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VECTOR POTENTIAL IN A UNIFIED FIELD THEORY

By P. K. SMrz
Department of Mathematics, University of Newcastle, New South Wales*
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The paper gives a modification of a unified theory of gravitation and electromagnetism
described previously by the author. The modification leads to a geometric interpretation
of the electromagnetic potential 4, : 4, is proportional to h;, a component of the five-dimen-
sional equivalent of a tetrad.

PACS numbers: 04.50.+h

1. Introduction

The unified field-theory described in reference [1] introduces directly the electro-
magnetic field tensor as the fifth component of the Lorentz gauge potential. There is no
natural geometric interpretation of the electromagnetic vector potential. This could be
considered as an unpleasant feature of the theory when, for example, the Dirac equation
in the presence of the electromagnetic field is to be used. It is well known, that under certain
circumstances the potential is directly measurable in experiments involving quantum
mechanics (see [2] or [3]). A modification of the theory presented here gives an interesting
geometric meaning to 4,, namely as proportional to hi, a component of the five-dimensional
equivalent of a tetrad.

2. Geometrical structure

The basic geometrical structure leading naturally to the appearance of the electro-
‘magnetic field tensor is a de Sitter structured connection based on a five-dimensional
manifold, as described in reference [1]. The interpretation of the components of the con-
nection is as follows: 4% are connected with the Christoffel symbols by the usual rela-
tion

ry, = hOm)+ kA kg, )
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A¥ is the electromagnetic field tensor in the local upholonomic Minkowski coordinates,
AS = 0 guarantees the four-dimensionality of the observable space-time, and A = /-14%,
where &,, i =1,...,4, u = 1,..,4, is the tetrad, and / is a small fundamental length.
The four-dimensional tetrad was complemented in [1] by 4% = 0, B, =0, and A3 = 1.
We shall now relax this requirement. It seems reasonable to require only that the inverse
} of the 4 x 4 matrix A, forms the 4 x4 part of the inverse A%, « = 1,...,5,a = 1, ..., 5,
of the whole pentad h;. Physically, this condition could be interpreted as characterising
impossibility of detecting the fifth coordinate by space-time measurements. Mathematically
it states
hhg = hyhi+hohs = 6
and
hhi = o},
hence
hih = 0.

The geometry used in reference [1] certainly satisfies this condition, but in fact only
one of h; and A must be equal to zero. We put

5= )]

thus reserving hi # 0 for the possible role of the electromagnetic field potential.
We have to require further that

hihy = hihi+hih3.= 0.

Preserving for simplicity 43 = 1 we obtain

hy = —h,h}
or
h} = —h!h;. 3)
Finally
Rihi = hihf+hih; = i
requires

5=0. C))

The remaining relations are then satisfied identically.

3. Dirac equation with the electromagnetic interaction
Consider the Dirac equation in the space of general relativity:
; oy i imc
V'hi (—a-x—,; -3 ALLikw) - v=0 )

Here L, are the generators of the Lorentz transformations in the appropriate representa-
tion. This is just the Lorentz covariant equation. In the de Sitter gauge theory it should
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be a consequence of a more general de Sitter covariant equation when expressed in a specific
gauge along the lines of reference [4]. This, however, needs reconsideration in the light
of the approach presented in this paper, and at present we shall take equation (5) as the
starting point. Nevertheless, the base manifold must be the five-dimensional manifold
described in Section 1 and the fifth coordinate yields an additional term

s f 0w .
Y hi5 (&‘5 “% A‘SkLikyJ) .

Using equation (3) this term can be combined with the corresponding space-time term in
equation (5) to yield

i oy dy i i
Y ( o 55 - hiAs")Likw> :

We assume ndw that
h) = kA, (6)

where A, is the vector potential, and k is a constant of dimension charge/work. It is related
to the gravitational interaction constant. The relationship is discussed in the next section.
One should point out that equation (6) leads to

gu5 = h:hggab = hi = kAua

which is precisely the interpretation given to g,s in the Kaluza-Klein theory [5]. Some
parts of this section are, in fact, contained in reference [5], but without tetrads and the Dirac
field.

