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Relations between quark masses and weak mixing angles suggested by the assumption
of sequential mass generation are discussed. A classification of these relations according
to additional conditions needed for their derivation is presented. In this classification the
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turns out to be singled out as the most direct consequence

1. Introduction

The possibility of finding relations between quark masses and weak mixing angles
was investigated by many authors [1-57]. In the present paper we also consider this problem,
starting from the idea of “sequential” mass generation [12, 26, 33, 49]. We propose a parti-
cular formulation of this general idea and develop a classification of the relations which
can be obtained from it.

In sequential mass generation it is assumed that at the tree level of fundamental
Lagrangian only the top and bottom quarks have non-vanishing masses, whereas m. = m;
= m, = my = 0. The first order perturbative corrections generate non-vanishing m_ and
m, but one has still m, = my = 0 in this approximation. Second order corrections generate
non-vanishing m, and m,. Naturally, such a general formulation does not give specific
quantitative predictions for measurable quantities. Other, more precise proposals are
needed. Several specific examples have already been investigated [12, 26, 33, 49]. In this
paper we discuss a possibility which has not been considered yet. It emphasizes geometrical
aspects of the problem and may therefore be of some interest. However, it does not pretend
to be a unique solution and should be looked at as yet another possibility in the search
for the correct model of the origin of fermion masses and fermion mixing.
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We analyze the mass matrices of the general form

3
M = 21 amag(u) 1.1

n=

i.e. hermitian matrices with non-negative eigenvalues. This form is choSen, because it is
suggestive of the models with composite Higgs bosons [58, 59]. Our approach is different
from e.g. that of Ref. [12], [26] and [33] which considered the hermitian matrices with
one negative and two positive eigenvalues.

Eq. (1.1) expresses the mass matrix in terms of three vectors a(u). We formulate
the assumption of sequential mass generation by requiring that at each step of approxima-
tion one new independent direction is available for construction of the vectors a(u). Thus,
at the tree level all vectors a(u) must be parallel to a(3) (some of them may vanish). This
implies, as required, non-vanishing m, and m; whereas all other masses vanish. In the first
order approximation one new direction is available, so that a(2) and a(1) acquire compo-
nents orthogonal to a(3), but all three vectors are lying in one plane, so that one eigenvalue
of M is still vanishing. Finally, in the second order approximation the vector a(1) is moved
out of the a(2) a(3) plane so that all three eigenvalues of M become different from zero.

The .more detailed description of this construction of the matrix M is given in the
next two sections. As the next step, we then study the relations between the mass matrices
M and M’ of down- and up- quark families, which follow from the relations between the
vectors a(u) defining the matrix M and the vectors a’(u) defining the matrix M’. In parti-
cular, we propose a classification of these relations by distinguishing:

Relations of class A which follow from the assumption that the vectors a(2), a(3),
a’(2), a’'(3) all lie in the same plane; '

Relations of .class B which follow from the additional assumption that the vectors
a(3) and a’(3) dre parallel to one another;

Relations of class C which require other constraints. This classification is invariant
with respect to arbitrary unitary transformations in_ the space of three quark families.

Relations of class A should be valid if only 3-rd and 2-nd families are mixed in the
first order of mass generation. They are thus fundamental for the very idea of sequential
mass generation. Relations of class B test the physical meaning of our construction given
by Eq. (1.1). Finally, the relations of class € are rather ad hoc conditions reflecting possible
symmetries of the theory. They are not important for testing the assumption of sequential
mass generation.

We show in Section 5 that the relations of class A imply

sin 05/sin 8, = sin o/sin 1.2

cos (x+a’) < cos 6, << cos(x—a') (1.3)

and

sin 0, < sin a/sin 8;, sin 6; < sin o'/sin 8, (1.4
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where 8,, 0, and §; are the weak mixing angles [60] and the angles a, o” are defined by

tg® o = my/m,, (1.5)

tg? o’ = my/m.. (1.6)

Eq. (1.2) was derived in Ref. [26], [33] and the inequality (1.3) was considered by many

authors. Our main point is not a new derivation, but the obscrvation that from the point

of view of sequential mass generation these- relations are more fundamental than others,
also disscussed in Ref. [12], [26] and [33].

