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SPHERICALLY SYMMETRIC COSMOLOGICAL
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We investigate the dynamics of a spherically symmetric distribution of matter, in the
circumstance that we allow creation of matter in the Lytileton-Bondi sense, on the basis
of Einstein’s field equations for the adiabatic case with non-vanishing interpal pressure
gradient. It has been shown that if the density is uniform throughout the body at each instant
(and so is a function of time only) and the motion is shear free, then either the sphere is
static and has a definite charge distribution or it is non-static and continually expands.

PACS numbers: 04.50.+h

1. Introduction

Lyttleton and Bondi (1959) have developed a cosmological model based on the possi-
bility of a general excess of charge in the Universe. This excess of charge may arise from
the difference in magnitude cf the charge of the proton and that of the electron, or from
the difference in the number of protons as compared to the number of electrons. The
imbalance is of such order that it would not render the body appreciably conducting.

Further, if the charge excess exceeds a certain critical value expansion will result.
If this expansion alone occurred, the space density of material would steadily diminish
and the acceleration of expansion would decrease with it. To off-set the decrease in density
implied by the expansion, Lyttleton and Bondi postulated the.creation of matter, and also
necessarily charge, everywhere in space. This creation process will then keep the density
invariable. Since charge is not then conserved in the strict sense some modification of the
Maxwell equations must be made to permit-the resulting breach of conservation of charge.

Lyttleton and Bondi (1959) have investigated the nature of the ficlds in both Newtonian
and general relativistic frameworks in the circumstance that the electromagnetic field
is assumed to vanish. Burman (1971) has studied the static spherically symmetric exterior
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solution and has shown that the field has no detectable departure from the predictions
of the Schwarzschild solution. Rao and Panda (1975) studied the exterior solutions in the
case of the cylindrically -symmetric Einstein-Rosen metric and obtained exact solutions,
one of which is static and the other time-dependent..

As far as I know, nobody has investigated the nature of the interior fields yet. The
purpose of the present work is to study the interior fields of a spherically symmetrical per-
fect matter fluid. In our work we shall relax the condition that the matter density is invariant,
in that we shall require it to be a function of the time only. This step is motivated by recent
developments in cosmology. It is now generally believed that the universe has evolved to
its present state from an initially dense configuration. It must be pointed out that allowing
the density to vary with time does not invalidate the basic assumptions of the theory —
creation of matter will still occur but the density will not necessarily remain the same.

In order to obtain exact solutions of our field equations we have imposed the following
conditions on the system: the components of the metric tensor satisfy the condition y = g,
which is the requirement for shear-free motion. Of course, besides this the usual regularity
condition at the centre and the boundary conditions at the interface between the region
occupied by the matter and the surrounding empty space are assumed to hold. We shall
show that the implied creation of matter and the expansion of the universe may not
continue indefinitely. Specifically, we establish that if the charge distribution throughout
our model sphere attains a certain critical value the creation rate vanishes and the sphere
becomes static, otherwise the sphere expands continually. The new thing here is that the
assumptions y = g and ¢ = o(t) do not necessarily lead to a static solution. This must be
contrasted with the situation which obtains if matter creation is not allowed. In fact, it has
been shown (Misra and Srivastava 1973) that for a charged fluid sphere embedded in
empty space the conditions ¢ = g(¢) and y = p are inconsistent in the sense that either
the solutions are static or matter is uncharged. Thus, allowing matter creation to occur
presents us with an entirely new picture of the interior fields of the spherical matter.

