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Perturbation theory of the radial distribution function is described by Goldstone
diagrams. Our selection of diagrams is guided by Brueckner theory. Thus two-hole line
particle-particle ladder diagrams are selected with kinetic energy propagators in a low
density approximation. In another selection of diagrams the hole lines are dressed by bubble-
-insertions in a low-order Brueckner approximation. The normalization of the radial distri-
bution function is discussed. Calculations are presented for nuclear matter with several
simplified interactions and for liquid-*He with the Lennard-Jones 6-12 potential.
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1. Introduction

We shall in this paper be concerned with ground state properties of an infinite system
of fermions. We are in particular interested in calculating the radial distribution function
assuming that the interaction between the fermions is given by a local two-body force.

A complete description of a quantum system is given by the total wave function.
The density-matrix provides an alternative description in coordinate space. One is often
not interested in all the information provided by this matrix. The reduced n-body density-
-matrix is obtained from the full density-matrix of the N particles by integrating over
all coordinates but n. In order to calculate the energy of a system of particles interacting
via two-body forces it is for example sufficient to know only the one- and the two-body
density-matrix to compute the kinetic and the potential energy respectively. If the two-body
forces are local the problem is simplified further. The calculation of the potential energy
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then requires only the diagonal part of the density-matrix, i.e., only the two-body density.
This density is directly related to the radial distribution function defined in Section 2.
It plays an important part in the theory of many body systems [1]. It is usually obtained
in the course of calculating the energy by the cluster expansion method with Jastrow
correlations {2].

A viable alternative to these methods of calculating the ground-state energy is Brueck-
ner’s method. It involves a perturbative expansion in which selected terms (diagrams)
are summed. This method has been applied to the calculation of saturation and binding
of fermion systems. Together with the e’-method it is sometimes referred to as a coupled-
-cluster expansion. Brueckner theory applied to the calculation of the energy customarily
involves an expansion in terms of the interacting part of the Hamiltonian. The zero-order
energy is the kinetic energy of the non-interacting fermion system.

In this paper we apply these rules to the calculation of the radial distribution function,
the expectation, value of a two-body operator. Once this function is known the potential
energy of the system is easily calculated. The rules are also applied to the calculation of
the kinetic energy; this being the expectation value of a one-body operator. It is to be noted
that in the infinite system with which we deal, the momentum is a good quantum number,
and the kinetic energy operator is diagonal in momentum space, as is the one body density-
-matrix.

There are thus two separate ways to calculate perturbatively the total energy. The
first is the customary Brueckner expansion of the total energy. The second is the calculation
of the potential energy from the radial distribution function together with a calculation
of the kinetic energy. If the same type of diagrams are included in the two separate calcula-
tions the answers should agree. The second method, the one we are introducing in this
paper gives however more information in at least two respects. Firstly, it gives separately
the potential and the kinetic energy of the system. Secondly, it gives the radial distribution
function. This is the real motivation for this work as this function contains important
information that complements say the traditional Brueckner calculation of the energy
(which is only one number). To give an example: In order to improve the accuracy of the
energy-calculation more diagrams are added, e.g., as in Day’s nuclear matter calculations
including three-hole line diagrams {3, 4]. It would be of value to know how these improve-
ments affect the distribution-function. Are the corrections short- or long-ranged ? Another
example: An approximate treatment, e.g., by some insertions in particle-lines, can give
the same total energy as a more correct treatment. But are the radial distribution functions
the same or significantly different in the two cases?

The latter example can in the case in liquid-*He be resolved experimetally as the
radial distribution function is already measurcd in this case. Hopefully it will also be known
for nuclear matter from (e,e’) scattering [5]. In view of this, the calculation of the radial
distribution function by perturbation methods is of value. It would also be a complement
to the Jastrow approach in which this function is obtained as a consequence of the method
itself. In the past few years this approach has reached a high degree of sophistication.
A comparison of the two methods (Brueckner and Jastrow) would be much more informa-
tive if not only the energies but also the radial distribution functions calculated by each
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of the methods could be compared. In addition we propose to calculate the state-dependence
of the correlations, not readily done in Jastrow-work.

In our discussion above two-body forces only were implied. Three-body forces would
involve the three-body density etc.. It may very well be that in atomic nuclei the mesonic
degrees of freedom are more important than hitherto believed so that many-body forces
are indeed not negligible. One avenue of approach to study this problem would be the
theoretical and experimenial determination of the two-body density.

Our paper is organised as follows. In Section 2 the radial distribution function is
defined in terms of the N-body wave function as an expectation value of a two-body
operator. In Section 3 the perturbation expansion of this two-body operator is shown in
terms of Goldstone diagrams. Most of our subsequent discussions and results are based
on these diagrams to various orders and their rules. Section 4 gives the result of a low-
-density approximation. Section 5 discusses the important aspect of the normalisation
of the radial distribution function in this approximation. In Sections 6 and 7 the expressions
for the expectation value of the potential and the kinetic energy respectively are shown.
In Section 8 and in Appendices A and B we show some details of methods used in the ¢al-
culations, the results of which are presented in Section 9. The results shown are for nuclear
matter with some different interactions and for liquid-*He with the Lennard-Jones 6-12
potential. For most systems it is necessary to gp beyond the low-density approximation
of Section 4. In Scction 10 we discuss a three-hole line expansion, which is analogous
to the so-called low-order Brueckner approximation. However, some difficulties are
encountered here as described in part D of this Section. Scction 11, finally, summarizes
the results of our investigation and contains some concluding remarks.

2. Definition of the radial distribution function

We consider the ground state of a homogeneous N fermion system described by the
wave function

Yj = q’(rléla s riéis LRRE] rNéN)’ (2‘1)

where r; is the space coordinate and & the spin-isospin coordinate of the i-th particle.
The density of the systtm g = N/Q (Q = volume of the periodicity box) is connected
with the Fermi momentum kg (we measure all momenta in units of h):

o = vkij6n?, (2.2)

where v is the spin-isospin degeneracy (v = 4 for nuclear matter, v = 2 for liquid 3He).
The definition of the radial distribution function g is:

ng("ls ry) = G(ry, ry) = N(N~l)sd§1d€2dr3df3
o drgdENW(r &y, - rEDPI(TTY), (2.3)

where (¥|¥) is the normalization integral. The function G is the diagonal part of the two-
-body density matrix, i.e., the two-body density discussed in the introduction. For a homog-
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eneous and isotropic system, g depends only on the distance r,,,
g(ry, r2) = g(ri2). 2.4
Instead of (2.3) we may use an equivalent definition:
N N
Gx, y) = (P71 Y, ¥, 0(ri—x)3(r;—») |¥)/(YI¥)
i=1 j=1

i+j

= N(N=1) (¥]6(r; —x)5(r, —y) |9)[(¥|¥). (2-3)

Let us compare (2.5) with the expression for the expectation value (W) of a two-body
operator

W =3 3wy, (2.6)
WD = (21, Y wr) I9)/(PIP) = 2 NIN=1) (Plw(ry,) 19)/(PIP).  (27)

i<j

We sce that G(x, y)is the expectation value of W,

W=3 Ywryp, wiry) = 26(r;—x)o(r;— y). (2.8)

i<j

It may be shown (see, €.g., [1]) that g, defined in (2.3) in terms of ¥ satisfies the normali-
zation condition (in case of a homogeneous system):

Iy =ofdr[1-g(r)] = 1. 29

In case of a non-interacting system, we denote the radial distribution function by g,.
We have

go(r) = 1—1(ker)’/v, (2.10)
where
I(x) = 3j,(x)/x. (2.11)
Normalization condition (2.9) is satisfied by g,
o fdrll—go(r)] = 1, (2.12)
and we may write (2.9) as
e § drlge(r)—g(n] = 0. ' (2.13)

If we know G or g we may easily calculate the expectation value of any two-body
operator, Eq. (2.6): ‘

(W) = % [dridr,G(ry, r)w(ry,), (2.19)
or

SWHIN = % o | drg(r)w(r). (2.15)
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3. Perturbation expansion of g

To simplify the presentation, we disregard spin and isospin in all our general deriva-
tions, i.e., we put v = 1. We assumé-that the two-body interaction

V= Z Z v(r3) 3.1
i<j
is of a pure Wigner type, i.e., it does not depend on spin and isospin. In this case the modi-
fication of our considerations for v > 1 is obvious, and our results for a general spin-
-isospin degeneracy are presented in Section 8.
In calculating the radial distribution function, we shall use the identity

G(x, y) = (W), (3.2)

where W is the two-body operator of Eq. (2.8). The method of calculating the expectation
value of any two-body operator W, Eq. (2.6), in the perturbation theory is well known
(see, e.g., the textbook by Fetter and Walecka [6]).