Since, as seen from Eq. (I.5), (1.6), we have o’ < a, inequality (1.3) implies sin2 8,

my

~

and thus one recovers the well-known relation between the Cabbibo angle and the
mS

ratio mgy/m, [1-4).
Relations of class B allow separate detcrmination of the mixing angles 8, and 6,.
One obtains
sinf, = sinas’ny/sinf;, sn0,; = sina siny/fsinf,, 1.7
where y = 0—6" and the angles 8 and 0’ are defined by
mg+ gy

o2 2 ¢t 1
Lg0=% ) > tg0=’j m
My t

my,+mg

(1.8)

Finally, the specific example of the relation of class C which we consider in this paper
(symmetry between up- and down-families in the first order approximation) implies ¢ = — 6§’
and thus

my+mg g+ my

= . (1.9)

m, nty

Consequently, the mass of the top quark is fixed in terms of other masses.

We show in Section 6 that all these relations are compatible with present experimental
limits.

In the next section we describe our construction of the quark mass matrices. In Section
3, the connection of this construction to the idea of sequential mass generation is explained.
The classification of the relations between the mass matrices of up- and down-quark
families is presented in Section 4. The consequences for the quark masses and mixing
angles are derived in Section 5. In Section 6 the numerical values of these parameters are
disscussed. Comparison with the results of other authors is presented in Section 7. In the
last section we speculate on possible consequences and interpretation of our results.

2. Construction of the fermion madss matrix

Let us consider first the down (d, s, b) quarks. We shall assume that the mass matrix

is hermitian with non-negative eigenvalues and we write it in the form
3
M; = Z ai(u)a;’f(u) 2.1
H=1

with i,k = 1,2, 3.
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The form (2.1) does not restrict generality of the hermitian matrix M. On the contrary,
for any matrix M satisfying our assumptions the choice of the vectors a(l), a(2) and
a(3) is not unique. To avoid this ambiguity we require that the following conditions
are satisfied by the vectors a(y), u = 1,2, 3:

la(3)i* = a(2)}?, 22
(a(3)+a(2))a*(1) = 0, (2.3)
la(D)* = § la(2)—a(3)>. (2.9

Conditions (2.2)-(2.4) are invariant with respect to unitary transformations in the
families space. In particular, they are invariant with respect to arbitrary phase-changing
transformations,

eiél

P(8y, 8,5, 03) = e’ , (2.5)

id3

so they are valid for arbitrary phase factors of the quark states. Furthermore, condi-
tions (2.2)-(2.4) guarantee that there is one-to-one correspondence between the matrix
M and the set of vectors a(y), ¢ = 1, 2,3 apart from arbitrary phases.

In the reference frame where the matrix M is diagonal, it is not difficult to find a para-
metrization of vectors a(u) which satisfies conditions (2.2)-(2.4). We have (up to an
arbitrary transformation (2.5))

—sin 0 sin o sin 0 sin & sin @ sin «

8,(3) = Q| sinfcosa|, an2)=Q|-sinfcosal, ayl)=.2Q]|sinfcosa|,

cos 0 cos 0 0
(2.6)
where 2, 0 and « are arbitrary real parameters. The matrix M itself takes the form
4 sin* 0 sin’ « 0 0
M = Q? 0 4 sin® 9 cos® x 0 . .7
0 0 2 cos®-0

Finally, the three eigenvectors e(v), v = 1, 2, 3 of the matrix M, normalized by the condi-
tions

le(I* = 4,,

where 2, are the eigenvalues of M given by Eq. (2.7) are related to the vectors a(yu) as follows:

e(v) = ), G(v; wa(u), (2.8)
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where
/2 1/J2 1/J2 0\ [t 0 0
Gv;w) =| —1/J2 = -2 Y2 ol 12 —1y2).
0 1J2 112 0 0 1\0 12 12
(2.9