2. The field equations
We choose the line element in the form
ds® = e'dt? —e’dr* — &"(d9* +sin’ 8d¢?), @1

where (1, r, 0, ¢) are comoving co-ordinates. Here the functions v, y and p are functions
of r and ¢ only. Throughout this paper vnits are chosen so that G and ¢ are each unity.
The field equations are (Lyttleton and Bondi 1959):

G'; = —8xT’, (2.2)
Fl'j = Ai,j—Aj,i’ (2.3)
FY,; = 4ng', Q.4

Jy=gq. (2.5)
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Here T'; is the energy-momentum tensor for the system and we express it in the form
J 2y

Ty = t;+E, (2.6)
where t'J is the energy-momentum tensor of perfect fluid
tij = '(Q"*'p uiuj"'péij (2.7)‘
and Eij is the electromagnetic stress-energy tensor
4nE'; = —F*Fp+% 6" F*Fp+ (A4, 1 6',4,4%. Q.8)

The quantity g is the rate of creation of charge per unit volume and #° is defined by the
equation

F= T —(Aan)A'. (2.9)
The four velocity of matter is the unit timelike vector
u = e v, (2.10)
In the case of spherical symmetry, the only non-zero component of F* is Fo! = —F10,
which depends on r and ¢
i =1in Eq. (2.4) gives
F'0 = Q(r)e #~ 002, 2.11)

where Q(r) is an arbitrary function of r, while i = 0 implies that

Q' = —dn glettuTNZ, 2.12)
If we define 4, = ¢, then by Eq. (2.3) we have

¢ = Q(r)e 2] (2.13)

where a prime denotes differentiation with respect to r.

Eq. (2.11) is an explicit solution for the field F1°(r, t) in terms of the yet unknown
functions v and y. If we write R for ¢*/* we note, from the boundary condition that the
geometry is Euclidean at infinity so that v and y approach zero as R — o0, that the solution
(2.11) has the usual classical form, at least for large R. Thus the function Q(r) can be
identified as the charge up to the co-ordinate radius r.

The non-trivial field equations for the metric (2.1) are (Eq. (2.2)):

87T = e +§ 12— h ) -G RS A —e 7 (2.14)
—8aT!y = G 'V 4+ p D e G =3 D)=, (2.15)

—8nT?, = ¢ Uk W+ p PRV AV Ry R Y VYY)
FeT (=4 -k iimd i i vi—E 9, 2.16)

~8nT'y = =/ —F ' +5 ' +3 0" = 0, (217
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where
2 1 2
T = o+ g—n e“2"+‘~£— e, (2.182)
2 l 2
T!, = —p+ -?7 e % e, (2.18b)
2 432
A
T, = T3, = —p— 9 e 4 e’ (2.18¢)
8n 8n

and the dot denotes differentiation with respect to time.

We shall now establish the implication of the requirements that ¢ = o(7) and y = p.
We note that the condition to be established also applies, of course, to the special case
when g is a constant, independent of r and z. Subtracting Eq. (2.15) from Eq. (2.16) and
substituting for v’ from Eq. (2.17) we obtain

H(u'eTY Y (L9 (WY T 4
+2ae M {(a—p)e* O TRy —_guQRe 2 = 0. (2.19)
On inserting the condition y = p in Eq. (2.17), we obtain
e = A, (2.20)

where A(¢) is an arbitrary function of time.
Also on inserting y = p and hence y = u—a(r) into Eq. (2.19) we have

{(ﬂ e 7/2) eu} +He(# a)/2 2I1Q2 —(ut+a)/2 _ = Q.
Integration of this equation with respect to time yields
20" —p P+ pla’+de T +8Q% T = b(r)e M2, .21

where b(r) is an arbitrary function of integration.

Eq. (2.21) will now be used to show that the functions ¢, Q and b(r) are connected
by a single subsidiary condition which must be imposed on the solution of our problem
so that the choice of the function b(r) is not completely arbitrary. On inserting y = st
into Eq. (2.14) and evaluating the derivative with respect to r of the resulting equation,
we obtain

(81T %) = —p'e™ +3 pe ™24 — ')
+e—7(”",}/+4 v # ﬂ’y’2~ﬂ "__ ul#n_*_ 1 /»L'I')”+ 1 Ill')’”)

The second term on the right-hand side of this equation vanishes on account of Eq. (2.17).
We next put y.= p—a and obtain p"’ from Eq. (2.21) to write the last equation in the form

