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ON THE EQUATIONS OF STATE FOR IRROTATIONAL
PERFECT FLUID IN GENERAL RELATIVITY

By V. I. OBozov
Orenburg Polytechnic Institute*
( Received April 27, 1981)

Equations of state for an irrotational perfect fluid are investigated. It is shown that
the equations of state in the form a) ¢ = const, P # const, b) P = const, gy = @,,u"uy
#0, ¢c) Py = Puu"uy, o = ontt"ux, d) o = APy, onu" = Pau" = 0 do not contradict
the Einstein field equations. Finally we present the physically realistic equations of state.

PACS numbers: 04.20.Me

1. Introduction

The gravitational fields of an irrotational perfect fluid were discussed in [1-11]. In
most cases these papers present the new solutions of Einstein’s field equations. Some
solutions in [1-11] have been obtained for equations of state of the form ¢ = o(P), where
o is the density and P is the pressure (see, for example, [1, 2, 6]). In [4, 6, 8] the solutions
of Einstein’s field equations present the gravitational fields of a perfect fluid with the equa-
tion of state in the form ¢ # o(P). On the other hand, as follows from the thermodynamics
of a perfect fluid its flow is isentropic (the proof of this statement is given in [12]). There-
fore the equations of state for a real perfect fluid may be expressed as ¢ = ¢(P). From
this it follows that the equations of state of the form g # o(P) describe physically unrealistic
models of the perfect fluid. However, the equations of state ¢ # o(P) in [4, 6, 8] satisfy
the Einstein field equations. Consequently Einstein’s field equations admit solutions
for perfect fluid with unrealistic equations of state ¢ # ¢(P). In this case two questions
arise: what set of equations of state follows from Einstein’s fiecld equations and which
equations of state are physically admissible?

This paper presents all possible equations of state for an irrotational perfect fluid.
These equations of state have been obtained with the help of Einstein’s field equations
and the Bianchi identities and the identities C™.,., = O (the proof of these identities
is presented in Appendix A). Finally we present the choice of physically realistic equations
of state for an irrotational perfect fluid.
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2. Consequences resulting from identities C"",;,,.,, = 0
The field equations for a perfect fluid are
Ry—% Rgy = —(e+ P+ Pgy, (2.1

where the units are chosen so that 821G = ¢ = 1 and the symbols have the usual meaning.
If the vorticity (or rotation) is zero, the tensor u;, may be split up as follows

0 .
Ui = L+ 3 hi+ 0o, 2.2)

where u; is a velocity field of a perfect fluid, wu" = 1, #; = u;,4" is an acceleration, gy is
a shear tensor, A, = gy —u;, 1s a projection tensor, § is a volume expansion and the semi-
colon denotes covariant differentiation.

The kinematic quantities which characterize the stream lines of the perfect fluid satisfy
the relations

tu" =0, uo,=0 g%, =0 o4=o0,
The Bianchi identities, Ry = R i are equivalent to the equations
Cnikl;n = Ri[k;l]'—% iR 115 (2.3)

where C%, is the Weyl tensor, the square brackets denote antisymmetrization and
R, = 8R/ox'.
The conservation equations, T, = 0, read
P,—P u"u,

W+ (0+P)0 =0, g = K K 2.4
0, (e+P) k oi P (2.4)

Substituting Ry, R from (2.1), u;, from (2.2) and 1, from (2.4) into (2.3), we obtain

(e+P)o
3

%‘ i@y~ Wil n— ity — (e+ P)G'i[t“k] = Cnikt;n- (2.5)

Differentiating (2.5) covariantly with respect to x°, contracting the result and using (2.2),
(2.4) and C";,., = 0, we obtain

Q,kP’ -0, P,k = QU —auy, (2'6)
where
( +P) Pﬁu" 0 n+ 1 ( n)
i, = — hand .nu Y nu
k Y4 o+ P Qr— V0= Cp; TGl )k
—-3 2 p v—(@+P),0%—(e+P)o" ¢ .
P , ;

We can rewrite equation (2.6) as follows

a, = au"u,+ 0P u"—P o u"
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The substitution of this relation into (2.6) yiclds
(Q,k_g,nunuk) (Pal—P,nu"ul) = (Qal_—g,nu”ul) (P~ P u"uy). 2.7

Generally speaking from (2.7) we have the following possible expressions for the
equations of state

o0y = ou'uy, P, # Pu'u, ¢, P # const, 7 2.8)
P, =P u"u,, o, % 04U, o, P # const, (2.9
0x=0, P,#0, (2.10)

P,=0, ¢,#0, (2.11)

P, =P, u"u, @,=0,u", o P +# const (2.12)
0x— 0"y, = a(P—P u"uy), a #0. (2.13)

In comoving coordinates equation (2.8) corresponds to the equation of state in the form
o = o(t), P = P(t,x"), « = 1, 2, 3. Consequently, equation (2.8) describes a perfect fluid
with uniform density.

