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The root mean square radius, the charge form factor, the charge density, the quadru-
pole moment and the bremsstrahlung weighted cross section for the photodisintegration
of 6Li, are calculated using a polarised cluster model wave function, which is modified to
take into account, in its relative motion part, the requirement of a shell model node. A set
of parameters, in the modified cluster model wave function, which account for the available
experimental data for the afore-said quantities, is determined.

PACS numbers: 21.10.Ft

1. Introduction

The SLi nucleus is very interesting from both the theoretical and experimental view
points. It is a stable nucleus, containing, on the one hand sufficiently many nucleons to
exhibit many important general features of nuclear phenomena and on the other hand,
sufficiently few nucleons so that detailed calculations can be made even with nuclear
forces containing a strong repulsive core. There is abundant experimental evidence for the
alpha-deuteron cluster structure of Li [1]. In a series of papers, Wildermuth et al. [2]
successfully studied the low-lying states of °Li and other light nuclei, within the frame-
work of the standard cluster model. Cheon [3] proposed a modification to the standard
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alpha-deuteron cluster model, in which the clusters are deformed in the direction of their
relative axis, neglecting the effect of antisymmetrization of the wave function. On the
basis of the dynamics, the structure of the °Li ground state wave function should take
into account the requirement of a shell model node [4, 5]. We call Cheon’s wave fun-
ction as the polarised cluster model wave function and its modification, which incorporates
the shell model node, as the modified polarised cluster model.

Our aim here is to study the root mean square radius, the charge form factor, the
charge density, the quadrupole moment and the bremsstrahlung weighted cross section
for the photodisintegration of °Li, using the standard, polarised and the modified polarised
cluster models, to ascertain the importance of the role of the relative motion wave function,
avoiding fitting procedures (e.g. Cheon [3]), or variational procedures (e.g. Tang et al. [2],
which is the basis for the later work of Jain and Sarma [6]) and to obtain a set of pa-
rameters which will account for the available experimental data.

2. The wave functions

The wave function of 6Li can be written [2] as an antisymmetrized product of the wave
functions for an alpha-cluster, a deuteron cluster and their relative motion part:

¥ = Z[@,(0)D(d)x(R,~Ry)], (1)

where @; and @, describe the alpha and the deuteron clusters, respectively, y(R = R,—Ry)
refers to the relative motion between the clusters and &/ the antisymmetrization operator
which takes into account the exchange of all pairs of particles with the same spin-isospin
assignment. The nucleons belonging to the alpha and the deuteron clusters may be assumed
to be in the Is- and Ip-shells, respectively, from the shell model stand point. Lodhi [7]
proposed a wave function which is similar in form to that of Wildermuth et al. [2] but
with a different choice of parameters. We adopt Lodhi’s choice, according to which the
alpha and deuteron length parameters, a, and a,, may be varied to a certain extent, but the
separation parameter, belonging to the relative motion part of the wave function is defined
uniquely in terms of g, and a,. The standard cluster model wave function is:

6

4
¥ = N/ exp [— %9 00— — 0} —% ﬁRZ] R2YQ(R)E(1234; 56), )

where

Ay = asz, oy = aﬁ, ﬁ = %(OCO-FZOCI),
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£(1234; 56) is the charge-spin function, r; and r; being the position coordinates of the
four 1s-nucleons belonging to the alpha particle and the two 1p-nucleons belonging to the
deuteron, respectively. The normalization of the wave function for the ground state,
considering the exchange of nucleons between the clusters becomes:

NZ% = 6! j(?’o——2&”, + ¥Y,)* V¥ dr, 3)
where
Yo = ¥(1234;56), ¥, = W¥(5234;16), ¥, = ¥(5634;12),

correspond to the no-exchange, one-nucleon exchange and the two-nucleon exchange
wave functions, respectively.