(87T%) = e *{(4Q%Y e *—2Q%u'e ™~ (be®)'e ™M +20% e}
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On substituting for 7°, from Eq. (2.18a) and putting ¢’ = 0 we obtain
(307~ (19%"Y — 4 (bey'e 2 = 0;

which is equivalent to the condition
A 3,
(—S(v’d>2—2<z>¢>’)e2 +QQ'e™H?*— % (be?)' = 0. (2.22)

Eq. (2.22) is the condition we seek. This condition is then seen to arise as a consequence
of the assumption that the density is uniform and that y = p. However, before discussing
it further we derive it again in a more general way. The general approach is indeed neces-
sary because cf the wealth of information we extract from it. Writing down the other
as yet hidden implications of Eq. (2.22), without explicitly showing how they arise, will
make.the whole procedure look artificial.

Use can be made of the Bianchi identities to establish the following relationships for
any energy-momentum tensor:

(TYy) =3V (T%-T") +u@/(T?,—T")), (2.23)
(T%) = (i+39) (T', = T%) +i(T?,~T*). (2.24)

Egs. (2.23) and (2.24) may be interpreted physically as representing the conservation of
linear momentum and energy, respectively.

We introduce a new variable m(r, t) defined by the following equation (Thompson
and Whitrow, 1967):

3u 3u

—_——y —_

8m = pe? —p'le? | 4+4etl?, (2:25)
Egs. (2.15) and (2.14) with the help of (2.17) then yield

m = 2npeH?T, (2.26)
and
m' = 2np'e***T0,, 2:27)

respectively. Egs. (2.23)-(2.27) are completely equivalent to the field equations (2.14)—(2.17).
The set of Eqs. (2.23) and (2.24) on account of Egs. (2.18a) and (2.18b) yield

’
’

Q0 _, A -
R __pdle, 2.28
p zv(e+p+ el 4m¢¢e (2.28)

' 2 AV . .
6= —(a+iy) (e+p+ &f—e‘") L2 G- 20), (2.29)
T 8n
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while Eqgs. (2.26) and (2.27) yield

A, 3,
m = -—21mpe + a Q e k2 Z" e (2.30)
N2 A ’ 3_‘1—"
m' = 2ny'0e®* + ”—? ey —% ¢%e? . (2.31)

In the case z = 0, the model is static, as is easily seen from Egs. (2.30) and (2.31).
Alternatively, Eqgs. (2.28) and (2.29) are derivable from the conservation equations

Tik;i = 0.

Evaluating T, with the help of Egs. (2.6), (2.7) and (2.8) and comparing the results with
Egs. (2.28) and (2.29) we deduce that

A¢¢ —-9/2-
Jo = () P CRTE Q'e(v N2-p (2.32)
and

-y

4= —— {2¢+¢(+2a-v)} (2.33)
It is seen from Eq. (2.33) that ¢ = 0 if the model is static; so that a sufficient condition for
the creation rate to vanish, under our assumptions, is that the model should become static.

Egs. (2.28)-(2.31) will now be used to derive the condition (2.22). Let us introduce
the function g(r, t) defined by the equation

m = ‘—?ées“/z. (2.34)

The function § may be interpreted as the mean density of the matter distribution within
the point (r, 6, Q, 1), if ¢"/* is interpreted as the distance of the particle from the centre
and m the mass of the fluid. Differentiating Eq. (2.34) with respect to time and using Eq.
(2.30) we obtain

- —e

gz- e %H }”¢2
8 8n

Multiplying this equation by u-+%y, we obtain
(p-{- 77

L 20 . s . _
~(a+39)p = gﬁ(u+%v)+e(u+% D+ ($*Ae™"— Q% ).
Rewriting Eq. (2.29) in the form

2

A Ae”" . ;
~Grin = e+t (o T o) = S Got-20d)
T T
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and comparing the last two equations we find that

2 o -]_ .
ja ¢ 2¢¢)} +(a+% v)( —o— —é¢— ) _(Bt27) Q%e™ 2"
T 8=
2
-3~(1 ).

