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We investigate the properties of the exact pion propagator under the assumption that
it is a Herglatz function.
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The exact propagator for a neutral pseudoscalar particle of mass m, e.g., the neutral
pion, is defined in terms of the vacuum expectation value of the time-ordered product
of two hermitian pseudoscalar fields ¢(x), i.e.,!

Ap(x—y) = KO|T(¢(x)p(»)) 0. 0

It can be easily shown that the propagator has the following spectral representation [1],
A(x—y) = | da’e(a®)Ap(x—y; a®) 2
V]

where the spectral function g(a?) is real and non-negative, and dg(x—y; a*) is the free
propagator for a pseudoscalar meson of mass a?. If we define the Fourier transform 45(k?)
by

1
@em?*

A(x—y) = Jdke"‘ T ALRD), 3)

and use the fact that the propagator for a free field has the Fourier representation
ek x—y)

]
a’—k*—ie

1
Ap(x~y;a*) = ISt f dk )
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then we easily obtain

2
2 oa’)
a’*—k*=is’

Ap(k?) = J da (5)
0

which gives the spectral representation of the propagator in momentum space. Separating
out the one-particle contribution from the spectral function gives

e(a®) = 8(a* ~m*)+a(a’), (6)

where o(a?) represents the contribution of the two- and more-particles intermediate states
to the spectral function. If equation (6) is substituted into equation {5), we obtain

2
+ J da* u__jﬁff_l_: . (N

Ay(K?) =

mr—k*—ie

Note for the neutral pion that the simplest many-particle state which can contribute is the
three-pion state; thus the continuum starts at 9m?. (There are also two-particle contributions
which come from nucleon-antinucleon pairs, however, 4M? > 9m2.)

Let us now define the function

I o(a?)da?
F( ) — + 2 . (8)
-z a‘-—-z
9m?

This function is easily seen to be analytic in the complex z-plane with the exception of
a pole at z = m? and a cut along the positive real axis from z = 9m? to + 0. A comparison
with equation (7) shows that for any real k? the exact propagator 4x(k?) is the limit of the
analytic function 4¢(z) when z approaches the real axis from above, i.e., when z — k?
+ig with ¢ > 0. Another consequence of equation (8) is that A¢(z) is a real analytic func-
tion, i.e.,

4F%(2) = Ap(z*%), (Ya)

where the star (*) denotes complex conjugation. In addition, we have
i
o(a?) = —ImA(a®) =0  (a® = 9Im?). (9b)
T

It should be pointed out that the unsubtracted dispersion relation for Ax(z), given
by equation (8), implies that Ag(z) vanishes for [z| - co which, in turn, implies that
a{a®) — 0 when a? — co.

An important property of 4x(z), as given by equation (8), which is not well-known,
is that 4g(2) is a Herglotz function. A Herglotz function F(z) is a function which is analytic
in the half-plane Im z > 0 and satisfies there the condition [2, 3, 4]

(Im z)(Im F(2)) > 0. (10)
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(To show that Ag(z) is a Herglotz function, we substitute z = x+iy into equation (8)
and verify directly that the condition of equation (10) is satisfied. This procedure also shows
that the condition is satisfied in the lower plane, Im z < 0.) '

It is of interest to generalize this result and assume that the exact propagator is, in
general, a Herglotz function. Now the fact that a function belongs to the class of Herglotz
functions places great restrictions on both its asymptotic behavior in the complex z-plane
and its functional form [2, 3, 4]. The main purpose of this paper is to investigate the general
properties of the exact pion propagator under the assumption that it is a Herglotz
function.

Before we present our results, the following comments are in order. The exact form
of the spectral representation for the propagator depends directly on the asymptotic behav-
ior of the two-point function in momentum space. If this quantity goes to zero as k2| — oo,
then the unsubtracted form of the spectral representation, as.given by equation (7), is correct.
However, a priori there is nothing to preclude that perhaps 4r(k?) is bounded by a poly-
nomial function of finite degree at infinity. In this case Ax(z) satisfies a subtracted dis-
persion relation and a number of uncalculable subtraction constants appear [1, 5]. In the
following, we shall show, among other things, that if 4x(z) is a Herglotz function, then
the maximum number of subtractions required for writing down a dispersion relation
for Ag(z) is a priori determined to be two.

Our starting point is the following integral representation which holds for any Her-
glotz function H(z) [2, 3, 4]

Im H(z) (1 +zx)dx
(1 +x%) (x—2).

H(z) = A+Bz+ % J , (11)

with A and B real constants, B > 0 and Im H(x) > 0. Combining the results of equation
(9b) and the fact that 4¢(z) has a simple pole at z = m? with unit residue (see equation (6)),
we obtain the following general representation for the exact pion propagator

14+m?z - o(x) (1 +zx)dx
(1+m?) (m*—2) J (1+x2)(x—z) '

9m2

4p(z) = A+Bz+ (12)

The constants 4 and B may be replaced by two quantities which are related to A¢(0) and
dAp(0)/dz:

o0

AL(0) = A+ + f ox)dx (13a)
F m2(1+m*) x(1+x%)°
9m?2
dAr(0) B 1 3 o(x)dx
=B+ -+ f - (13b)

9m2
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Substitution of equations (13) into equation (12) and simplifying gives

dAx(0) N 22 ) J“Q(x)dx

Ax(2) = 4:(O)+ dz z m*(m*—z) P(x——z)’

(14)
9in2
which is the general representation of the exact pion propagator function under the

assumption that it is a Herglotz function.
We now list the most important consequences which follow from equations (12) and

(14):

(i) In general, 4¢(2) satisfies a dispersion relation with two subtractions. This means
that, in general, neither A¢(0) nor its first derivative at z = 0 can be calculated; they must
be given as input data. Furthermore [4],

A2)z > B as  |z| - o0,
(0 <e<Argz < 2n—5s). (15)

(ii) In the fortunate case where A¢(z) — 0 as |z] — oo, then Ax(z) can be represented
by an unsubtracted dispersion relation. In addition, there exists a constant C, such that [4]

lAg(2)] = Cy/lzi as  izj - oo,
(0 < & < Argz < 2m=-8). (16)

(iii) The following integral converges

3 o(x)dx _
[ = a7

9m?
which implies that the spectral function satisfies the following upper bound

o(x) < (-C-?»i) a5 x - . (17a)

log x
(ir) The exact pion propagator is a real analytic function, -i.e.,
AF(2) = 4K(z%), (18)

and is real only for real z. In particular, this means that 4¢(z) has no complex zeros; if
Ai{(z) has zeros, then they must lie on the real axis.

(v) For the case where 4¢(z) requires a twice subtracted dispersion relation, it follows
from equations (13) that 4¢(0) can have any real value, while its derivative d4¢(0)/dz has
to be real and positive. The higher derivatives of Ap(z) at z = 0 can be determined from
a knowledge of the spectral function o(x); however, they, like the first derivative, must
be positive, i.e.,

d"41(0)

> 0. (19)
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These five results clearly show that under the assumption of this paper a large degree
of the arbitrariness a priori inherent in the definition of A¢ through its spectral representa-
tion has been eliminated. A possible area for further investigation is to determine which
types of field theories lead to the exact pion propagator being a Herglotz function.

In summary, we have obtained a number of restrictions on the behavior of the exact
pion propagator under the assumption that it is a Herglotz function. In particular, we found,
that in the worst case, 4g(z) satisfies a twice subtracted dispersion relation.

The results of this paper may be of use in investigations on the pion field renormaliza-
tion constant [1, 5].
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