The standard cluster model wave function (2) gives rise to a spherical charge density
distribution and hence to a zero quadrupole moment for °Li. But, the quadrupole moment
of °Li has been measured [8] to be —0.08+0.008 fm?. Several attempts have been made
to explain satisfactorily the charge form factor and the quadrupole moment of Li. Ciofi
degli Atti [9] introduced short-range correlations in the ground state wave function, Wong
and Lin [10] resorted to an intermediate coupling shell model, Bouten et al. [11] and
Radhakant et al. [12] used a wave function obtained from projected Hartree-Fock calcula-
tions, but all these investigators report that the parameter set adjusted to give a good fit
to the charge form factor results in a quadrupole moment that is almost ten times larger
than the experimental value. Cheon [7] proposed a modification for the standard cluster:
model wave function, in which the alpha and deuteron clusters are deformed in the direction
of their relative axis and his unantisymmetrized wave function has the form:

4 6
Wo(1234; 56) = Nexp[— * ? (@5—5 l giz) . E (ei—éﬂ Q,i)
2 L %o 2 oy
i=1 j=5
-3 (/i——éB)RZ} R*YS(R)E(1234; 56), €]

where
w = G(1+0/3),  ay = &(1+8/3), B = B(1+53),

with § being the deformation parameter of the two clusters. With this polarised cluster
model wave function (4), Cheon was able to account for the charge form factor and the
quadrupole moment of °Li. However, following the arguments of Kudeyarov et al. [5],
that the antisymmetrization effect is not important in the case of the isolation parameter
K = Blag = 0.45, Cheon neglected the nucleon exchange between the clusters. But this
aspect of the problem has been adequately dealt with by Kudeyarov et al. [5] and by
Jain [6].

In the case of °Li, Hasegawa and Nagata [4] derived by Schrédinger equation for
the relative motion between the clusters using the resonating group method, and obtained
the 2s-wave function as the ground state of °Li, having a node at the inner part as well
as a long tail. Also, Okai and Park [13] have shown that though the relative motion: part
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of the wave function changes as one goes from the shell model to the cluster model, its
shell model nodes remain at the same points and that these nodes are almost energy inde-
pendent. Thus, on the basis of the dynamics, in the absence of antisymmetrization, the
structure of the ground state wave function should incorporate the requirement of a shell
model node in its relative motion part. The form used for the relative motion part in the

standard cluster model (2) is:
2

(R) =~ exp (~3 BR?)
4 = N P 3 »

0

and in the polarised cluster model (4) it is:

2

R
XUR) = NP [~3(B-3PR™],
0

where N, i1s the appropriate normalisation factor. In the modified polarised cluster model
wave function, the explicit form of y(R), which incorporates the shell model node has the
form [3]:

i !
*(R) = = (1—% BoR*) exp [—% (B—G6B)R?), (5
[0

with ., = ao. Thus, our modification to Cheon’s polarised cluster model wave function
takes into account the role of the Pauli principle in the interaction between the clusters
in a simple way. In the following sections, we use these cluster model wave functions to
study the r.m.s. radius, the charge form factor, the charge density, the quadrupole mo-
ment and the bremsstrahlung weighted photodisintegration cross section for SLi.

3. The r.m.s. radius

It is well-known [1, 2, 7] that the °Li nucleus has a large r.m.s. radius which cannot
be accounted for within the framework of a harmonic oscillator shell model, and that the
cluster model successfully reproduces the experimental value for the r. m. s. radius. Consider
5Li to be described by one of the wave functions described in Section 2. Its r.m.s. radius
is given by:

(3]
G = YR Y 2D, ©)
i=1
where ¥ is the totally antisymmetrized wave function, ¥, is the unantisymmetrized wave
6
function and dr stands for H dr;, r; being the position vector of the i-th nucleon. Expli-
i=1

i=

citly,
6
Ry = ' P2 = [[W*L(Y of +% RH)Wodr]'?,
i=1

172

6!
- []—V—z— (Ro—2R, +R2)] , %
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where the normalization constant N, defined by (3), can be written as:
N? = 6Y(Ay—24,+A)). (8)

The explicit expressions for 4, A;, 4,, Re, R, and R, are given in the Appendix, to correct
for the errors (typographical and other) in the paper of Lodhi {7}, which are non-trivial
errors, since the range of the parameters in the wave function, giving the experimental
value of the r.m.s. radius, is very different from what he obtained.