[N NIE
N =

The geometrical relations between vectors a(y) and e(u) are illustrated in Fig. 1.
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Fig. 1. Geometry of the construction®of the mass matrix

Using Eq. (2.7) we can express the angles o and 6 in terms of the quark mass
ratios

tg® o = my/m,, (2.10)
tg2g =4 Mat s @2.11)
my

For the up-quark families (u, c,t) the construction is identical, but the values of
parameters are, in general, different. Denoting the relevant quantities by the same
letters as in former case, but primed, we have

tg? o’ = my/m,, (2.12)
my+m,
tg20 =1 , (2.13)
m,

and all other formulas of this section remain valid for primed quantities.
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3. Relation to the idea of sequential mass generation

In this section we show that the parametrization of mass matrices presented in Section 2
is convenient for implementing the idea of sequential generation of the quark masses
[12, 26, 33, 49] by perturbative corrections to interaction described by a Lagrangian which
gives vanishing u, d, s and ¢ masses at the tree level.

To fix attention, let us consider b, s and d quarks. At the tree level we have my = m,
= m, = m, = 0. This situation can be realized by the choice

a(2) = a(3), a(l) =0 3.1

satisfying conditions (2.2)-(2.4). Thus in this case the Lagrangian singles out one
particular direction a(3) in the space of the quark families.

Following the idea of sequential mass generation we now assume that the first order
corrections define another direction, different from a(3). As a result vector a(2) may become
different from a(3). If we choose a(2) in such a way as to satisfy condition (2.2), the

1
NG
Furthermore, at this stage a(1) lies in the a(2) a(3) plane, so that the eigenvalue 4, = my
vanishes.

The second order corrections define a new direction which is used to rotate a(l)
off the a(2) a(3) plane, thus generating non-vanishing my.

vector a(l), of the form a(l) = (a(2)—a(3)) satisfies conditions (2.3) and (2.4).

4. Relations between the mass matrices of up-and down-quark families

In this section we discuss relations between the matrices M and M’ (defined in Section 2)
which follow from the restrictions imposed on vectors a(2), a(3) and a(2)’, a’(3) defining
the first approximation in sequential mass generation. We propose to classify these rela-
tions as follows.

Relations of class A follow from the assumption that only third and second quark
families are mixed in the first order approximation. This implies that all vectors a(2), a(3)
a’(2) and a’(3) lic in the same plane. We write this condition in the form

a(2)+a(3) = n5a' Q) +154'(3), 4.1
a'(2)+a'(3) =n,a(2)+13a(3). 4.2)

Relations of class B require additional assumption that only third generation couples
to the mass matrix at the tree level. This implies that the vectors a(3) and a’(3) are parallel:

a(3)/Q = 2'(3)/Q. 4.3)

Relations of class C are obtained from any additional constraint. In particular, we
considered the possibility that there is a symmetry between the up- and down-families
in the first approximation. This condition implies that

ERE

Hy M )

(4.4)
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5. Quark masses and mixing angles

We present now the consequences of the relations discussed in the previous section
for the quark masses and for the weak mixing angles.

Relations of class 4
It foliows from Eq. (4.2) that in the reference frame in which the matrix M’ is

diagonal we have
0

n,a(2)+n5a(3) = 22" cos 8’| 0. 5.1
1

If U is the unitary matrix which transforms the diagonal frame of M into the diagonal
frame of M’, we obtain
0

n,Uag(2)+1n3Uax(3) = 2Q"cos 6’} 0}, (5.2
1

where ay(u) are given by Eq. (2.6). Repeating the same argument for ag(y) we obtain

0
n>U " 1ag(2)+n5U " tag(3) = 2Qcos 6|0 ]. (5.3)
1
Let us take U in the form
cosy —siny O\ [ 0 0 cosy siny O
U =|siny cosp 0|0 cosy —siny ]l —siny cosy Of. (5.4)
0 0 1/ \0 siny ‘'cos 7y 0 0 1