The best way of showing the perturbation series is by means of diagrams. We illustrate
it in Fig. 1 which contains all terms of (W of zero and first order in v, denoted by {W>©
and (W)™ respectively. The double horizontal line represents the two-body operator
w, the broken horizontal line represents the two-body interaction v, and the up- (down-)

m, M,

< W0 =3 (O +exch

m _1
<W=" =3 .k .,
ﬁ'i, _____ VY m, m, m,

SN AT ]
k, Kk + <R, ki} + exch

Fig. 1. Diagrams that contribute to the expectation value of a two-body operator W

going lines represent particles (holes). Throughout this paper, the momentum of the i-th
particle is denoted by k;, and the momentum of the i-th hole is denoted by m;, i.e., we have
k; > kg, and m; < kg. (Otherwisc momenta are denoted in general by p;.)

The contribution of the diagram A in Fig. 1 to (W) is

<W>5\1) = Z (¢m1m2‘wl¢k1k2) [£m1 +8m1 _'gk; -—8k2] ! (¢k1kzlvl¢m1M2)9 (33)

mymykik,
where &, denotes the single-particle kinetic energy,

Ep = Pi[2M, 3.4)
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where .# is the mass of the particle divided by h2. By |$,,,,) we denote the product of two
single-particle momentuam states,

kbmm) = l(pm) !(ppz)«‘ (35)

or in coordinate space representation,

(rer‘d)plpz) = (rbpll’z(rer) = (rll(ppl) (r2|¢pz) = 9’p1(’1)¢p2("2)
= [exp (rlpl)/\/é] [exp ("21’2)!\/@]- (3.6)

By applying the results for (W) and (W) to the case W = W, we obtain the
zero and first order (in v) parts of G shown in Fig. 2. We represent w/2 by the heavy hori-

G(m(ﬁ R)= O—O+ exch

Gm(ﬁ' B) = @4- (]""I}-&-exch

=/ oy *
P Py d)

> < - (fi""z)cb (77)
g B, A mt?

2

Fig. 2. Diagrams that contribute to G and G(!

zontal line, and consequently the heavy horizontal line together with the in- and out-
-going particle lines represents the product of plane-wave states, shown-on the bottom
ot Fig. 2. Obviously, we have G'© = g%g,, where g, is given in Eq. (2.10).

To obtain the expectation value (V> of the two-body interaction, we apply Eq. (2.14)
with w = . In this way, if we know G with an accuracy ~ ", we obtain {}") with an accuracy
~t"*!, The diagrammatical rule is here that we replace the heavy w-lines by broken v-lines
in all G-diagrams, and introduce an extra factor 1/2. In this way, with the help of G’ and
G™, Fig. 2, we obtain the first and second order expressions for V), (V> and (V).

The whole procedure may be extended to higher orders in v where, however, the number
of diagrams increases rapidly. And the problem arises of selecting those diagrams which
are most important in a given physical situation.

4. Low density approximation

In the case of a strong two-body interaction, especially in the presence of hard core
repulsion, the perturbation expansion becomes meaningless. In our calculation of the
radial distribution function, we follow the systematic approach in terms of hole lines, in
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which we group the contributions (G-diagrams) according to the number of interacting
particles (number of hole lines). Since each independent hole line introduces into the
expectation value of a two-body operator a factor proportional to ki ~ ¢, the wole
line expansion is expected to be an expansion in the density g.

The starting point of the expansion is the low density (LD) approximation, in which
only diagrams with two hole lines are considered. To obtain the LD approximation of G,

1
GE.D=m1 {(.1 k.zm"" @“FGXCh

A

Gf[)) = + exch

Fig. 3. Diagrams that contribute to Gip'"’ and Grp®

Gyp, we add to GV in Fig. | diagrams in which v (the broken line) is replaced by particle-
-ladders of v. Furthermore, we introduce diagrams of the second order in » with two hole
lines and add to them the diagrams with ladders of v. In this way, we obtain for Gyp:

G = GO+ G +Grp?, 4.0

where G p'" and G, p'? are represented diagrammatically in Fig. 3. By a wavy line, we
represent the sum of all ladders of v, i.e., the (on-shell) K matrix which satisfies the equation
(represented diagrammatically on the bottom of Fig. 3)

K|¢mlmz) = Uld)mlmz)"_ kzk Ul¢k1k2) [8,"1 +8m2_8k| —8kz]_l (¢k1kz|Ki¢mlmz)' (42)

For the wave function vy, ,, of two interacting particles, defined by

KiGmm,) = 0l ¥m,my)s (4.3)
we get from (4.2) the equation:
lwm,mz)_}(ﬁmxmz) = iXm;mz) = ka ;¢klkg) {8”“-}—8",2—8!“—8&2]_1 ((ﬁk,kzIK[(ibmlmz)' (44)

As an example, let us calculate the contribution Gyp,'" of diagram A in Fig. 3. We
have:

GLD(A)“) = Z ¢:;m2(r1r2)¢k1k2(rlr2) [81m+8'nz—8h—8k2]—1 (P40, KO my)

mymokiky
= Z ¢:1mz(r1r2);{mxml(rlr2)' (45)

mym;
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In the last step in Eq. (4.5), we used Eq. (4.4), and the notation:

Xmime(F172) = (€172 Ymems) = (P172|Vinim,)

—(r 72| Pmimy) = Vumims(F172) — Ponym(F172)- (4.6)
Proceeding in the same way with all the other contributions to Gyp, we get:
GO = 'En D (F172) [P imo(F172) = P (F172)], CY))
Gp'" = ...;.z D (7172) Doy (F172) = Xom, (P1¥2)] HC.C, 4.8y
G = m§.2 Komsmo(F172) [ imo(P1¥2) = Ximom (F172) ]- (4.9)

By adding these expressions we get, with the help of relation (4.6), our final result
for Gip:

Gip(riry) = Z wfulmz(r1rﬁ) [,l/"mlmz(rer)_wmzmi(rlrl)]‘ (4.10)

mimy

5. Normalization condition

Let us first write the normalization condition for the radial distribution function,
Eq. (2.13), in the form:
QJ drydry[GO(r ;) - G(rr))] = 0. 5.1
In the LD approximation, G GLD,-Eq. (4.1), condition (5.1) is not satisfied exactly.
Namely, we have:
Q f d"1d”2[G(0)*GLD] = —¢ j drldrz[GLD(l)+GLD(2)] = —¢ j d"1d"2GLD(2)- (5.2)

The last step in Eq. (5.2) follows from expression (4.8) for Gy p‘". (Since ¥m,m, has non-
vanishing components only for single-particle momenta greater than the Fermi momentum
(see Eq. (4.4)) it is orthogonal to @,,,m,, and consequently the contribution of G p'"’ to the
normalization integral vanishes).

So far all the wave functions have been normalized in a box of volume Q. For instance
(see Eq. (3.6)),

Gpip:(ri72) = exp [i(p,7; + par2)]/Q = [exp (iPR)/2] exp (ipr), (5-3)

where P = p, + p, is the CM momentum, p = (p,— p,)/2 is the relative momentum,
R = (v +r,)/2 is the CM coordinate, and r = r,— r, is the relative coordinate. With the
help of the notation

¢,(r) = exp (ipr), (5.4)
we may write (5.3) in the form:

Ppiprir2) = Q7 Pp(R)P,(r). (5.5)
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Similarly, we introduce the notation:
y)mlmz("l"Z) = Q_lqu(R)me(r), (56)
Amimo(P172) = Q7 Ppg(R) ™ (1). (5.7

Notice that the functions y,™ and x,™ depend not only on the relative momentum
m = (m,—m,)/2 but also on the CM momentum M = m, +m,, in contradistinction to the
function ¢, (Eq. (5.4)), which depends only on the relative momentum.