When we use the polarised cluster model wave function (4), which is unantisymme-
trized, we get for the r.m.s. radius:

_ (3 i) 3;6) z E::i)}’
Reme =2 1(a0+a1 (3—25 T3\3Ts)f ®

N

which when 8 = 0, reduces to the value of (Ro/d,)"/? given in the Appendix (A10).
If the relative motion part of the wave function is given by (5), then

L ff3  1\[3-9 11, 1o Bo o 55 (Bo NN
Rr.m.s.—i{(&;*'&—l)(é_—zé)*‘;;}(s[1—“3—?54‘—9‘(—35)}} ,  (10)

. o Bo Bo .\
O = —— d =1=-2=86+3{—=6). 11
% an ag 5 +3(ﬁ (11)

where

4. The charge form factor and the charge density

The charge form factor and the quadrupole moment are quantities which depend
on the entire internal structure of the nucleus rather than on any specific portion of it. The
study of the charge form factor gives information about the charge distribution of the
nucleus. From electron scattering experiments, the elastic form factor of ®Li has been
reported upto a momentum squared, ¢, of 6.9 fm~?, by Suelzle et al. [13]. A diffraction
minimum in the °Li form factor has been reported at g2 = 8 fm2 by Whitney et al. {14],
which has been corroborated by Li et al. [15] who determined the charge form factor upto
13 fm~2. Several attempts [16] have been made to explain the experimental features of the
form factor. While Cheon [3] neglects the effects of antisymmetrization, the effect of anti-
symmetrizing his phenomenological polarised cluster model wave function has been shown
to be important in the study of the form factor by Jain [6], who finds that for g2 > 7 fm~2,
the inclusion of exchange terms increases the charge form factor by about a factor of ten.
However, Kudeyarov et al. [5], in their study of elastic and i‘nelastic form factors, find
that the role of antisymmetrization is more significant in the case of magnetic form factors
and that an unantisymmetrized cluster model wave function, which contains a shell model
node in its relative motion part, is capable of producing the factor of ten rise in the charge
form factor at high momentum transfers. This clearly emphasizes the role of the relative
motion function in the study of the static moments of °Li. Since our aim is to obtain
a set of parameters in the cluster model wave function which reproduce all the properties
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mentioned earlier for g2 < 6 fm~?, and further at large ¢*, nucleon-nucleon correlations
at small distances [17] and mesonic corrections [18] seem to become essential, we neglect
the effect of antisymmetrization in the case of the charge form factor and the quadrupole
moment.

The charge form factor of €Li is defined as:

F(g®) = 3 i—123 Sf ¥s exp [ig - (ri—2)]¥odr = 5 (2B, +B)), (12)
where

By = | W exp [ig - (¢, +3 R)]¥,dr,

By = [ W5 exp [ig - (es—3 R)]¥odr,

and ¥, is the polarised cluster model wave function (4). We find it convenient to evaluate
these integrals in the Cartesian coordinate system and we get:

By = [1+Pq*+Pq*] exp [ — A(g5+q})—Bq’], (13)
and
B, = [1+P1q*+ Pyq*Pexp [ A'(¢i+4})—B'qf], (14)
where
6’ 2 ‘ ’
P, = - i P A P2, P, =4P,, P,=16P,,
R R S
160, = 488 16n, = 488 Say, | 128
= & + ji. (15)
8y, 128

The form factor at zero momentum transfer, F(0), is normalized to be 1, for a charged
particle, as usual. The normalized probability density g(r) can be obtained from the know-
ledge of F(g*) by Fourier transforming (12) to obtain:

1 /
o(r) = @FJF(QZ) exp [—iq - r]dgq (16)

and it is completely determined if F(g?) is known for all values of ¢2. Using the above
expressions for F(g?), we obtain for the charge density:

372 2, .2 2
n + z
o(r) = [2 {exp ( L ——) [a, +a(x*+y?)+a;z°

3(2n)? 44 4B

+a (2 Fas(x+ )2t + a6z4]} + {primed}-l , {imn
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with:

1+P1(2+1, +P2 8+4+3)
a; = — |+ — —N st ——+ =),
! 2\4 B 4\4> 4B B2

i 4 1 1 2 3
a2=~‘? P1+P2 Z+§ N a3:—:ﬁ3—5 P1+P2 Z-I_—l; N
a, = P,/164%, a5 = P,/84’B*, a, = P,/16B*,

and {primed} is similar in form to the flower bracketed expression in (17) with 4, B, P,, P,,
replaced by their primed quantities 4", B’, P; and P;. If the polarised cluster model wave
function is modified with y(R), given by (5), then in the expressions (12 to 14) for F(g?)
and (17) for g(r), the values of P, and P, to be used are:

Py = 36X2B0(1—60ﬁ0X)/a0, P, = 324X4ﬁ3/“o: (18)
with X = 6'/36f and q, given by (11), instead of the values for P, and P, given in (15).

5. The quadrupole moment

The quadrupole moment of a nucleus gives information about the departure of the
nucleus from its spherical shape. Due to the deformation, assumed to be along the z-axis,
we arrived at the non-spherical probability distribution, (16) for o(r). It can be verified
that when 6 is set equal to zero, 8’ = 1, 4 == Band A" = B’ and ¢{r) becomes a function
of r? = (x?+y%+2z2), i.e. o(r) becomes spherically symmetric and it is well known that for
a spherically symmetric charge density, the quadrupole moment is zero.

The classical quadrupole moment is defined as:

0 = [ o(r) Bz2—r)dr. (19)
Explicitly,

Q=1 [2 {a,(D-—-C)+a2C(D—2C)+ a—; D(3D—C)+a,CHD-3C)

+asCDE D-C)+32 a(,DZ(SD—C)} +{primed}] , (20)

with C = 44, D = 4B and the quantity {primed} is similar in form to the flower bracketed
quantity in (20) with 4, B, C, D, P, and P, replaced by 4’, B’, C’, D', P; and P;, respec-
tively. As in the case of the charge form factor and the charge density, for the polarised
cluster model, P, and P, are given by (15) and for the modified polarised cluster model,
P, and P, are given by (18).

6. The photodisintegration

In the case of some of the nuclei, such as *H, *He and “He, the bremsstrahlung weighted
cross section, which is the energy weighted electric dipole cross section for the nuclear
photoeffect, is directly proportional to the mean square radius of the target nucleus.
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However, this is not true in the case of ®Li, since the cluster model ground state wave
function is not completely symmetric in the space coordinates of all the nucleons. Therefore,
a study of the bremsstrahlung cross section for the photodisintegration of Li, defined by:

o, = [ (a/W)dW, @)

where ¢ is the electric dipole cross section for a given photon energy W, is expected to
provide additional information about the cluster model. The cross section a4, for photon
absorption is given by [18]:

2n2e?h

mc

Gon =

Jon (22)

where f,, is the oscillator strength for an E1 transition between the discrete states 0 and nand
is defined by:

mw
Jon = N 1Z onl (23)

where W = E,—E,, and Z,, is the component of the displacement .of the nucleon. Using
the closure property, we have for the bremsstrahlung cross section:

_ 4nte? _
Op = Gonl W = The 1Zgol". (24)

n

Following Dellafiore and Brink [19] equation (24) can be written as:
4n* o?
g, = T 7R3, (25)

where R,, = R,—R,, R, and R, represent the centres of mass of the protons and the
neutrons, respectively and the expectation value is in the ground state of the nucleus.
In the coordinate system, defined in Section 2, the operator:

6 6

R, = —[Z "‘<12T5> ) Z ri(“;"a)']z

i=1 i=1

= %(}.’1 +e3+es5) (26)

using 1, 3 and 5 as the proton indices and
2 6! - R0 1 2
<an> = {‘72' (Bpn—zBpn+Bpn)5 (27)
1

where the normalization constant N is defined by (8). For the standard cluster model
wave function (2), a straightforward calculation yields:

BY, = Ao (2+ 3), (28)
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B = g A [ (1) L (A2 (2 ) (g 9
% gy [P\ 2432 243z 4p? 3 4p?
7-5 q?) q%( qf)”
xs—1+5-—=) - S [25+35 ) ], 29
{p;( Yapt)  ap} “n (29)
A, (5+2
Bl = —=—=}), 30
’ 3o <1+z>' 30)

where the expressions for 4o, 4,, 4., p; and q, are given in the Appendix.
The use of the polarised cluster model wave function (4) yields for Bgn the expression:

BY, = 0 2+1) g 31
P 3, z)\3-28)" Gh

Since the operator Rﬁn given by (26) is independent of the relative coordinate, R (= R,— R,),
the modification of the inter cluster wave function to include the shell model node, will
not change the expression for (RZ%>.

7. Results and discussion

We calculate the r.m.s. radius, the charge form factor, the charge density, the quadru-
pole moment and the bremsstrahlung weighted cross section for the photodisintegration
of °Li, using the cluster model wave functions of Section 2. While Cheon [3] obtains the

4 —_ -

<r?>1/2(fm}
(953

N

2 -
! o1 03 05 > 07 09

Fig. 1. The r.m.s. radius of SLias a function of z for various values of g, using the unantisymmetrize
and antisymmetrized standard cluster model wave function (2); unantisymmetrized, — - - - anti-
symmetrized
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charge form factor and the quadrupole moment by a y2-fit, others [2, 6, 11, 12] resort to
variational procedures. Our aim is to first determine the range of parameters «, and
z(= o,;/oe) which give the r.m.s. radius of °Li. We then compute the charge form factor,
for the range of parameters already found, and obtain unique values of «, and z which
give a good agreement with the data up to ¢* < 6 fm—2. These studies are made with the

TABLE I

Values of %5 and z in the standard cluster medel wave functicn for which the value of the r.m.s. radius
of SLi is 2.54+0.05 fm

z in the standard cluster model wave function

%o !
) e . — - e

] Unantisymmetrized { Antisymmetrized
| i

0.3 “ 0.6+0.04 | —

0.4 1 0.32+0.04 ' 0.66+0.2

0.5 | 0.205+0.015 ‘ 0.22+0.02

0.6 y 0.1440.01 | 0.16+0.01

standard cluster model, as well as the modified polarised cluster model in which the defor-
mation parameter J-is set to zero. Having determined the unique values of a, and z, we
calculate the quadrupole moment given by (20). Here, the only unknown parameter is the
deformation parameter 6, and so we obtain its unique value, which will reproduce the
experimental value of Q.

The r.m.s. radius of °Li has been computed by varying the parameters «, and z within
the ranges 0.3 << oy < 1.0 and 0.1 << z <€ 1.0. In Fig. 1, we plot the r.m.s. radius as a func-
tion of z for various values of o, using the unantisymmetrized and antisymmetrized stand-
ard cluster model wave function (2). Throughout the range of z, for all values of «,, we
find that the effect of antisymmetrization is to enhance the value of the r.m.s. radius. The
standard cluster model wave function will correspond to the single oscillator shell model
wave function in the lowest configuration, when we set o = o, = f. In our model, since
the alpha cluster within ®Li is expected to be larger than the free alpha particle, we note
that the value of the width parameter should be restricted to less than the free alpha particle
width of 0.58 fm~2. From Fig. 1, we can find for a given value of x4, the range of the param-
eter z for which the experimental value of 2.5440.05fm, for the r.m.s. radins of °Li,
can be obtained. In Table I, we list some values of «, and the ranges of the parameter z. As
stated earlier, the expressions for A,, A; and A4,, Ry, R, and R,, given in the Appendix
correct the errors in the corresponding expressions (21), (22) and (23), (24), (25) and (26),
respectively, obtained by Lodhi [6], who concludes that “an acceptable value of (r2)'/?
lying between 2.4 fm to 2.8 fm is obtained for the set of parameters « and z, such that:
0.58 fm=? > o > 0.34 fm=2 and 0.4 > z > 1.0”". Clearly, our range of parameters given
in Table I is considerably more restricted, though the shape of the curves is similar to those
obtained by Lodhi. In Fig. 2, we plot the r.m.s. radius given by (10), for the modified polar-
ized cluster model, as a function of z for different values of a4 and for §=0.0and 6= ~0.03.
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The point to be noted is that the use of an inter-cluster (or, relative motion part of the)
wave function with a shell model node in it, enhances the r.m.s. radius for all values of oy and
z. This effect is similar to the effect of antisymmetrization, observed in Fig. 1.