Multiply by e**#? and obtain this equation in the form
Mt Qe } g 5o
f—p— —— e V= Tt J ettty (i)t T T2 petdy .
{(a 0= o i 5 (L= 7/m)e"™ ="+ ok (2.35)
Eq. (2.35) may be deduced from the equation

(@-T°0eH 12 = S (L—3ie ¥+ (T, = T2, (2:36)

which holds for any energy-momentum tensor.

Eq. (2.35) cannot be integrated in general, but under the condition y = g it becomes
integrable with respect to time. Thus, after inserting y = u, y = u—a(r) into Eq. (2.35)
we have

j. 2
o0—0— i + — e " = H(r)e "2,
8n 87z

where H(r) is an arbitrary function of integration.
Use can now be made of Eq. (2.34) to eliminate g, we obtain

4z % 2
-3 o — —2—— 27y %—e“‘/z = h(r), (2.37)

4
here A(r) = —3£H(r). Now differentiate Eq. (2.37) with respect to r and use Eq. (2.31) to

obtain the final equation in the form
A
L9 =269 T (0@ I) = 0, (2.38)

which is exactly the same as Eq. (2.22) if we make the identification
= 1 be". (2.39)

Now if v¢?—2¢¢’ = 0, we conclude from Eq. (2.38) that e*/> becomes a function
of r only. In other words, the model becomes static. The condition v'$p?—2¢p¢’ = 0 implies
that ¢ = I'pe*’?, where I'y is a constant of integration. It then follows from Eq. (2.13)
that the charge distribution Q(r) is given by

Q(r) = Iy(v'[2)e" "2, (2.40)
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As was already remarked these circumstances lead to the conclusion that the matter creation
rate g vanishes. This conclusion, of course, comes from Eq. (2.33). Thus for a Lyttleton-
-Bondi sphere embedded in empty space the conditions ¢ = g(t), y = g and ¢ = ye*/?
imply that the sphere is static and has the electric charge distribution (2.40).

3. The model solution

We now consider a particular solution of Eq. (2.21) for which the condition v'¢p?
—2¢¢’ = 0 is not satisfied. Under this circumstance e* is a function of time so that the
model is non-static. In order to extract a solvable model from the variety of models obtain-
able from Eq. (2.21) we use Eq. (2.38). This constraint equation offers us some freedom
in our choice of the function 4 = %be_“. Further we assume that the creation rate is such
that the quantity Qe */2, which we interpret as the potential at the point R = ¢*/2 dpe to
QO(r) — the charge up to the co-ordinate radius r, is a constant independent of time. With
this we choose be” in Eq. (2.38) such that the condition

8A(d%e ") e +24Q%(e™ ") —3(be®) (e MY +(be®) e H? =.0 3.1
is satisfied. With this choice Eq. (2.21) becomes

20—y 4 p'a’ +4e”" = 0. (3.2)

It should be pointed out that Thompson and Whitrow (1967) derived an equation similar
to Eq. (2.21) and reduced it to Eq. (3.2) under entirely' different circumstances. Thus our
discussion of Eq. (3.2) will be similar to theirs.

The differential Eq. (3.2) may be solved to obtain

e ** = Bf+Clf, (3.3)
where
f=exp(—{e *?dr) 3.4

and B = B(t), C = C(¢) are arbitrary functions of integration. The functicns B(¢), C(t) are
related by an equation derived from the boundary condition p(ro) = 0, where r = r, at
the surface of the sphere. Although, corresponding to a certain degree of freedom in the
choice of the equation of state, the functions B, C are not determined uniquely by condi-
tions at the boundary r = r, there are certain conditions to be imposed on them if a realistic
model is sought. In particular, we should expect that the pressure p should decrease as we
go from the centre of the sphere to the surface, that is p’ < 0. We find that this implies
that, so long as the sphere expands, (C/B)’ < 0. The parameters y, v, p and g of our problem
will now be written in terms of the general solution (3.3) and the quantities Q and ¢.
We start from Eq. (2.28) which we rewrite in the form