Using wave functions of relative motion y,™ and the difference functions y,™, we
can rewrite Eq. (5.2) in the form:

2 j dr[go(r)—guo(®] = —x, (5.8)
where @?g1p = Gyp, and « is the average value (in the Fermi sea) of the wound integral:
K = Kp—Kgx = Nﬂz Z Q j ermM(r)* [XmM(r)_X—mM(r)]' (59)

(By xp and kg,, we denote the direct and exchange part of «.) The corresponding value
of the normalization integral I,, Eq. (2.9), is

Iy=1-x. (5.10)

Since k appears to play the role of a smallness parameter in the hole line expansion,
we may say that the normalization condition, Eq. (2.13), is satisfied within the accuracy
of the LD approximation.

The normalization condition, Eq. (2.13), follows from the fact that the exact radial
distribution function is expressed with the help of the N-body wave function ¥, Eq. (2.3).
To construct the radial distribution function which satisfies the normalization condition
exactly, we must therefore first define ¥ in some given approximation, and then calculate
the complete radial distribution function with this V.

In the case of the LD approximation, we introduce the approximate form of ¥, denoted
by ¥ p, which is represented diagrammatically in Fig. 4 (& denotes the ground state wave

-

m Ko kW,

Y- 16)= 5

l»(1 k2m1 m,
Fig. 4. Diagrammatical representation of yLp

function of the noninteracting system). If we use this ¥, to calculate the radial distribu-
tion function Gip = ¢2gip accordimg to Eq. (2.3), we get

Gip = Grp+Gip?, 5.11)

where Gip'? is represented diagrammatically in Fig. 5. It is casy to check that g} does
indeed satisfy the normalization condition, Eq. (2.9), exactly. Notice that the parts of
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Gyip'? denoted in Fig. 5 by d, e, n, o give zero contribution to the normalization integral
I, Eq. (2.9).

However, g, is not a consistent approximation to the radial distribution function
in the sense of the hole-line expansion. It differs from g,,, by terms which involve three

== =)

alxp) bex gy ¢xp)
)]
dc0) e(0) fexp)
+4 %} + 2 O—(Z:K) +2 +
gl x) hGxN) i N)
JOegN) KExyN) (Cx )
@€ o) 2K
MExey) n(0) o(0)

Fig. 5. Diagrams that contribute to Gyp'?). The contribution of each diagram to —In, Eq. (2.9), is given
in parentheses

independent hole lines. However, there are several other G-diagrams with three hole lines
beyond those shown in Fig. 5. Notice that if we used Gyp to calculate (V), we would
obtain an infinite result in case of two-body interaction with a hard core.

6. The potential energy

With the help of Gy, we may calculate in the LD approximation the potential energy,
e., the expectation value of the two-body interaction,

Fiwp = %Sdhd"zGLD("ﬂ'z)U(ru) = % Z (V’mmzlvlwmmz"‘l‘mml)- (6.1

mym;
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Following the prescription described at the end of Section 3, we obtain for (¥, the
result shown in Fig. 6. The last step in the diagrammatic equation in Fig. 6 follows from
the definition of the K matrix, Eq. (4.2).

Notice that the part of (V) , denoted by A in Fig. 6, is the LD approximation
AEp of AE = E—E,, where E is the total ground state energy of the interacting system,

<v=p-4{| OO (Dl
: :
+ m+~ + exchy) =

=%QAO+exch +

A

+ % @44?“:?}
B

Fig. 6. Diagrammatical representation of {¥V>rp

and E, = 3¢ _N. To repeat: AEy, is the ladder-approximation to the energy. It is the
two-hole line expansion without insertions in hole- or particle-lines,

AELD = % Z (¢m1m2|Kl¢m|mz_¢mzm1) = ';_ Z (d’mxmzlvl’lpmlmz"wmzml)' (62)

mymy mimj3
Consequently, we have
(Voo = 4E;p+ X5, (6.3)

where Xy is represented by the B diagrams in Fig. 6,

XB = ';— Z (qsmlmz‘Kld)k,kz) [8m|+8m1_8k1~8k23_1 (¢k 1k2}Kl¢m1mz_¢mzm1)

kikamymg
= % Z (Xnumz‘Kqumunz—‘quzml) = '% Z (Xmlmzlvl")Dmlmz_V)mzml)’ (64)

where the last two steps have been accomplished with the help of Egs. (4.4) and (4.3).

It is essential for the consistency of our whole approach, that we should obtain the
LD approximation to the total energy, Epp, if we add to (V) p the LD approximation
of the expectation value of the kinetic energy, {TDp.
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7. The kinetic energy

The calculation of the expectation value of the kinetic energy, <{T">, follows the known
rules of calculating the expectation value of a one-body operator (see, e.g., the textbook
by Thouless [7]). The result is best represented by diagrams. We illustrate it in Fig. 7
which contains all terms of {T"» of zero and of second order in v, denoted by (7>® and

<T>(0) =

Fig. 7. Diagrams that contribute to <T>(® and <7T>®

{T»? respectively (notice that <TH" = 0). By a heavy dot on a p,line, we denote the
diagonal matrix element of the kinetic energy of the i-th particle, &,,- Otherwise the usual
diagrammatical rules obey, and we have:

(TY? =Ey =T, =Y ¢, = 2&.N, (7.1)

<T>(2) = Z (¢m1mzlv|¢k1k2) [8m1 +8mz_8k1—8k2 -t

kikomim,
X [skl_sml] [8"” +8mz_8k1—8k2]_1 (¢k1k2|vl¢m1mz‘¢mzm1)

= _% Z (¢m1mz|v!¢k1k2) [8m1 —I-sz—akl_‘glcz]-—Jl (¢k1k2lvl¢m1mz_¢m2m1)' (72)

Kikamimo

Notice the additional minus sign of the contribution of the diagram b in Fig. 7 (and con-
sequently the minus sign at ¢,, in (7.2)), connected with three hole lines (two m,-lines
and one m,-line). The result of the last step in Eq. (7.2) is represented as diagrams ¢ in
Fig. 7.

In the LD approximation, we consider all diagrams with two hole lines. The sum
of all these diagrams is obtained by replacing in {7>® the interaction v by the K matrix.
In this way we obtain for the LD approximation of {T'), {T>.p, the result shown in Fig. 8.
The last step in Fig. 8 is accomplished similarly as in the case of (T)®.
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A comparison of the results for {7, in Fig. 8 and for (T, in Fig. 6 leads to the
following expression for (T p:

{THp = Eq— X5, (7.3)
where Xp, given by expression (6.7), is represented by the B diagrams in Fig. 8 or Fig. 6.

+exch)=FE_ - + exch

o
=

Fig. 8. Diagrammatical representation of <{T)rp

By adding the expressions for (V)p, Eq. (6.2), and for {TD,,, Eq. (7.3), we get
{TH>p+<{Vo1p = Eoq+A4Ep. (7.9)

We thus find that in the LD limit the total energy calculated from the perturbation
expansion of the radial distribution function, and of the kinetic energy, is identical to the
known perturbation expansion of the total energy, E,+A4E, . Essential is of course that
the similar diagrams are included in both cases. The result is to be considered as
a consistency-check.

An approximate result, similar to Eq. (7.4), was obtained in a different context by
Wong [8].