For these values of «y and z, we calculate the quadrupole moment (20). The only
unknown parameter J which accounts for the experimental value of Q = —0.08

4

(%]

<rl?>1/2(fm)

N

Fig. 2. The r.m.s. radius of °Li, for the modified polarised cluster model, as a function of z for different
values of g; —— 6=00and ------ 6= -0.03

+0.009 fm~2 [13] for SLi, is now determined. For o, = 0.455fm-2 and z = 0.3 which,
as we will see later, give a good fit for the charge form factor up to g2 << 6 fm—2, the value
of 4 is only —0.035. The negative value of § means that the deformation of the clusters
is of the oblate type. For a different choice of parameters made by Cheon [3] and Jain
and Sarma [6], the value of 0 required is —0.147 and —0.16, respectively.

Eq. (12) defines actually the point distribution form factor F,,(¢4?) and the charge from
factor of the nucleus is given by:

F(g%) = Fp(a*)F2(a%)s
where the realistic proton form factor is given by [21]:

1.249 0.7892 0.5819 .

- + — —0.0326. 32
1+4%/15.6  1+4%26.6 = 144%8.19 (32)

Fé(q®) =

In Fig. 3, we plot the form factor squared for SLi as a function of g2 up to 6 fm-2, for
oo = 0.455fm=2, z = 0.3 and 6 = —0.035. Curves I and 2 correspond to the polarised
cluster model and the modified polarised cluster model and it can be seen that curve 2,
which takes into account the requirement of the shell model node in the inter-cluster wave
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function, is in better agreement with the experimental data [13]. In Fig. 4, we plot
|F(g*)1*/exp (—1.763 g?) in order to visualize the difference in the models, as has been done
before [3, 13). Here, curves / and 2 correspond to 6 = 0 and § = —0.035 for the standard
and the polarised cluster model wave functions, respectively. Curves 3 and 4 correspond
to the same values of § but for the modified polarised cluster model wave function. We

Lithium -6

T

T T TTTTTT T YT

LF(q¥I2 7 [Flo)]?
T

3

T T

T

10 i { 1 |
0 1 2 3 4 5 6
g (fm™?)
Fig. 3. The charge form factor of SLi, in the polarised cluster model (curve /) and the modified polarised
cluster model (curve 2)

note that curve 4 fits very well the experimental data for g2 < 7 fm—2, where the effect of
antisymmetrization is not significant [5, 6].

In Fig. 5, we plot the average r2g(r) using the set of parameters: «, = 0.455 fm=2,
z = 0.3and 6§ = —0.035. Curve [ is for the modified polarised cluster model and curve 2
is the best fit of Burleson and Hofstadter [23] to their experimental data. Burleson and
Hofstadter [23] observe that a phenomenological charge distribution which gives a satisfac-
tory fit to the elastic form factor of ®Li, has a fairly long tail, which is essential if one is
interested in the study of cluster-knockout reactions [22]. Rachakant and Ullah [12]
proposed a modified radial wave function, which can explain the effects due to the long
tail of the wave function and/ their charge density is shown as curve 3 in Fig. 5, which also
agrees with the fit of Burleson and Hofstadter. We find that the charge density cannot
be accounted for by either the standard or the polarised cluster model which contain the
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peripheral form for the intercluster wave function. It is satisfying to note that our charge
density (curve I) using the modified polarised cluster model wave function is consistent
with the best fitting phenomenological model (curve 2) and the other attempt due to Radha--
kant and Ullah (curve 3).