’ . l ’
(pev/Z)' — _(Qev/Z)r+ gQ_e—2u+v/2___ : ¢¢ e .
4n 4n
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Integration of this equation yields
pe’? = — g +G(r, )+ (1),

where I'(¢) is an arbitrary function of integration. I'(¢) is to be evaluated from the boundary
condition p(ry) = 0. We then find that

p = o{e® 2~ 1} +e**{G(r, t)— G(r,, 1)}, (3.5)

where

G(r,t) = | g(r', )dr', vy = W(ro, 1)
and
g(r, 1) = (1/47) (QQ'e™ "2 —Ap¢p'e™"?). (3.6)
Similarly, using Egs. (2.14), (2.18a), (2.20), (3.3) and y = u—a we find that

8ng = 2 (fe  +16BC)— Qe ¥ —Ap%e™". 3.7

In Eq. (2.20) we may normalize the time co-ordinate ¢ so that ¢"®? = [, This is
equivalent to choosing A(z) = 1/u2(0, ) so that we can write

e = %0, 1).

But from "Eq. (3.3) we find that

- (B-I:ALC)‘ (3.8)
(Bf*+C)
so that we deduce that
o BO+0)

Now using the fact that f = S/r, where S is 2 power series in r involving only positive
and zero powers of r (Thompson and Whitrow 1967), we find that

u(0, 1) = —2B/B. (3.9b)
It then follows from Egs. (3.7) and (3.9b) that
8mg = 3{(B/B)*+4BC}— Q% **—ip*e™".

By assumption g is not sensitive td variations in r, so that this expression may be
evaluated at any convenient value of r. But because we must compare our results with ¢
obtained from Eq. (2.29) it is best to &valuate these r dependent variables at r = r,. We
then write for ¢ the expression

8no = 3{(B/B)*+4BC{~QZe ?*—idZe ", (3.10)
where QO = Q("o): Ho = .u(rO’ t)r 4)0 = ¢'(r0' t)'
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If in Eq. (2.29) we put 7 = u and apply the boundary condition p(r,) = 0, we find
that

. . Aps _ A —voy-
6= —3io(e+ e ) = = (d5e™
4r 8n

or

A o

yl
o+ — (P2e™) = —7u0<e+ 2
T

1 2 —vgy
ye )+§;(¢ge ).

A
Putting £ = ¢+ Z—(qﬁﬁe"“’), this equation becomes
7
3 3 . A 2 —voy'
= —3hol+ @(tﬁoe ). (3.11)

Eq. (3.11) is a first-order linear differential .equation whose solution is, after putting
& = o+(Adm)pge ",

34
8mo = 3K*(BfE+C)* —Agie 0~ n(t)e_3”°/2, (3.12)

where we have defined f, = f(ro), 3K? = 8K;, K; a constant and »n(z) by

n(t) = | fodoe” "0 %dt. (3.13)

Comparing Eqgs. (3.10) and (3.12) we find the equation relating B and C for given
0O, and ¢, in the form

3{(B/B)*+4BC}—3K*(Bf¢ +C)* = Qe — %’1 n(t)e 32, (3.14)

The function 5(¢) defined by Eq. (3.13) is quite general. However, under certain assump-
tions the integral (3.13) may be evaluated explicitly to determine #(f). One interesting case
is when e "% = Iy, or ¢ = I'ge*’?, I'y a constant. This is the case we have already discussed
at length; and we have shown that for this value of ¢ the solution becomes static. In a more
general situation ¢ must be determined from Eq. (2.13). It is easy to show, using Egs.
(2.13), (2.20) and (3.3), that

¢ = —(B/B) j Q@) (Bf+ Clf)e™dr. (3.15)

Thus given the charge distribution Q(r) and the function f(r) Eq. (3.15) enables us to find ¢.
Eq. (3.14) may therefore be considered as the equation relating B and C. Eqgs. (2.20), (3.3),
(3.4) and (3.15) may now be used to determine J, and the matter creation rate g from
Egs. (2.32) and (2.33).
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4. Conditions for a physically realistic model

Our results have been written in terms of the functions B(¢) and C(z). For a physically
realistic model these functions cannot be completely arbitrary. We now seek other condi-
tions that these functions must satisfy to make our solutions physically meaningful. On
physical grounds we expect p and ¢ to be positive and finite; and- as already pointed out
the pressure must decrease from the centre outwards to the surface of the sphere where
it must vanish. Further, the solution of interest to us is that for which the model sphere
continually expands. We find that the following conditions must be imposed en our solu-
tion:

(a) 0 < g < o0,

(b) —0 < p <0,

(c) /> = R(r,t) >0, r>0,

(d) (3/2)¢"’* =R(r,H) >0, r>0; ie. g>0 r>0.