Using Egs (2.6) and (5.2)(5.4) we have
(13 —1,) cos y sin 0 sin (x—a)e’® + (4, —n3) sin § sin y cos y cos (x—a)
+{(n,+n3) cos Osin psiny = 0,
(13 —n,) sin p sin 0 sin (x —a)e'® +(1; —n,) sin 0 cos w cos y cos (x—a)
—(n2+n3)cosGeos psiny = 0, (5.5)
and two analogous equations obtained from (5.5) by substitutions
Al ARl A At T i

a—ooa, 00, ny-omny, 13- (5.6)
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From (5.5) we deduce, assuming #, # 73,

o=y, 3.7
+1
tg0 =2 tgy, (5.8)
y—1
where
Y = 312 (5.9)

and from the other two equations we thus have

o =, (5.10)
‘+1
g = — 2" tgy, (5.11)
y—1
where
Y =51 (5.12)

No restrictions are obtained on ¢.

To obtain the values of the Kobayashi-Maskawa mixing angles we observe that the
matrix U given by Eq. (5.4) must be related to the Kobayashi-Maskawa matrix K by the
phase transformations of the type

K = P(8,, 8,, 63)UP(81, 83, 83), (5.13)

where §; and 6; are arbitrary. Writing the matrix K in the standard form [60]

cy $1C3 5153
. s
K=]-s¢, €1C2C3— ;556" €1€383+5,03€° |, (5.149)
s is
5185 —CyS,€3—C,838°  —C5,55+C 03¢

where

¢; = cos 0, and 5; = sin 8,

and using Egs (5.4), (5.7), (5.10), (5.13) we obtain the following relations for the weak
mixing angles

[cos 0,] = |cos a cos a’e’ +sin a sin a’ cos ], (5.15)
sin 6, sin 0, = sin a sin 7, (5:16)
sin 8, sin 05 = sin o’ sin y, 517

Arg (€' cos a cos o’ +sin a sin a’ cos y) = Arg (cos 0, cos 0,¢*

—cos 8, sin 8, sin 85). (5.18)
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Since y, ¢, y and )’ are arbitrary parameters, we obtain only one equality between the
measurable quantities

sinf, sina

sinf; sina’ m,mg \ '/
~ : (5.19)

mg.my

This relation was derived in Ref. [26] and [33]. It is also implicit in other models, e.g. [45].
Eq. (5.15) implies the inequality

cos (Ja}+ ') < cos B, < cos (o] —]a') (5.20)

which is quite restrictive, because o« <« (we disscuss the numerical values of the
parameters in the next section). In particular, it implies the approximate relation

tg? 0, ~ tg® o = my/m, (5.21)

which is known to be phenomenologically successful [1-4]. The inequality (5.20) was
obtained and studied by many of the authors of Refs. [1-57].
Finally, Egs (5.16) and (5.17) imply the inequalities

|sin 0, sin 0, <sino, |sin O, sin 05| <sin &', (5.22)

Relations of class B
Eq. (4.3) implies

oy = 1. (5.23)
Multiplying Eq. (4.1) by (4.2) and using conditions (5.23) and (2.2) we obtain
cos 26+cos 26’ +1 = ' cos 20+ y cos 20’ + . (5.24)
This equality, together with Egs (5.8) and (5.11) implies
tgy = tg(0-0). (5.25)

Using this formula and Eqgs (5.16), (5.17) and (2.11), (2.13) one can determine separately
mixing angles 6, and 6; from the quark mass ratios. The determination is not unique,
however, because the signs of the angles 6 and 8" are not determined by Eqgs (2.11) and
(2.13).
Relations of class C
Eq. (4.4) implies
y=) (5.26)

and thus, using Eqs (5.8) and (5.11) we obtain § = —@’. This condition fixes the mass
of the top quark in terms of other masses. Indeed, from Egs (2.11) and (2.13) we obtain

my+m, my+my

5.2
m, my (5:27)

Furthermore, Eq. (5.25) then implies
tgy = tg20

and thus 0, and 8; are determined up to a sign.
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6. Analysis of experimental data

The relations derived in the previous section connect various parameters of the Wein-
berg-Salam model. We shall discuss now the numerical values of the weak mixing angles
and of the top quark mass predicted by these relations.