8. LD approximation — calculational procedure

A. Wigner forces

So far we have not taken into account spin and isospin, i.e., we put v = 1. In the case
of Wigner forces, it is straightforward to modify all our equations for a general spin-
-isospin degeneracy v. The modifications amount to multiplying all summations over
m; by v, and all exchange terms by 1/v. For instance, Eq. (4.10) for Gp takes the form:

Gyp(ryry) = v z w:t1mz(rlr2) ['Pmlmz("ﬂ'z)—?’mlm;(ﬁ’z)/"]- (8.1)
mim;

We solve the K matrix equation, Eq. (4.2), or equivalently the wave function equation,
Eq. (4.4), in configuration space. We introduce the wave function Y () Of the relative
motion of two particles, Eq. (5.6), and the difference function (see Eq. (5.7))

Ao (1) = P (1) = Pu(F). (3.2)
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Wave function equation (4.4) takes the form:

P (1) = Ou()+ [ dr'GM (e Yo (r' Yy (r"), (8.3)
where we have introduced the Green function
GMm(pr'y = MQ2m)7? [ dE[QM, k)[(m® — k)™, (8.4)

Here, we have approximated the exclusion principle operator by its angle average
0 for k< (ki-—M?*4)'?,
QM, k) =<1 for k> kpgt+M|2, (8.5)
((k* = ki +M?/4)[kM otherwise.

Notice that because of approximation (8.5), the wave function 9, and the Green function
@M™ do not depend on the direction of M, but only on its absolute value.
With the partial wave decomposition,

vu(r) = ¥ i VarQI+1) Yio(miyu(m, v), (8.6)
GM(re'y = Y AU+ 1) Yio(#YGH (1), (8.7)

1
G (rr'") = (M ]27°) g dkk*[Q(M, K)[(m* — k*)] jkr)j(kr'), (8.8)

Eq. (8.3) takes the form:

uM(m, r) = j(mr)+4n | dr'r’*@M" e (e YuM(m, 1), (8.9)
4]

(Our method of calculating %™ is shown in Appendix A.)

For the integration over the momenta in the Fermi sea, we use the formulas:

§ dM | dmf(m, M) = (% nkg)>Z 0 f(m, M), (8.10)
§ dM [ dmf(m) = (3 7k2)%9,,7(m), (8.11)
where angle averaging is denoted by bars, e.g.,
f(m, M) = | dmf(m, M)/4r, (8.12)
and where the integration operators £ are:
. - ¢ L) B 2Viome s 5
Iy =9 Jdmm{m | dMM>+ [ dMMQ1-m®—N?4)}, (8.13)
¢ o 2(1 ~m)
1
Im =24 [dmm*(1-3 m*+1m>), (8.14)
0

where m = mfky and M = M/k.
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With the partial wave decomposition, Eq. (8.6), we may write Eq. (8.1) in the form:
guo(") = S 3 Q11 [1= (=) 1 m, 1) (8.15)

By replacing ™ by j, in (8.15), we get
2(r) = f,,,}l:(ZHl) [ —(=)jmr)? = {1 —js@mr)jv} = 1—U(ker)*}v.  (8.16)
For the expectation value of V (see Eq. (6.1)) and T (see Egs (7.3), (6.7)) we have:

{VOwo/N = 3 ¢ | drgip(ryo(r)

=1 oS ; QI+1) [1—(=)v]4n ;f drrtu™(m, No(uMm, ),  (8.17)

A

{THp/N = ‘g 8k;'% 9F mu Z i+ [1“(—)'/"]

x 4m ojc drr*[uM(m, r)—j(mr)Jo(ryuM(m,r). (8.18)
(0]

If the two-body potential has a hard core of radius ¢, and is equal to «(r) for r > c,
we replace the hard core by a hard shell with the same radius ¢ (see, e.g., [9]). Wave equation
(8.9) then takes the form:

uM(m, r) = sM(m, r)+4n § dr'r’2F M@ Yo yuMm, v, (8.19)

where
sM(m, r) = j(mr)—j(mc)g " (rc) M (cc), (8.20)
FM(rr'y = M™(rr' ) -9 M (ra)g M (er' )[4 M (cc). (8.21)

In place of Eq. (8.18), we now have:
(Touo/N = $ =% eFun X QI+ D [1=(-)'1])

X {j,(mc)z/%M'"(cc)—é-t‘rn ? drrz[u,M(m, r)—sM(m, r)}v(r)u,“(m, r). (8.22)

Notice that expression (8.17) for (V) p remains unchanged (since uvu = 0 for r < ¢,
we may now replace in (8.17) the lower zero limit in the r-integration by ¢).

B. Spin-isospin dependent forces

Let us first consider nuclear matter tor which v = 4. There are v = 4 spin-isospin
two-body states (S, T) which we denote by A = 1, ..., v. The 1 = 1 state is the spin singlet—
—isospin singlet state (0, 0), A = 2 is the spin singlet-isospin triplet state (0, 1), 4 = 3 is the
(1, 0) state, and 2 = 4 is the (1, 1) state. The projiction operators onto these states are
denoted by A% e.g.,

A17° = 15 B+610,) (1-7175). (8.23)
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The two-body interaction considered here has the form
Uiy = 211 UA(rlz)Aiz, (8.24)
which implies that the K matrix has the analogous form,

R =Y KA, (8.25)

where K satisfies Eq. (4.2) with v replaced by v,. Functions ¢ and y are now different in
different spin-isospin states, and are denoted by »* and x*, where y* is defined by Eq. (4.3)
with v and K replaced by v, and K, and x* by a similarly modified Eq. (4.4).

To calculate the expectation value of the interaction, or of any other spin-isospin
dependent two-body operator, we introduce the radial distribution function G* = o%g*
for the spin-isospin state A:

d,GX(riry) = N(N—1) [ d&,dédrdEs ... drydEy

X WH(r &y . rnENATLE(rEy o rnR)ICPIP), (8.26)
where
d, = Tr A},[v? (8.27)
is the weight of the A state. A definition equivalent to (8.26) is (see Eq. (2.8)):
d,Gxy) = (W%, (8.28)
W = Z; w(ry;) AL (8.29)
i<j

The calculation of G* follows precisely the calculation of G for Wigner forces presented
before provided that v and K are replaced by v, and K. There is only one difference:
the previous factor 1/v at the exchange terms must be replaced by the factor

g, = Tr A%, P ,|Tr A}, (8.30)

where P,, is the spin-isospin exchange operator.
In the LD approximation, we have now:

Géb("ﬂ’z) =y Z !":x,mz("l"z)*[‘f’inm('l'z)“ga?’ﬁzzmi(’x"z)}, (8.31)
<V>LD = ;d).<V>ﬁDa (8-32)
oto = z j d"ld"zGI{D(rﬂz)va(’Hz) (8.33)

Obviously, we have
G =Y dG" (8.34)
A

Now, let us consider a system with v = 2, e.g., neutron matter or *He. Here, we have
two A states: the spin-singlet state A = 1 and the spin-triplet state A = 2. Instead of Eq.
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(8.23), we have, e.g.,
AT = 1 (1—0,0,). (8.35)

Otherwise, all the remaining equations are valid also for v = 2.
Values of d; and ¢, for v = 4 and v = 2 are given in Table L.

TABLE I
Coefficients d; and ¢,
=2
s 0 1
A 12
d; 1/4 3/4
&1 —1 1
v =4
(5, 7) 0,00 (0,1) 1,00 (L1)
1 1 2 3 4
d; 116 3/16 3/16 9/16
€2 1 -1 -1 1
For a noninteracting system, we have
go(r) = ; d;80"(r), (8.36)
2o (r) = 1—g,l(kgr)>. (8.37)

The partial wave decomposition of y* may be performed as in Section 8A:
pur) = % Var2I+1) Yig(me)uM(m, ), (8.38)
where functions u,* satisfy in the presence of a hard core the equations:
uM(m, ' = sM(m, r)+4n °§° dr'r' 2 F M Yo, (r YuM (m, ¥ (8.39)

For gip* and 20", we get the partial wave decompositions:

gup(")* = Fuua Zl', @1+1) [1—ex(=)'T luM(m, M1, (8.40)

go() = £ T QU1 [1—e(—)Tjimr)? = Fu[1—eijo@mr)] = 1—eil(ker)®.  (8:41)
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For (¥ >}5, we obtain:

(VYiIN = % 0F m };(2l+1> [1-5(—)]
x 4n ? drr*uM(m, r)'vo,(ryu(m, r). (8.42)

The calculation ot {T") in case of spin-isospin dependent interaction proceeds similarly,
and in the LD approximation the resuit is:

<T>LD = ;dl<T>l):.D: (8-43)

(THip = 2 e —5 0Fmu z2(21+1) [1—e—)]

x { j(me)* |4 M™(cc)+4n O_[O drrz[u‘M(m, r) —sM(m, ) loa(ruMm, r). (8.44)

9. LD approximation — results

In the calculations whose results are presented here, the average CM momentum
approximation [10] (see Appendix B) was applied.

