—'% s +0(0€ ) (26)

which is the familiar fine-structure formula based on the Dirac equation [6].

1 Eqgs. (20) and (22) are valid if Vegr = —aer/r is taken as the effective Coulomb interaction responsible
for the proper ladder approximation. Then, corrections to Vegr may be treated perturbatively. The next-
-order corrections following from Eq. (8) have the form

a? adp my—m;
AVert == (Ti_ B n’r) 2M?

and give the shift

2p pmy—my)
2wt M2

dE = — (-]— - 1) + O(@®)d(m, — my)

of the level E as obtained in the ladder approximation. Thus, Eq. (22) implies the fine-structure formula

atu
2n?

-z 1—31—2 ———_" _ 3y o | mm i_—i + L m +0(@®).
2 M j+a 4 M M2 \ j 4 4 M?

Note that 4E = 0 both for m; = m; and m;/m; > 0.

E+AE = M—
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In conclusion, we can say that the energy-spectrum formula (20) provides a satisfactory
solution to the relativistic wave equation (5) for a dynamical system which, like e~ or
e~n*, consists of one Dirac particle and one Klein-Gordon particle bound by Coulomb
potential. This formula follows from Eq. (5) if the physically required approximation given
in Eq. (8) is made. When expanded into powers of a® up to the second order, Eq. (20)
leads to the fine-structure formula (22). In the case of equal masses, the wave equation
(5) and its energy-spectrum formula (20) reduce to the Dirac-like equation (6) and the
Sommerfeld-like formula (7), respectively. In the one-body limit when the Klein-Gordon
particle becomes infinitely heavy, the relativistic two-body wave equation (5) transits into
the Dirac equation, while the energy-spectrum formula (20) goes over into the Sommerfeld
formula (25). Note that for n, = 0 and j = 1/2 the energy spectrum formula (20) gives
formally

m
E-»m-m)"? if gqu=a—2> >1-0 27
ml+m2

because then 4 — +o0. Thus @ = 1+4m,/m, is the critical value of the Coulombic coupling
constant for our dynamical system. We can see that the mass E of the critical Coulombic
ground state is zero if m, = m, exactly. If m, —m, is small but positive, the mass E of
this state is large for big m; ~ m,, e.g., if my—m; =~ 5 MeV, one geis E ~ 1.5 GeV for
m; ~ m, ~ 200 GeV. Of course, for ar ~ 1 Eq.(8) cannot be considered as an approxima-
tion, unless m, —m, is small.
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