For the model to continually expand we must require that R(r, t) >0and R(r, ) > 0.
Now R(r, 1) = (u/2)e"'?; this requires that g > 0. To ensure that 4 > 0, we shall choose
Band Csothat B > 0,C >0, B < 0and C < 0; so that Band C are chosen to be positive
decreasing functions. It is seen from Eq. (3.8) that this choice makes g > 0. In fact this
choice ensures, according to Eq. (3.3), that R(r, 1) > 0.

Eq. (3.10) shows that g is positive and bounded provided that B and C are chosen
as prescribed above and also satisfy the condition

3{(B/B)*+4CB} > Qe ** 4 Jp2e ™. 4.1)

Using Eq. (2.20) and the condition A(¢) = 1/p2(0, ¢), we find from Eq. (3.5) that
p(r, t) may be written in the form

— ”( Tos ) ’ —v/2 ;
p(r,t) = o { o t) 1} +e”"*{G(r, )= G(ro, 1)}, “.2)
so that
p=- % (o+p)+e "*{G(r, t)— G(ro, 1)} (};— - -2—) +G'(r, t)e "2, “4.3)

From Eq. (3.8) we find that
2B(x+f2+Bx/B—fo2
TOB(fT4x—fH)

L s
FPrx—R7

—h=

“4.4)
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where x(1) = f2+C/B. We then find that

- 2Bff'(o+p) _x_ "
SNV (x+f2+BJé/B—f02)(B) +g(r, e 7 (4.5)

By Eq. (3.4), f > 0, and since f = S/r, with .S a power series involving only positive
and zero powers of r, f— 0 as r = 0. Also f’' < 0, and physical considerations require
that ¢+p > 0. Thus to make the first term on the right-hand side of Eq. (4.5) negative,
we shall require that (x/B) > 0 and finite. The second term on the right-hand.side of Eq. (4.5)
is negative if we require that

(0Q'e™ M~ Ipp'e™™) < 0 (4.6)
so that the necessary and sufficient condition for p’ < 0 is
0<x/B<oo, QQe < ippe. (4.7)
We shall now use the fact that p’ < 0 to establish that we always have
4 (C) <0 (4.8)
dt\ B

in the case of expansion. Eq. (2.28) may be written in the form

7

P =—3V(e+p+g(r.t), gr1)<O.

Here g+p > 0, so that p’ < 0 if v’ > 0. We have already stated that g > 0 in the case
of expansion. From Eq. (2.17) we have putting o = y

v = 20/
So that if v/ > 0, g > 0, then ' > 0. But by Eq. (3.8)

. 4ff'(BC~BC)

(Bf*+C)*
But because f >0, f' < 0, we have ff' < 0. Thus &’ > 0 provided that BC—BC < 0.
This condition implies that
d/C
—{—]<0 (4.9)
dt\ B

in the case of expansion.

5. Conclusion

The general belief prior to this work was that the Lyttleton-Bondi charge imbalance
theory can only explain the observed exﬁansion of the Universe and nothing else. However,
we have now shown that starting from arbitrary initial conditions, but-admitting the possi-
bility of matter creation, our model sphere either grows to a static state or will expand
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forever. Further, we emphasize that charge distribution alone may be able to halt this
expansion. Thus the Universe may not after all expand forever.

The author is grateful to Professor Abdus Salam, the International Atomic Energy

Agency and UNESCO for hospitality at the International Centre for Theoretical Physics,
Trieste.
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