In all our calculations, we have considered the interaction in S, P, D states only, and
for I > 2 the wave functions i, have been approximated by j,.

Wave function equations (8.19) (or (8.39)) were transformed into systems of inhomog-
encous linear equations by approximating the r-integrals by sums with the help of the
Gauss quadrature. We introduced into the r-integrals an upper cut-off R, such that
u(m, r) = j(mr) for r > R. The systems of inhomogeneous linear equations were solved
by the Gauss method.

All numerical integrations appearing in our calculations were performed with the
help of the Gauss quadrature.

For numerical convenience, we used our equations for a hard core interaction with
radius ¢ in all cases considered. In cases of soft-core interactions, ¢ was chosen to
be sufficiently small as not to affect our results.

A. Nuclear matter with V, potential

The potential V, is equal to the central component of the Reid [11] soft core potential
in the 35, +3D, state, and is defined by:

vy(r) = —10.463¢”/x +105.468¢ 2*/x —3187.8¢~**/x +9924.3¢ " %%/x,  (9.1)

where x = 0.7r, r is in fm, and v, is in MeV.
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Functions g;p and g, calculated for kr = 1.366 fm~* are shown in Fig. 9. We used
a m-mesh of 5 points here, which is perfectly sufficient for calculating the energy, and the
function g; p(r) for small values of 7. For large values of r, w,(m, r) = j(mr) is a fast oscillat-
ing function of m, and a m-mesh of 5 points is not sufficient for an accurate integration,
indicated in Eq. (8.15) (with £, replaced by .4, in our averaged CM momentum
approximation). The function g p should asymptotically approach g,. The oscillations
of gip around g, for r = 5 fm, visible in Fig. 9, result from our coarse m-mesh. In all our
other calculations, we increased the number of points in the m-mesh to 16, and removed
the oscillations from the range of r considered.

Results for {V>, T, E, = T,, and E are shown in Fig. 10 as functions of kg. Our
results for E agree with the FHNC results (see, e.g., Fig. 9 of the review by Day [3]).

B. Nuclear matter with pure hard core interaction

Here, we consider the case of pure hard core interaction with radius ¢ = 0.6 fm, i.e.,
the hard core part of the full interaction described in C. Strictly speaking, we should call

1.200 -

1.000 - S S s S s LR O

0.800

0.600
+++ 9lr)

+4 4

— gy lr)
0.400 -

+

+

0.200 |

+
H-

0 | ! P 1 3
0.600 2.600 4.600 6.600 8.600 10.600
r{fm)

0.00

Fig. 11. Functions: g for hard core potential of radius ¢ = 0.6 fm in LD approximation and go in nuclear
matter at kr = 1.366 fm™*

it a hard shell interaction, because of our treatment of the hard core explained after
Eq. (8.18).
Functions g, and g, calculated for kr = 1.366 fm~" are shown in Fig. 11. The energy
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E which in this case is identical with (T in units of g, is shown in Fig. 12 as function of
x = kgc. For comparison, Fig. 12 contains also the result for E of the known expansion

in powers of x, which includes terms up to ~x3 (see, e.g., [6]):

20F
|
S
z |
L
T5F
- 7 .
10 L 1 1 ] 1
06 08 10
x=kec

Fig. 12. Energy E of hard core nuclear rhatter, calculated in the LD and in the x® approximations

For the normalization integral Iy, Eq. (2.9), we get Iy = 0.674 for kg = 1.366 fm™*.
The corresponding value of k¥ = 1 —1Iy (see Eq. {5.10)) is: k = 0.326, which is about twice
the value of g($nc®) = 0.156.

C. Nuclear matter with OMY6 potential

The index A, which labels the spin-isospin states, assumes four values denoted in
Section 8B as numbers 1, ...,4 (see Table I). Here, we.use an alternative notation:
A=1=o0s,A=2=c¢et,A=3=es,and 1 = 4 = ot, where “0” stands for odd, “‘¢” for
even, “s” for spin-singlet, and “t” for spin-triplet.

The potential OMY6 [12] contains a state independent hard core of radius ¢ = 0.6 fm,
and its attractive part for r > ¢ is of Serber type, i.e., v,, = v, = 0. In the even states,
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we have:
. vet,s(r) = Ut,s(r) = - V;,s €Xp [—at,s(r_c)]’ (92)

where o, = 3.6765 fm™!, a, = 2.6272 fm~, ¥V, = 947.02MeV, and V, = 397.31 MeV.

T T T T T T ¥ T T

L 7 A
Vd
= V4 4
7
200 <T>IN —y 7 y
- ’,// -
- To/N
3 opb—=-"""7
2 [ |

-200f

Fig. 17. LD results for <V, <T>, E, = Ty, and E, for nuclear matter with OMY6 potential

Since in odd [ states there is a pure hard core interaction, the wave function in these
states #,* = 5, (1 = os, ot) are the same in spin-singlet and spin-triplet states. Conse-
quently, we have:

gos — got = got/s‘ (93)

Obviously, the radial distribution functions g,* of the noninteracting system do not
depend on the spin state, and we use the notation:

g°(r) = gom(") = go'(r) = 1—l(k1=7')2, 94

80"(r) = 20°(r) = go°(r) = 1+1(ker)”. ©-3)
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All the functions g*, g calculated in the LD approximation for kp = 1.366 fm~1,
as well as the corresponding functions go" and g,, are shown in Figs 13-16. Results for
(V> (T>, Ey = Ty, and E are shown in Fig. 17 as function of k.

For the normalization integral 7y, Eq. (2.9), we get Iy = 0.653, with the corresponding
value of k = 0.347.

D. Liquid 3He with LJ 6-12 potential

This is a v = 2 system. Its empirical equilibrium parameters at zero temperaiure are:
o = 0.0166 atoms/A3 (ky = 0.789 A1), E/N = —2.53 °K.
We apply the Lennard-Jones potential (LI 6-12),

u(r) = Vol(a/r)'*—(o/r)°], (9.6)

with V, = 40.88 °K, and ¢ = 2.556 A (Murphy and Watts [13]).
Functions g;, and go, calculated in the LD approximation for kr = 0.789 A-1,
are shown in Fig. 18 which also contains the function g determined experimentally by

+++ g
EXPERIMENT

0 La i 1 | 1 |

0.7 1.0 20 /6 30

Fig. 18. Functions: g for LY 6-12 potential in LD approximation and g, in liquid *He at kg = 0.789 A-t,
The experimental curve is taken from Ref. [14]

Achter and Meyer [14]. Results for (V), (T, E; = Ty, and E are shown in Fig. 19 as
functions of kg.

For the normalization integral Iy, Eq. (2.9), we get Iy = 0.260, with the corresponding
value of x = 0.740.
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Fig. 19. LD results for <V>, <T>, E, = T, and E, for liquid *He with LT 6-12 potential

10. The low order Brueckner approximation

In existing calculations of the ground state energy E, the term “low-order-Brueckner”’
(LOB) approximation is generally used for the procedure in which E is calculated in first
order in the self-consistent reaction matrix, and the equation for that matrix contains self-
-energy insertions into the hole-lines only. This is the so called standard choice of the single
nucleon spectrum (here, we use the term “particle” (“hole”’) when its momentum is bigger
(smaller) than kg, and the term “nucleon” when its momentum is unrestricted).