The bremsstrahlung weighted cross section o, for the photodisintegration is computed
by varying 0.3 fm—2 < o < 1.0fm2 and 0.1 < z< 1.0 and it is plotted in Fig. 6, as.

25

LITHIUM- 6

g
[e]

[F (q9)% Exp(-1.76362)

0.5 i I 1 1
o

1 2 3. 4 5 6 7
q?(fmi?)
Fig. 4. The charge form factor of °Li, in the standard cluster model with é = 0.0 (curve 1), 6 = —0.035
(curve 2); and the modified polarised cluster model with é = 0.0 (curve 3), 6 = —0.035 (curve 4)

a function of z for several values of «,, using the unantisymmetrized standard cluster model
wave function. In Fig. 7, 6, is plotted for the same set of parameters using the antisymme-
trized standard cluster model wave function. Experimental results for the bremsstrahlung
weighted cross section of °Li are due to Costa et al. [24], who measured g, as 3.8 +0.3 mb,
from the photoneutron yield at photon energies of 5 MeV to 97 MeV. They also indicate
that the inclusion of (¥, t) reaction enhances the value of ¢, to 5.14:0.8 mb. In Table II,
we list the various sets of parameters and the corresponding values of the r.m.s. radius
and o, they yield. The parameters of Tang et al. [2] as well as those of Burleson and Hof-
stadter [23] assume the alpha cluster to be the larger cluster. The choice of § = 2.616 fm~%
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by Burleson and Hofstadter, to get the value of 2.54 fm for the r.m.s. radius is unrealistic,
since it indicates a very small separation of the centres of mass of the two clusters. The set
of parameters obtained by Jackson [25] and Wood [26] are based on the assumption that
the deuteron cluster is the larger cluster. The last row in Table II gives our set of param-
eters, which not only reproduce the right value of the r.m.s. radius, but also account

1 Using (5.27)
2 Exptref [12]
3 Ref [2]

0.032 -

0.028 |-

0.024

/
0020 i~ /

jo
Q
&

réq(r) (fm™3)

0012 - 3

0.008 -

0.004 |

U

r{fm)

Fig. 5. The charge density distribution of 6Li. Curve I is for the modified polarised cluster model, in
which the average charge density is plotted; curve 2 is the best fit of Burleson and Hofstadter [23] to their
experimental data and curve 3 that of Radhakant and Ullah [12]

for the charge form factor, the charge density and the quadrupole moment of ¢Li. For the
parameters of Wood [26] we get her unantisymmetrized wave function values for the r.m.s.
radius and o, but we are unable to reproduce her values for the antisymmetrized case.
For our choice of parameters (last row of Table 1I), we find that the bremsstrahiung weighted
cross section is higher than the present experimental value. This is not very disturbing
since one can expect the value of o, to increase when other photonuclear reactions are
included in the determination of the bremsstrahlung weighted cross section or when the
total photonuclear absorption cross section is available upto higher photon energies.

In conclusion, we find that for the set of parameters: &, = 0.455fm~?, z = 0.3 and
d = —0.035, the r.m.s. radius, the charge form factor, the charge density, the quadrupole
moment and the bremsstrahlung weighted cross section for the photodisintegration of
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Fig. 6. The bremsstrahlung weighted cross section oy, for the photodisintegration of °Li, using the unanti-
symmetrized standard cluster model wave function
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Fig. 7. The bremsstrahlung weighted cross section oy, for the photodisintegration of °Li, using the anti-
symmetrized standard cluster model wave function
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TABLE 1I

Results for the r.m.s. radius, the bremsstrahlung weighted cross section using the unantisymmetrized and
antisymmetrized standard cluster model wave function for °Li