We shall use the following values of the input parameters:

malm, = 0.045+0.011 Ref. [61],
my/m, = 0.017+0.008 Ref. [61],
e = 1260+10 MeV Ref. [62],
my, = 4790+30 MeV Ref. [63]. (6.1)

For m, we take m, = 150 MeV, following Ref. [4]. However, we also investigate the
m, dependence of the results, varying m, in the range

100 MeV < m, <200 MeV 6.2)

Using these values we obtain for angles «, o’ and 0 (assuming m, = 150 MeV)
sino = 0.2084-0.024, sina’ = 0.045+0.011, 6.3)
sin 6 = 0.1269 4-0.0006. (6.4)

The m, dependence of sin &’ and of sin 8 is displayed in Fig. 2 (« does not depend on m,).

0.15 _Sitwe\\./'
010F a
sina’ ~
0.05¢ 7
A i1 A | L f s " ms (MeVI
100 150 200

Fig. 2. ms dependence of sina’ and of sin 0

Let us first disscuss the class A relation (5.19). Using Eq. (6.3) we find

003 _ 021640059, (6.5)
sin 0,
This result is compatible with the existing experimental bounds [64], [65]. The m; depen-
dence of Eq. (6.5) is shown in Fig. 3.
Turning to the Cabbibo angle 8, we observe that s‘nce all angles o, o’ and 6 are rather
small and, furthermore o’ < a, inequality Eq. (5.15) can be approximated by 6, = a,
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and thus we obtain the approximate relation (5.21). However, to calculate more precisely
the mixing angle 8, from Eq. (5.15) we would have to know the value of the phase ¢,
which is related to the CP violating phase é by Eq. (5.18), and of the angle y. Nevertheless,

40 sin8; _ sino
sin8,. sino .
.30 =
201 ]
dor
mg [MeV]
100 150 200

Fig. 3. ms dependence of the ratio sin 04fsin 0, = sina’fsin

since the angles « and o are rather small, the value of the cos 8, given by Eq. (5.15) is
insensitive to ¢ and y. The lower and upper limits on cos 8 from Eq. (5.15) are

cos (laj+ |2’} = 0.9679 +.0056,
cos (o}~ &' = 0.9865+.0058, (6.6)

again assuming m, == 150 MeV. Thus one can see that the uncertainty due to ¢ and y
is comparable to other errors. In Fig. 4 we show the dependence of the limits (6.6) on the
adopted value of m,. One sees that Por m, in the interval (6.2) the bounds are consistent
with the present experimental estimates of cos 8, [66].

Let us now turn to the class B relation (5.25). To obtain the values of sin 8, and of
sin #; we employed Egs (5.16) and (5.17) using sin 8; as determined from experiment
[66],

sin 8, = 0.228+0.011. 6.7
cos B4
100
0Qp———-———— """ """ lUPPER LIMIT
088 = = _~EXPERIMENT
L —— I LOWER LiMIT
096F T T T T T T T T
i o mg [MeVl]
100 150 200

Fig. 4. n1; dependence of the upper and lower limits on cos 6,
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As seen from Eq. (5.25), it is not possible to determine separately sin 6, and sin 5 without
information on 6, i.e..on the value of the top quark mass. Therefore, we used the value
of the top quark mass obtained from the class Crelation (5.27). This relation gives, assuming
(6.1) and m, = 150 GeV,

m, = 38.6+.8 GeV (6.8)
a rather large value. The dependence of m, on the assumed value of m; is plotted in Fig. 5.

One sees that m, is quite sensitive to the choice of m,. Nevertheless, we can conclude from
Fig. 5 that m, turns out to be comfortably above the present experimental limit [67] even

60% m, (GeV]

40

20} :

mg [MeV]

100 .0 200

Fig. 5. ms dependence of the mass of the top quark

015 sin 8, —,
010
005F sin©; -,
l'ﬂs [MEV]
i s i i |l L Il i +
100 150 200

Fig. 6. ms dependence of the mixing angles 6, and 0

for quite large values of m,. For m, above 140 MeV, m, is also consistent with the upper
bound derived recently by Buras [68].