The LOB approximation was introduced at a time when results indicated that the
correction to the total energy due to insertions in particle-states was small. Later results
show however that LOB is not a satisfactory approximation. Nevertheless, because of its
computational simplicity, it has been and still is used widely in calculations of E. For
that reason, we present here the LOB approximation of the radial distribution function.

To simplify the presentation, we disregard spin and isospin in our general derivations,
i.e., we put v = 1, and assume a Wigner type two-body interaction.

A. The LOBI approximation

‘We start with writing the result for the radial distribution function in the LOBI
approximation which contains all the LD diagrams plus the LD diagrams witb one self-
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-energy insertion into one of their hole-lines. We have:
Grops = Gip+4,G, (10.1)

where 4,G is shown diagrammatically in Fig. 20 which contains all G-diagrams with
3 hole-lines of the self-energy type. Obviously, there are several other G-diagrams with
3 independent hole-lines (some of them are shown in Fig. 5), and this is the reason why
the LOB approximation is in itself not a consistent approximation in the sense of the

AG/2 =

oQ-oB-o0-oQ:
B8 BB

Q@+@@+@@++

Fig. 20. Diagrams that contribute to 4,G

hole-line expansion. All the other 3 hole-line diagrams should be added for consistency.
(This is accomplished by the Faddeev-Bethe equations — see, e.g., [3].)

Diagrams a, c, e, g of Fig. 20 are obtained by simple self-energy insertions into the
hole-lines of the corresponding Gyp-diagrams. By introducing into diagrams a, ¢, e, g
additional K-interactions between particles, separated from the original K-interaction
lines by the self-energy insertions, we obtain diagrams b, d, f, h.

Diagram i of Fig. 20 should also be considered a G-diagram of the hole-self-energy
type. Namely, in the calculation of (¥ (which consists in replacing the heavy lines with
broken mteraction lines — see the end of Section 3), diagram i contributes to (¥ a hole-
-self-energy term. Obviously, together with diagram i, diagrams j, k, 1 should also be
considered as being of the hole-self-energy type.

A common feature of all the diagrams in Fig. 20, which distinguishes them from
other three-hole-line diagrams, is that they contain only the on-energy-shell K matrices,
i.e., K matrices which satisfy Eq. (4.2). As an illustration let us consider all the contribu-
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tions of third order in v to the diagram j, which we denote by {4,G®};/2. There are two
such contributions, and they are shown in Fig. 21. The proof of the last equality in the
diagrammatical equation in Fig. 21 is elementary, and practically identical with a similar
proof given by Brueckner and Goldman [15]. The symbol “ON”’ in Fig. 21 means that
the energy denominator in the relevant intermediate state is e, +&,,, — &, — &,- The symbol
“ON” in diagrams j, k, 1 in Fig. 20 has the same meaning.

AGY /2= @ D+
J _————

) J2

1

Fig. 21. Diagrams that contribute to the “ON” diagram j of Fig. 20

To obtain the expectation value of V in the LOBI approximation, (V) gy, We
replace the heavy lines in the G g -diagrams by the broken v-lines, and introduce an
extra factor 1/2 (see the end of Section 3). If we take into account the definition of the
K matrix, Eq. (4.2), we obtain for (V> op; the result (compare the analogous procedure
in the LD approximation, Fig. 6):

{V>ro81 = 4EL081 ‘FXLom, (10.2)
where AE; o, (the LOBI approximation of 4F), and X, g5, are shown in Fig. 22.

AE g =7 OO + Q{}::D+exch
X'LOB1=%O:]> +2-O‘m+
+ OWV(H)*'O—@"' ‘@}{ +exch

Fig. 22. Diagrams that contribute to 4ELop1 and XLoB1
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To calculate the expectation value of the kinetic energy in the LOB1 approximation
{T>1081,» We proceed similarly as in Section 7, and obtain the result:

{THropi = {THp+<4,T>, (10.3)

where {4,T) consists of contributions of the 3 hole-line diagrams of the hole-self-energy
type. As an illustration let us consider <4,T>*, the part of {4,T) of the fourth order
in v. To avoid the necessity of drawing the numerous one-body operator diagrams intro-
duced in Section 7, we introduce a concise notation explained in Fig. 23. The last step in
Fig. 23 is accomplished by the same procedure which led to the bottom line in Fig. 7.

Fig. 25. Diagrams that contribute to <4,T>

The complete expression for (A, 7)™ is derived diagrammatically in Fig. 24. The
last step is the result of the same identity which we used before in Fig. 21. Now, it is casy
to see that the result for <4,7>*", shown in Fig. 24, is the fourth order (in v) part of the
final expression for {A,T>, shown in Fig. 25.

Our result for {4,T), and our previous result for (T (see Fig. 8), inserted into
Eq. (10.3), leads to the result:

<T>LOBI = Eq— Xrop1- (10-4)

Comparing (10.4) with (10.2), we conclude that

{Tros1+<{V>Los1 = Eo+4E op1> (10.5)

i.e., the total energy calculated from the expansion of the radial distribution function,
and of the kinetic energy is equal to the expansion of the total energy to the same order.
(Compare this result with Eq. (7.4).)

B. The LOB approximation

We are next going to replace the reaction matrix K by a self-consistent reaction
matrix K (as in Brueckner theory). In terms of K, our expressions for the radial distribu-
tion function, potential and kinetic energy will become simpler, and they will contain not
only all the LOBI terms but also numerous other terms.
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The K matrix is defined by the equation:
]Zlqsmlmz) = U}(i)mlmz)"" kzk v1¢’k1k;) [eM1+emz—£k1_8kz]_-l (¢k1k2“€}¢m1m2)1 (106)

which differs from Eq. (4.2) by the appearance of the sclf-consistent single-hole energies,

Cmy = &y T Voo (10.7)

where the single-hole potential
Vmi = Z (¢mimjlﬁl¢mimj‘¢mjmi)a (10‘8)
my

while particle energies still are kinetic energies ¢,.
We distinguish quantities calculated in the LOB approximation from the corresponding
LD quantities by a tilda. For instance, the wave function ¢ is defined by

Kl dmms) = 01 Pmm,)s (10.9)

~

and the equation for ¢ is:

'yjmlmz)_kbmlmz) = b?mlmz) = Z I¢k1k2) [eml 'i'emz_(‘:h'_'gkz]_1

kika
X (Prey1es) K | P yms)- (10.10)
Eq. (4.2) for K, and Eq. (10.6) for K imply the following relation between K and K:

(IZ—K) i¢m1mz) = kzk K[qsklkz) {[eml“'_emz—gk[_gkz]“l
- [Enn +8m2 _ek; ——Skg]" 1} (¢k1k2!kl¢m1mz)' (101 1)
If on the right hand side of (10.11) we keep only terms of lowest order in K, we get

Iz‘q&m;mz) = K!(;[)mlmz)_ Z K|¢k;k2) [Sln;+8m2"8k1_8k2]_1

kikyms
X [(¢m1m3{K{¢m1m3 - ¢M3m1) + (¢m2m3{K1¢M2M3 _‘qsmyﬂz)]
o [me FEpy By _skz] ot (¢k;k2lKl¢m;m2)' (1012)

The approximate connection between the matrix elements (qﬁpmlf( | m,m, and
(@102 K| P m,m,)» Which follows trom Eq. (10.12), is shown diagrammatically in Fig. 26,
where a double wavy line denotes K.

Notice that the minus sign in Eq. (10.12) is automatically produced by the rule that
each hole-line introduces a minus sign. Here, the self-energy insertion into a hole-line
introduces an additional hole-line (with the same momentum).

With the help of K, we define the LOB approximation of the radial distribution
function, Gy, as is shown in Fig. 27, where a full arrow at a hole-line signals the presence
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of single-hole energies e, in the propagator (the hole-line is “dressed”). In the lowest
order in K, the difference between the new LOB and our previous LD propagators is shown
in Fig. 28.

If for the K matrices in Gyop We use approximate expression (10.12) (see Fig. 26),
and the approximation of Fig. 28 for the LOB hole-lines, and neglect diagrams with more
than 3 of these hole lines, we get Grop & Grop;- This means that G,y contains all the
3 hole-line diagrams of the seif-energy type. But obviously, it contains much more than
that. In particular, it contains multiple sclf-energy insertions into hole-lines.