T [l I i
i H |

H § 1

Ref. [ S % ! Zy ‘ B i R;.m.s. ' Rem.s. I O';: Op
(fm=%) | (fm™®) | (m™?) | (m) | (fm) | (mb) (mb)
21 0433 | 0.659 ] 0329 | 197 | 202 | 443 | 3.86
[23] {0142 | 0873 | 2616 | 2.41 f 2.54 : 10.99 11.47
{25] L0338 | 0218 ¢ 0.199 | 2.51 i 254 7.58 6.40
R} | 03 . 0189 | 0.226 \ 253 | 2s W 8.63 5.85

his 03 018 | 02% 255 | 296 | 863 8.2

work o+ O3 | 02 | 03 ‘ 212 232 65 6.1
© 0455 04137 | 0.243 2.42 2.5 8.13 7.83

Note: The prime denotes the result for the case of the unantisymmetrized wave function of the
standard cluster model.

©Li, are in reasonable agreement with the available experimental data and that the inclusion
of the shell-model node in the inter-cluster wave function is crucial in the study of the
chzrge form factor. However, it will be worthwhile to study the effect of antisymmetriza-
tion of the modified polerised cluster model wave function on all the static properties of the
SLi nucleus discussed here and use the same in the study of cluster-knock-put reactions
on °Li.

One of us (K.S.R.) thanks the Alexander von Humboldt Stiftung for the award of
a Fellowship and Professor Dr. K. Bleuler for the kind hospitality at the Institut fiir Theore-
tische Kernphysik der Universitit Bonn. We thank the referee for his very useful comments
and for a careful reading of the manuscript. The authors thank Dr. R. Sridhar of MAT-
SCIENCE, Madras, for several useful discussions.

APPENDIX
Here we give the values of 4y, A, and 4, which occur in the expression for the normali-
zation constant (8) and the values of R,, R, and R,, which occur in the expression for
the r.m.s. radius (7) of °Li. Introducing the parameters:
z=ua,fa, and k= Blog (A1)

(where » is called the cluster isolation parameter), to simplify the expressions, we get:

Ao = 2°(0.01514)n" 32y 1912732712 (A2)

2\ -17/2 2
Ay = 2°(3.58)" 3205 'O p (24 32) 72 ( 1= f’) (1 * f‘z) (42
\ 1 P1



where

and

where

3411z 4322
P1 = —5 = K,
3(2+3z2)
_ 2(3+2z+3z2%)
= 3(2+32)
= 2°(3.58)n" >y 2 py S(1 4+ 2)” (

P =

3

+x and g, =

512

1— 22
4P2

oo

)

For the polarised cluster model wave function (4), we get:

N3 = A, = 29(0.01514)n13/2ag19/2z‘3/2x‘7/2(

3-20

For the modified polarised cluster model wave function:

N} =4, = 29(0.007176)n”/2ag19/2z'3’2x“7/2(

3+5) s (Bo 3+5>2
(3 26 ﬁ(ﬁ 3-25

{ 2
X <1~

2Bo
B

For the expressions Ry, R, and R,, in (7), we obtain:

where

R1=

0o

Ay 3 7
94 - + —
12a0 z K

é_l_ % L+2_Z +[1- ‘h -
6a, 243z 4p1

e

0=

_ 2(31+66z+632%)

9(2+3z)?

4(1+30z+9z%)
9(2+32)?

(1+

2

qy 591
1+ —) +Q ———(25+
3P1 8P1 2

P1

3+9
3-26

b

i)™
4p3

]

3+5)”2

)7/2

6p3

).
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(A9

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)



§16

and

A 5+472) \7! I\
R, =t [% ('—T +l9’6"(] - 4_.2) L+ qkz
6oy | 7 (1+2) 4p3, 6p2

15 2 2 5 2
x {—- <1+ ﬁi) - 3%(25+ E)I] (A14)
2p, 3p3 2p; 2p3/f

Note: The parameter @ defined in (A13) and used in (A11) has nothing to do with the
quadrupole moment @ of Section 5.
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