The usual minimal electromagnetic interaction term

o i Ay 0

is obtained by requiring that the dependence of » on x° is given by
p(x*, x%) = *iy(x", 0), (8)
where

hck
d=—
e

3

e being the charge of the particle. Constant d has a dimension of length and its size will
also be discussed in the next section. There is an extra term
h) AY

also describing the electromagnetic interaction, but since A¥ is related to the electro-
magnetic field tensor via a constant which is also of the order of the gravitational interaction
constant, the contribution of this term is negligible.
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Consider now a coordinate transformation
x*=x pu=1,..,4,
x> = x®p(x¥), )
where 7 is an arbitrary smooth function of the space-time coordinates. We have

PO, x%) = e %) = e, 5

and
ox’ ox® on
50 _ 5 5 __ 15
h, = o ,+ p hs = h,— P
or
1 on
A=A~ — —
bk ooxt

This is precisely the “gauge’ transformation of the vector potential and the wave
function that leaves the term (7) invariant. It should be noted that the coordinate transfor-
mation (9) also leaves A¥ invariant:

ox° ox*-

= I'f+ — 't =r¥

ik’
5 ’
x>

Thus the interpretation of A% as the electromagnetic field tensor is not contradicted.
P

4. Maxwell equations

Since now A% is associated with the electromagnetic field tensor while k, is proportional
to the vector potential, a relation connecting the two quantities is needed. Such a relation
can be expected to involve the torsion tensor as can be seen from the following expressions:

T7, = t5,+17 ' (h385— h367), (10a)
T, = —h3t5,+08,h]—0d,h), (10b)
s = 17160~ hihLAg,. (10c)

These expressions were obtained from the general formula for the torsion
Tly = hi(0.h—Oghy+ hp Ay 8pe— hoAG 80c), 11

using equations (2), (3), (4), as well as 4’ = /-4, and an assumption that all the compo-
nents of the pentad are independent of x°. ¢, is the space-time torsion given by equation
(11) in which all the indices are restricted to values from 1 to 4 only. If it is assumed that
tsy = 0, then in the first approximation a relation

Topy+ Tpyat Tiup = 0, (12)
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where

Topy = gﬁéT:y (13)

yields the relation between A% and hf, we are looking for. In particular, when the index
is lowered in equation (13), we use the approximate metric with gss = 1 and the off-
-diagonal elements g5 equal to zero, since the inclusion of g,5 = h} = kA, leads to terms
of higher order in &, and k is assumed to be small. In this approximation

Tua‘v = kl_l(gauAv—‘gavAu)a (143)
T,s, = k(0,4,—0,4,), (14b)
Tqu = kl“lguv‘—gvohghftAgkglk' (140)

Expression (14a) satisfies (12) identically, while substitution of (14b) and (14c) into (12)
yields

. k
h':h’:ALSkgmignk = '_Z_(GuAv~avAp)’ (15)
which expresses the electromagnetic field tensor in terms of the vector potential if

min 4ik k ~
huths milu = — I

5 Fuve (16)

The meaning of the constant & can now be seen from comparison with the Lagrangian
of reference [1] which is of the form

2

. k
— 4R hE R+ 7 F,F*. an
We have
K
k* = 16—,
(.‘4

where x is the Newton’s gravitational constant. Using the numerical value of
K (6.67x 10~8 cm® g~ sec~2) in evaluation of the length d from Section 2, together with
the appropriate values for f, ¢ and e (using the electron charge) one obtains

d=7.6%x10-32cm.

So fur the fundamental length / of the de Sitter gauge group is independent of 4, but
a generalisation of the Dirac equation to a de Sitter gauge covariant form should bring
a relationship between the two constants into the theory. This will be investigated further
and reported in a subsequent publication.

As a final comment it should be mentioned that equation (16) also expresses certain
geometric features of the connection when it is considered as a deformed five-dimensional
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analog of the Poincaré group in a sense described in reference [6]. However, it is not closer
to any physical interpretation than equation (12), which is quite appealing because of its
simplicity.
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