My By PpMy M P By My ™ B M,

Fig. 26. Diagrammatical representation of the approximate connection between the matrix elements
of Kand K

GLog= w2+@+m+@+

+ ON + exch

PUN

Fig. 27. Diagrams that contribute to Gros

IR

+.

Fig. 28. The approximate connection between bare and dressed hole-lines
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The analytical expression for Gygp 18 easily derived, following the procedure of
Section 4:

Gros(rir2) = 2 ‘7’:1»”2('1 ry) [’T’mmz(’l 2) = oy, (F1 "2)]

mym>

X {1 -2 Z (imzlnglinum; —imgmz)}' (10'13)

(Similar expression, however, without the factor in the curly brackets and with an ad hoc
normalization factor, was used by Viollier and Walecka [16].)

AELOB=12. M + exch

ot 854 o - @ -

Fig. 29. Diagrams that contribute to 4Erop and XLoB

To obtain the expectation value of ¥ in the LOB approximation, {V); o5, We proceed
as in the case of the LOBI approximation with the only difference that now the K matrix
equation, Eq. (10.6), must be taken into account. We get:

{V>Lop = 4E108+ X108 (10.14)
where 4E; og (the LOB approximation of 4E), and Xjcp are shown in Fig. 29.

o !
<T>oB= Ky +_. m2+ exch=
k1 m‘] RN
My
L 3

Fig. 30. Diagrams that contribute to (T)ﬁfm

X

We write the expectation value of the kinetic energy in the LOB approximation,
{T>r0p, in the form:

{Torop = Eo+{TH{Bs+<T), (10.15)
where (T is shown in Fig. 30. The last step in Fig. 30 was obtained similarly as in the
LD approximation (see Eq. (7.2)). We have:

(T = Y  (Dmym:l KIPssky) [€m, +my— 81, —81,] "

kikamymo
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X [8k1 - Sml - le + Vm1] [em; + emz '—gkl - gkz]_ ! (d)klkz'qubmimz) +eXCh
= % Z (d)mmtzlkl ¢k1k2) [em1 + emz ~&, — 8k2]_ ! (q’)klkzlkl(.bm;mz)

kikamimy

+ Z (qsmlmzlﬁ‘d)klkz) [epn1+emz—8k1_8kz]—1 (¢m1m3|K|¢m1M3)

kikamymoms

X [, + €, =6 — 0] " (Dksig K| Pmyemy) +XCh, (10.16)

where we have used definition (10.7) of e,,, and (10.8) of V,, . Notice the new diagram f in
Fig. 30, which appears in the LOB approximation because of the presence of the single-
-hole potentials in the propagators.

The part (T’ of (T op is shown in Fig. 31. Here, we neglect the f§ diagrams, arising
similarly as the § diagram in Fig. 30, as containing four independent hole lines.

A comparison of Figs 30 and 31 with Fig. 29 shows that

(THBe+{(T) = —Xyop (10.17)
and consequently, we have (see Eqs (10.14), (10.15)):

{TH108+{V )10 = Eo+A4E;cp. (10.13)

We have thus shown that the total energy calculated in the three-hole-line approxima-
tion agrees with the energy calculated trom the radial distribution function in the same
approximation. Again as in the case of the two-hole-line expansion this is a consistency

I
T = +W+ exch

B

Fig. 31. Diagrams that contribute to <7’
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check. It is to be noted however that although the potential energy is calculated directly
from the radial distribution function, the kinetic energy is nor. When the kinetic energy
is calculated in LOB from a diagram with » hole-lines a diagram with n4-1 hole lines is
generated as shown by the fi-diagrams in Figs 30 and 31. This is a consequence of the
selfconsistent insertions in hole-lines. (Note that it did not occur in the case of LOB1.)
To obtain the selfconsistency result in the case of LOB we therefore had to neglect the
B-terms in Fig. 31, which have four-hole-lines.

C. Problems with normalization

Unfortunately Gpop (as well as Grop,) has a wrong asymptotic behaviour, as may
be seen from Eq. (10.13). To see it immediately, let us introduce into Eq. (10.13) the approxi-
mation:

(2sz3lim2m3.—im3m1) g *N’—Z Z (imzmglimzm;;—znlgmz) = N“IE' (10'19)

moamsz

Because of the healing property, we have asymptotically (for 71, = ) Ymim; = Pouym
and consequently Eq. (10.13) leads to:

Gros(rry) — Z ¢i1ml("1"2) [¢m1m;(rlr2)_¢mzm1(r1r2)]

x (1 =2k} = GOr,ry) {1 -2k}, (10.20)
or equivalently:
lim g op(r) = go(r) {1 -2k} (10.21)

Since go(r) — 1, we see that 1 —g, o5 — 2k, and consequently the normalization integral
Iy, Eq. (2.9), is divergent.

One may casily see that all these difficulties are caused by diagram D in Fig. 27.
The disastrous effect of the diagram D on the asymptotic behaviour of the radial distribu-

Fig. 32. G-diagram with 3 hole-lines

tion function would be cancelled if we introduced the diagram shown in Fig. 321. It appears
then that to get consistent results for the radial distribution function it is necessary to
introduce together with the hole self-energies simultaneously the particle seli-energies.

! Compare Fig. 5, where diagrams h, and i give divergent (~ N) contributions to Iy, cancelled however
by contributions of diagrams j, and k.
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The LOB approximation is a legitimate approximation as far as the calculation of the
total energy is concerned, although it is not numerically satisfactory. It is not a consistent
three-hole-line expansion however. Only the interaction with a third particle in the hole-
-line is included but in the particle-line it is not included. As a consequence, we find that
the radial distribution function does not have a correct asymptotic behaviour. This comes
from the depletion of the hole-states due to the interaction, and that nucleons are not
allowed to interact with other nucleons while in particle-states.

11. Summary and conclusions

We have formulated a perturbation theory of the radial distribution function. It is
found that the Brueckner technique of summing ladder diagrams of v-interactions can
be applied to this problem. The radial distribution function for an interaction with an
infinite hard core can therefore be calculated perturbatively.

The summation of different classes of diagrams was considered. The first, the Low-
-Density (LD) approximation (Section 4) includes all particle-particle ladders but no
insertions in particle- or hole-lines. It is therefore a two-hole-line expansion, the hole-lines
beeing free (nucleon) propagators carrying kinetic energy only. An important property
of the radial distribution function is its normalization. It follows directly from its defini-
tion in terms of the normalized wave function of the system. In the LD approximation
the radial distribution function is not normalized. The error in normalization is equal to the
wound integral. The function is on the average too large. This stems from the fact that only
particle-particle ladders are included, while the simultancous depletion of the hole-states
is nowhere corrected for in this approximation. One way of satisfying the normalization
condition is to define an approximate normalized wave function and then calculate the
radial distribution function from this. This is shown in Section 5. In Fig. 4 the 2p-2h
states are “free” states, i.e., they have only kinetic energy as in the intermediate states
of Fig. 3. In addition to the diagrams of Fig. 3, those shown in Fig. 5 are now generated.
The latter diagrams correct for the error in the normalization.

The calculations for nuclear matter and liquid *He in the LD approximation are prelim-
inary calculations only to serve essentially two purposes. Firstly, we like to illustrate the
general methods of applying the formalism. Secondly, a main purpose of our investigation,
outlined in the Introduction, is to find the sequential changes in the radial distribution
functions by successive inclusion of new types of diagrams. The two-hole-line diagrams
with particle ladders are the simplest type diagrams that we can possibly consider. These
are the diagrams of the LD approximation. We find the results already interesting at this
level. Note, for example, the relative ease with which the state-dependent radial distribution
functions are obtained in the case of the OMY®6 potential. In a Jastrow approach one has
to first define separate correlation functions in different spin-isospin states, which should
then be separately varied. In the case of liquid *He the separate radial distributions for
parallel and antiparallel spins can also easily be calculated.

