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LETTERS TO THE EDITOR

AN EMPIRICAL SPECTRAL FORMULA FOR FERMION GENERATIONS

By W. KROLIKOWSKI1
Institute of Theoretical Physics, University of Warsaw*
( Received June 24, 1981)

We propose a (hopefully) empirical spectral formula for lepton and quark generations
as they appear in the standard model. Then the top quark is predicted at about 20 GeV,
while the charged lepton, up quark and down quark of the hypothetic fourth generation
at 28.573:2 GeV, at about 250 GeV and at about 62 GeV, respectively.

PACS numbers: 12.40.—y, 14.60.-z, 14.80.Dq

As is well known, the discovery of Bohr quantum rules was preceded and stimulated
by Balmer empirical spectral formula for hydrogen-like atoms. One can argue that some
aspects of the present situation in particle physics are similar to those of the pre-Bohrian
situation in atomic spectroscopy. Especially, the intense proliferation of discrete physical
states is common to both cases, though the relevant experimental data available to Ritz,
Rydberg and Balmer were technically easier to obtain and so more extended and precise.
At any rate, a good-working empirical spectral formula for lepton and quark generations
would be very helpful in our search for the proper dynamics of fermion generations.
However, a serious trouble with establishing and proving such a formula is that it necessarily
requires a vast extrapolation beyond the comparatively scarce experimental information
about fermion generations which is now at our disposal.

In this note we will propose a (hopefully) empirical spectral formula for lepton and
quark generations as they appear in the standard model. So we shall consider four fermion
families f = v, e,.u, d, each consisting of several generations N = 0, 1,2, ..., viz. f = {fy},
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where [1]

CN=6 ,IJ. ,T 3 ere

fN = <« . 1
uy = 1,¢,(t), ... (1)

dy =4d,s, b, ...

.

Masses and electric charges of fy particles will be denoted by my, and Q;, = O,
respectively, where O = 0, —1,2/3, —1/3 for f = v, e, u, d.

We propose the spectral formula for fermion generations in the form of the following
simple recurrence equation for the mass excitation my, —my, [2]:

mfzvq-l—mfo = }f?(mfN—mfo)—l_an?z (2)
where A; and &; are constants, universal within f family, which may be determined from the
relations
Mg, —my,

2 2
A = ———,  &Qf = my —my,. 3)
Mg, — Mg,

It can be easily seen that Eq. (2) implies (as its unique solution) the following spectral
formula

2
&,
Mg, —my, = /12’—%1 MN—-1) (N=0,1,2,..). 4)
f

Note also that Eq. (2) or (4) leads to the mass relations

m —m .
fN+.2 fn+1 = const = A? (5)
’an+1-’an

and
Mgy, —Agmg, = const = &QF — (A7 — 1)my,. 6)

In the case of leptons, making use of the masses m,, m, and m, = 178212 MeV [3]
of e=, p~ and 1~ leptons, one gets from Eq. (3)

he = 3.99310:004, &, = m,—m,. )

Then Eq. (5) leads to the predictions for charged leptons of the hypothetic fourth and
fifth generations:

me, = 28.5132 GeV, m,, = 45523, GeV. (8)
For neutrinos of all generations Eq. (4) gives
w = My, [}

thus m,, = 0if m, = 0. The mass degeneracy (9) (if valid strictly enough) implies the ab-
sence of neutrino oscillations even if m,_ # 0.

m
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In the case of quarks, if assuming
Ay = Ag, &y = &g, (10)
one concludes from Eq. (4) that

8l.l
My, —ht, = 4(ing, —mg) = & 71 (AN —1). [¢h))

So, taking the small current masses m, =~ 0 =~ m, (of a few MeV), one obtains for N > 0

my, =~ 4my, ~ ¢ F AN -1). (12)
Hence, for N = 1 and 2 [4]
m, =~ dmg ~ % ¢, (13)
and
m, ~ dmy ~ e, (A2 +1). (14

With m, ~ 1.5 GeV and m, >~ 5 GeV, Egs. (13) and (14) give
Ay = 3.5, g, ~ 34 GeV (15)

and
mg ~ 0.38 GeV, m, ~ 20 GeV, (16)

predicting toponium tt at about 40 GeV (perhaps at ca. 38 GeV since m,; ~ 4myz). Then
Eq. (5) leads to the predictions for up and down quarks of the hypothetic fourth and fifth
'generations:

m,, =~ 250 GeV, my, ~ 62 GeV, m,, =~ 3100 GeV, my, = 770 GeV. (17)

We can . see that the values of A; determined precisely for leptons and estimated for
quarks are roughly equal, while thosé of ¢ are very different. Phenomenologically one may
write

g = ¢+¢&'Cy, (18)

where C; is the quadratic Casimir operator for colour SU(3) which is equal to 0 or 4/3
for leptons or quarks, respectively. Then

€=¢g =m—m, & =3(—¢)>25 GeV. (19)

Note that &'/e >~ 24 ~ «'for, where o’ ~ 0.17 and a = 1/137. The pertinent question, why
in the proposed recurrence equation (2) there appears the term &Q7 = eQ? +¢ Q?C; and
not the phenomenologically more complete term eQ?+&'Q?Cy+¢'C; with a significant
¢’ > 0, may be related to the fact that in the case of quarks Eq.-(2) describes the compara-
tively small effective mass of quarks inside hadrons and not a very large “true mass”
of abstract free quarks, the latter mass certainly including ¢C; with &'’ > 0. Our fitting
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of Eq. (2) to quark effective masses shows indeed that then &" is rather negligible because
the relation m_ ~ 4m, is reasonably good (cf. Egs. (11) and (12)).