Using the value (6.8) and assuming that # and 6’ have opposite signs we obtain for
sin @, and sin 60,

sin 6, = 0.230+0.030, sin 05 = 0.050+0:012. (6.9)
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The m, dependence of this result is shown in Fig. 6. The obtained values are consistent
with the limits given in Ref. [64], [65] and [69].

Thus we conclude that the relations considered in this paper give the value of the
Cabbibo angle in agreement with experiment and predict the values of two other mixing
angles and of the mass of the top quark in agreement with the present experimental limits.

7. Comparison with other models

We compare here some of the results of other authors to ours.

(a) Mass of the top quark. The estimates of the top quark mass were reviewed in Ref.
[70]. Most of them gave masses in the range or below 20 GeV. However, also the formulae
similar to our Eq. (5.27) were obtained. Pakwasa and Sugawara derived m/m_ = my/m, in
the SU(2) x U(1) model with S, horizontal symmetry [9]. The same relation was found
by Ebrahim [11]in SUg(2) x SUL(2) x U(1) model. Crombrugghe [19] obtained the relation
(my—my)/my, = (m,—m,)/m, in the SUR(2) x SUL(2) x U(1) model with left-right symmetry.

b) Cabbibo angle. All models (including ours) were constructed in such a way, as to
recover the phenomenoldgically successful relation (5.21). In most models this relation is an
approximation following from the condition m,/m. < my/m,. With improving data it may
be possible to discriminate between these different approximations. For the moment, all
models are in reasonable agreement with the data.

(¢) Mixing angles 6, and 05. Here the predictions vary substantially, but most models
give rather small values for these angles. The class A relation (5.19) (implying 05 < 6,)
was explicitly or implicitly found in several models [26], [33], [45]. There are also other
predictions giving 6; < 0, [16], [48]. However, in some models 0; ~ §, [11],.[15], [24],
and there is also one prediction 65 > 6, [29].

8. Conclusions and outloook

We have proposed a classification of the relations between the mass matrices of up-
and down-quark families. The classification is related to the idea of sequential mass genera-
tion and can be useful in testing this general idea: Relations of class A are particularly
fundamental in this respect because they practically follow from the very assumption of
sequential mass generation and can thus be treated as necessary conditions for this mecha-
nism to be valid. Relations of class B are connected to our specific proposal of the con-
struction of the mass matrices and thus provide a check for the physical relevance of this
construction. Finally, the relations of class C are somewhat ad hoc conditions which are
chosen by requirements of symmetry.

We have shown in Section 6 that all relations (class A, B and C) give phenomenologi-
cally acceptable predictions for the weak mixing angles and for the mass of the top quark.
It seems therefore of interest to disscuss their possible origin and physical significance.
We would like to make 3 remarks.

(i) Relations of class A follow from all theories which incorporate the sequential
mass generation — e.g. the one considered in Ref. [26].
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(i) All relations we considered are invariant with respect to “horizontal” unitary
transformations in the space of 3 quark families. Thus they might be relevant in models
which assume such a symmetry [38], [57].

(iii) If one interprets the mass matrix M as a matrix of Yukawa couplings between
Higgs bosons and left- and right-handed quarks, the form (1.1) is natural in ‘models where
Higgs bosons are composite particles. For example, in the téchnicolor scheme [58] the
vectors a(u) might be those particular combinations of techniquarks which form the Higgs
bound states. (This would require 3 families of techniquarks). The relations connecting
a(u) with the quark eigenstates e(v) can then be regarded as following from extended
technicolor interactions between the quarks and techniquarks. It remains an open and inter-
esting question whether it is possible to find a group structure of technicolor and extended
technicolor interactions consistent with relations (2.2)~(2.4) and (2.8), (2.9).

I would like to thank M. Namiki and I. Ohba for their kind hospitality at the
Department of Physics of the Waseda University where a large part of this. work was
done. Thanks are also due to N. Sakai for illuminating discussions.
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