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SOLVING NONPERTURBATIVELY THE BREIT EQUATION
FOR PARAPOSITRONIUM

By W. KROLIKOWSKI
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Taking the Breit equation at its face value we solve for parapositronium the correspond-
ing radial equations with the Breit terms treated nonperturbatively. As expected from known
perturbative arguments, the resulting fine-structure formula differs in the #*-order from
the familiar correct formula derived by treating the Breit terms in the lowest order only.

PACS numbers: 11.10.Qr, 11.10.St

As is well known, the Coulomb potential plus Breit terms describe in the Coulomb
gauge the instantaneous one-photon electromagnetic interaction of two spin-1/2 charged
particles. It was observed several years ago (cf. e.g. Ref. [1], p. 259) that the Breit
terms involving Dirac o matrices of both particles can be used only as a lowest-order per-
turbation because in higher orders they strongly couple positive- and negative-energy
unperturbed states, leading to a fast zitterbewegung which makes retardation effects
important in contradiction with the instantaneous character of the Breit terms (where
retardation effects have been neglected). Since the above argument does not apply directly
to a nonperturbative treatment of the Breit terms where they are diagonalized (simulta-
neously with the rest of the Breit hamiltonian), it may be interesting to look for differences
between the lowest-order results and the results of a nonperturbative approach (if the
latter are expanded into powers of a = e?/4n). One may see here a suggestive analogy
with the familiar zitterbewegung of a free Dirac particle which becomes “invisible” when
the operator « - p is diagonalized (simultaneously with the rest of the Dirac hamiltonian
a: p+pm).
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To attain our purpose let us consider the Breit equation (in the centre-of-mass frame)
including the Breit terms:
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where in the case of positronium

V=V =—_ (2)
and m,; = m, = m. Applying the method of elimination of angular coordinates described
in Appendix in Ref. [2] we can obtain the system of 2 x § radial equations given in the

Table in Ref. [3]. For parapositronium having the states 'j; (i.e.,, j =/ and s = 0 for
large-large components), we get from this Table the system of 4 radial equations:
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After eliminating f;, f5 and g, components of the radial wave function we can write the
following second-order equation for f;:
av
d? N 2 d + dr d
ar® rdr  E—V dr

2 _ _ '_" r — 5 H H p—
M_[m (E=V) (E-V-2V)(E=V) G+ (E V)} 7, = 0. @

E-V 2V’ 4 (E-V+V)r?

First, let us treat the Breit terms as a lowest-order perturbation only. Expanding Eq. (4)
up to the first order in V' we obtain
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Expanding Eq. (5) now with respect to ¥ and then using Eq. (2) and writing £ = 2m+¢
we get
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where 1 is the Schrédinger unperturbed radial wave function and < > denotes the expecta-

tion value calculated with the use of this function. From Eq. (6) we obtain the familiar
fine-structure formula for parapositronium (cf. e.g., Ref. [1], p. 203):

azm o 4m n
E=2m— —5 + —¢ (—;—},~ :1> +0(a%). (8)
i

4n? 4n* 3

We can see that this formula follows from the radial equation if ¥ and V’, though equal,
are treated in a different way.

Now, we will treat ¥ and V' in Eq. (4) on the same footing. Then, if we use Eq. 2
and separate the interactions proportional to ¥ and V2 from the rest, we can rewrite
Eq. (4) as follows:
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will be considered as a perturbation, what establishes some ladder approximation. Eq. (9)
without the term P gives the following asymptotic behaviour:

r

f LA ~ e s (11)
where
o? 1 E2
P—2+\/(]+z)_ 3_——>4, *“l*= mz_qq, (12)

the energy E, being the unperturbed energy, subject to the correction from the P term.
The substitution

r

f,=r""te ayp (13)

in Eq. (9) without the term P leads to the equation

2p (1 2m? E
& y(r_1\4 _a )" 0 14
dr? r a/dr r L= (14)
which is the confluent hypergeometric equation for
) 2m*\ aEga  2F
F(u,b,z) = F|2p, p 1— — ) ———, — .
( ) [ PP ( 2 > > a] (15)
Hence we obtain the following bound-state condition:
1 2m?\ aEqa 1%
—(1=-=)—-2 =,
p £ )7 I (16)
where n, = 0, 1,2, .... This condition implies the fourth-degree algebraic equation
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for

_ \/WZ_;
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Solving Eq. (17) up to the third order in o we get

X = o (1— —n—> +0(s”) (19)
2n  8n® 2j+1
and hence
E, 2" m_ﬂ+ﬂ<u_ _"—)+0(a) 20)
J1+x? 4n*  t6n* \* j+1 ’
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where n = n.+j+1. The perturbation term P in Eq. (9) leads to the correction

(14}’71

1 n
AE = — —(P) = —is —— 6y
E m( . Ton* j4l +0(«”) (21)

Thus we come to the fine-structure formula for parapositronium

) . Omo o 2tm . s
E = Eq+dE = 2m— T T+ 0(2) (22)
which differs by the term
«*m n
Tt il (23)

from the familiar formula (8) derived by treating the Breit terms as a lowest-order perturba-
tion only.

In conclusion we can say that the Breit equation, if taken at its face value, leads to
the fine-structure formula for parapositronium which differs in the o*-order from the
familiar formula. This discrepancy is connected with the fact that the Breit equation,
similarly as the Dirac equation for one spin-1/2 particle, is not fully consistent with the
hole theory when, as in the present case, the role played by negative-energy states is im-
portant. In such a case the Salpeter equation [4] is more adequate (for a review cf. Ref. [5]).
Unfortunately, it leads to a very involved system of radial equations {6] which can hardly
be treated nonperturbatively.
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