The only experimentally known radial distribution function, among those calculated
here, is that of 3He. We find already in our LD approximation a surprising agreement.
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In the region 1.3 < r/o < 2.5 we get an overshoot of about 109, and also too large values
at very small distances. The overall positive error results in a small value of the normaliza-
tion integral (Iy = 0.260) with the corresponding large value of the wound integral
(x = 0.740). The LD approximation includes only two-body correlations. The only effect
of the other particles comes via the exclusion principle. One effect of the presence of
other particles would be to prevent the two particles to come close together in certain
many-body configurations. The radial distribution function would be suppressed at small
distances. The error at r/o ~ 0.9 can therefore be understood. The error at larger distances
is not as simply explained. However, it is probably closely related to the normalization
error and therefore to diagrams in Fig. 5.

In calculations of the energy by Brueckner theory it has been customary to redefine
the hole-lines by the inclusion of bubble-insertions. Three-hole-lines, i.e., three-body
terms, are therefore actually being introduced. The third line is the bubble. Quite illogically,
the resulting theory has however been coined a two-hole-line expansion. Thete are justifica-
tions for this approach. Simply stated: particles in their normally occupied states move
in some mean field of the other particles, represented by the bubble-insertions. In excited
states this mean field is much less attractive and can be neglected. The ensuing theory
contains a one-sided insertion in hole-lines only and is referred to as the LOB approxima-
tion (Secdon 10).

If trea.ed more carefully it is found that the interaction in excited states, in particular
at high momenta, cannot be treated as mean field effect. It is rather a close collision between
three particles. The effect of this can be treated by the three-body equations of Bethe—
—-Faddeev. As a result three-body terms are usually introduced in two steps, the first one
being the dressing of the hole-lines, the second the solution of the Bethe-Faddeev
equations.

In view of some customary applications of the Brueckner theory, it was considered
reasonable to consider the LOB as a next step after the LD approximation. The result
was a priori unexpected. While in LD the radial diseibution function is not normalized,
in LOB it does not even have the correct asymptotic behaviour (Section 10 C). A closer
inspection shows that the diagram causing this disaster is the one marked D in Fig. 27.
This diagram can be considered as corrzction to diagram A in the same figure. Nucleon 1 in
state m, does not interact with 2 in its hole state m, as in A because 2 is partly excited out
of m, due to its correlation with a third nucleon in ms. This correlation is contained in
diagram D. In some sense then the wrong asymptotic behaviour in LOB is rclated to the
wrong normalization in LD. Both errors are caused by the depletions of hole-states, that
are uncorrected for. In the LOB approximation the error would easily be remedied by
including also the diagram in Fig. 32 in the approximation of the radial distribution func-
tion. Doing this we would however depart from our original goal, i.e., to consider the LOB
approxjmation. This diagram has an insertion in a particle-line and is only one of the
diagrams customarily considered as three-hole-line diagrams.

It is interesting to note that the LOB approximation to the radial distribution function
leads to the difficulty mentioned above. In the calculation of the energy there is no similar
problem in this approximation. However, it is really just by accidental cancellations of
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diagrams that LOB is sometimes an acceptable method in this case. Because of the wrong
asymptotic behaviour of the radial distribution function one may in fact question the LOB
method as such even as a first order calculation of the energy, the next order being the
“three-hole-line diagrams”. This is the procedure followed by Day [4].

Given the radial distribution function, the potential energy is directly obtainable
(Sections 1 and 2). Our purpose has been to draw as much as possible from the experience
gained in energy calculations. We have therefore in both approximations, LD and LOB,
in addition to deriving the radial distribution functions derived the kinetic energies to the
same respective orders. The total energy obtained in this manner from the two separate
calculations of potential and kinetic energy could be shown analytically to be identical to the
total energy calculated to the same order. This proof, although it may seem redundant,
is of very great value because it allows for a check on the consistent choice of diagrams
in each order. The kinetic energy diagrams are one-body diagrams and, except in LD, it is
not quite obvious which of these diagrams are the consistent ones. As a matter of fact it was
found that some of the kinetic energy diagiams originally picked in LOB were in fact of
a higher order and therefore for consistency were neglected (Fig. 31, diagrams f).

We have found that the selection of diagrams used in this paper for the determination
of the radial distribution function is not altogether satisfactory. It has led to difficulties
with normalization and asymptotic behaviour. Our selection was made in order to stay as
close as possible to the selection of diagrams used in Brueckner calculations of the energy.
The reason for this was a desire to make a comparison with such calculations at each level
of approximation.

However, one may wish to emphasize the comparison with an experimentally determin-
ed radial distribution function or liquid structure function. It then appears more important
to ascertain that the calculated radial distribution function has the correct properties, e.g.,
normalization and asymptotic behaviour. This can be achieved by a different selection of
diagrams. In the LD approximation such diagrams were already discussed in the text
and they include those in Fig. 5. It amounts to considering all 2p—2#h excitations in the
wave function (Fig. 4). In the case of LOB it amounts to adding at least the diagram in
Fig. 32 and preferably also other three-hole-line diagrams. We are then actually close
to the theory defined above by including the diagrams of Fig. 5 in LD. The only difference
is the self-consistent matrix K and the dressed hole-line in LOB.

We shall continue this investigation using the experience gained from the results of this
work.

APPENDIX A
Green’s functions

In calculating Green’s functions ¢,"", we use Eq. (8.5) for Q, and write Eq. (8.8)
in the form (a = kp+ M/2):
GMrr') = —(A2n) ([ dkRZ(kn)jkr)Q(M, R)j(K* —m®) 4y}, (A1)

vke2—-M2j4
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where

y = [ dik%ienjkr ) (K2 —m?) = 2 | dkk2(kr)

k(K —m*)— 2 g dkkj(kr)ji(kr')|(k* ~ m?). (A2)

In the last step in Eq. (A2), we have artificially introduced integration over the range of
k where the function 1/(k?—m?) is singular, and we have prescribed the way of treating
the singularity by taking the principal value of both the integrals. Any other prescription
(adding Zic to k*—m?) leads to the same result for 7.

The result of the first integration in (A2) is well known:

2 | dik(kn)jkr) (K2 —m?) = —% emj(mr (), (A3)

where r. = min (r, r'), and r, = max (r, r").
To calculate the second integral in (A2), we write

K% (kn)jikr') (K = m*) = [K2jy(kr)jiCkr')(k+m)
— 7 mjmn)j(mr')])(k —m)+3 mj(mr)j(mr)[(k—m). (A4)

Now, the first part of expression (A4) is a regular function, and the second part may be
integrated immediately.
Our final result is:

a

GMary = —(u2n) { [ dkkjkn)jkr)QM, k)|(k* —m®)

Ve —M2j4

- K[k (kn)jikr ) (k -+ m) =% mj(mr)jy(mr Y](k—m)

—3 mmj(mr Yn(mr ) —3 mIn (a/m—1)j(mr)j(mr')}. (A5)

In our calculations, the first two integrals have been computed numerically.

APPENDIX B
Average CM momentum approximation

We found out in our numerical calculations that the double integration over relative
and CM momenta, represented by £, Eq. (8.13), becomes accurate only for such
dense m- and M-meshes, for which the number ot (m, M) points becomes too big to perform
the neccessary calculations within a reasonable computer time. Notice that for each (m, M)
point, we have to solve integral equations for #,*(m, r), Eq. (8.19). On the other hand,
the wave functions #,"(m, r) depend only weakly on the CM momentum M, and only
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these functions introduce the M dependence into the expressions which we have to integrate
over m and M.

In this situation, we introduce the average CM momentum approximation [7]. Namely,
we introduce for M in u®(m, r) the approximation:

M = FM(m) = (M, (B1)

where {M?>,, is the average value of M? in the Fermi sea for a fixed value m of the relative
momentum,

My fke = 2& (L—m) (L+F m+§m?)[(1+F m). (B2)

With approximation (B1), all expressions which we have to integrate over m and M
become functions of m only. Consequently, all the .#,,,, integrations are reduced to the
4, integrations, Eq. (8.14).
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