When operating with the recurrence equation (2) or the spectral formula (4), we do
not know whether the number of fermion generations is finite or infinite. Obviously a nat-
ural possibility would be the existence of gravitational cut-off N;+1 for the number
of generations in each massive f family, since with growing N the Compton wave length
h/m¢,c becomes smaller than the Schwarzschild gravitational radius 2Gmyg,/c? if only
N exceeds some N; (then fy particles become black holes with spin 1/2). Thus, in this
case, we have the upper bound

he  mpy
my <\ 36 =50 NN (20)
where mpp = 1.2211027 x 10'® GeV/c? is the Planck mass. Making use of the spectral
formula (4) and the values (7) and (15) of 4; and ¢ obtained by their fitting to experimental
data, we can show that

Mpy, Mpg, Mpy,

e17 < —=< mem, n’lu18 < — < m“w, mdls < — < mdm‘ (21)
V2 V2 V2

So, excitingly enough, we get in this case very close numbers of generations in ¢, u and
d families:

m

N.+1 =18, Ny+1 = Ng+1=19. (22)

They become even identical, Ny+1 = 18 for f = ¢, u, d, if we take A, = 44 >~ 3.8 instead
of J, = A4 ~ 3.5 (then we obtain m,, ~ 5.8GeV and m, ~ 23 GeV instead of m;, =~ 5GeV
and m, =~ 20 GeV). It is well known, however, that there are various arguments for a much
lower number of lepton and quark generations, as e.g. the important perturbative argu-
ment [5] based on one-loop corrections to the relation ma[m3 cos? Oy, = 1 in the standard
Glashow-Weinberg-Salam model.

In conclusion, we can say that the proposed spectral formula (4) reproduces neatly
all actually known features of lepton and quark spectra. This formula is equivalent to the
relation
§07 on M

e A=A (NM=0,1,2,..) (23)
Ar—1

mg

which may be considered as our counterpart of the Balmer formula. The constants A,
€, Ay = A4 and &, = g4 are fitted to m,, m,, m. and my, while the masses of the first or
ground generation, m,_, m., m, and my, are treated as initial conditions. Then the masses
my 5 My, My and m, and all masses of the fourth and higher generations are predicted,

providing a possible experimental check of our spectral formula. The spectra of ¢, u
and d families have rapidly growing exponential behaviour exp (xN), where o = 21In A;
(numerically «, = 2.769 and «, = ag > 2.5). These spectra, if continued to larger and larger
N, exceed Planck mass/,/2 for N > N¢, where Ny = 17— 18 is practically equal for all three
families. The spectrum of v family is constant, possibly with the value zero (if m,, = 0).
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The growing exponential mass spectra do not remind us of any known energy spectra
of bound dynamical systems [6]. It may be a signal that a dynamics of excitations of a new
kind (“mass excitations™) is responsible for fermion generations. Then N = 0,1, 2, ...
might be equal to the number of some “elementary mass excitations”.

Finally, in connection with the last remark, we would like to emphasize for our spec-
tral formula (4) a formal statistical analogy valid in the case of a finite number of genera-
tions N;+1. In this case Eq. (4) can be rewritten as

2
©) _ ZeeeQs

mfN“‘mfo 2’2 1 QfN (N = 0, ], 2, ...), (24)
2_
where m{> = mg,—&Qf(Af —1)"" and
Ne
0y = Zi Lexp (N), Zg= Y, exp(N) = (VT -1 @A -n7" (29
N=0

and .oy = 2In i > 0. Since g, satisfies the normalization condition in N-space,
it has a formal analogy with a statistical distribution in this space. If we put
o = (u—E) (kT)™" > 0, g, takes the form of a grand canonical ensemble which
implies the N-number conservation for a whole system. It is interesting to note that in the
real world of fermion generations the N-number conservation (considered on the level
of the second quantization) is not incompatible with experimental data. It obviously
forbids the unwanted processes p~ — ¢"efe~ and p~ — e~y as well as 1~ — eete” or.
pete~ or p-utp~ and T — e~y or p~y but it allows for 1= — pov.v, and/or = — petu-
if only there are charged and/or neutral intermediate bosons of the generation N = 1
(which, however, would get presumably much larger masses than the familiar W* and Z
of the generation N = 0 and would lead, therefore, to much weaker effective Fermi inter-
actions responsible for these exotic decays). In the case of quarks, the N-number conser-
vation is violated by Cabibbo inter-generation mixing.
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