In comoving coordinates equation (2.9) is equivalent to the equation of state P = P(¢),
0=o0(x" 0a=1,2, 3.

The equation (2.10) corresponds to an incompressible perfect fluid.

All the equations (2.8)~(2.11) do not satisfy the condition ¢ = ¢(P). Therefore the
equations (2.8)~(2.11) are physically unrealistic models of state for the irrotational perfect
fluid. In the following section the equations (2.8)~(2.11) will be considered in detail. We
will find out which of the equations (2.8)—(2.11) are contradictory.

The equations (2.12)-(2.13) are considered in Section 4.

3. The equations of state with o # o(P)

First of all we derive some necessary relations. For this purpose we use (2.1), (2.2),
(2.4) in the identities

— 1
Ri[k;l} =7 Rnt‘ki;n'

The result is

(e+P)o .
’;‘ gi[k(Q—P),z]“ui“[kQ,t]— “_3”— gi[l“k]“(@‘*‘P)Ui[z”k] = é‘ R’ yeisne 3.1
From (3.1} it follows that
umDmkl = Oa (32)

where

n ” s n s
Dmkl == R mkl;n+R mls;nu uk_R mks;nu ul' (33)
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It is easily seen that from (2.6) and (3.1) follows
P"Dpyy =0, @"Dpyy =0, (3.4
where
P" = P,g", g" = 0.g"

With the aid of conditions (3.2)-(3.4) we will consider the validity of equations (2.8)—(2.13)
in General Relativity.

a) the state of the fluid with ¢, = ¢ ,u"u, P, # Pu"u,, g, P # const.

Generally speaking the equation (2.8) does not contradict the relations (3.2)-(3.4)
in the following cases

PR pin = 0,  u"R" iy # 0, (3.5)
u"R"pan =0, P"R"pyn # 0, (3.6)
R'pian = 0, 37

Dy = 0. (3.8)

At first we examine (2.8) and (3.5). Contracting (3.1) with P’ and using (2.4), (2.8)
and (3.5) we get P"b,,;, = 0, where

Do = % 0 mtt" Zapstiy — 200 + P)oup ity

Simultaneously we have u"b,,; = 0. By virtue of P” ¢ 0, P" s P ,u™u" (see (2.8)) we obtain
byq = 0from P"b,, = Oand u"b,,; = 0. Contraction of b, = 0 gives ¢ ,u" = 0. If p " = 0,
then it follows from (2.8) that ¢, = 0. But in the case of (2.8) we consider the equations
of state with ¢, P # const. Therefore, equation (2.8) does not satisfy the relation (3.5).

Now we consider the condition (3.6). In this case contracting (3.1) with »' and using
(2.8), (3.6) we obtain P, = P u"u,. The relation P, = P u"u, does not satisfy (2.8) and
(3.6). Therefore, equation (2.8) does not satisfy the relation (3.6).

Similarly, it can be shown that (2.8) and (3.7) are incompatible.

Now we consider the condition (3.8). If D,,, = 0, the contraction, g"D,,; = 0, gives

anks;numus = ';_ (R,susuk—R,k)'
Using (2.1) and (2.8) we get
anks;numus = % (P,k—P,nunuk)'
Contracting (3.1) with « and using (2.8) and R",..u"° = 3 (P,—P u"u) we obtain
P, = P, u"u,. This relation is incompatible with (2.8). This incompatibility implies that
the equation (2.8) does not satisfy (3.8).
We considered all the cases (3.5)-(3.8). Generally speaking in these cases the equation

of state (2.8) should not contradict the conditions (3.2)—(3.4). Yet the detailed analysis
shows that (2.8) and (3.5)-(3.8) are incompatible. Therefore, (2.8) and (3.2)—(3.4) are also
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incompatible. Consequently the equation of state (2.8) does not satisfy the conditions
(3.2)~(3.4) or Einstein’s field equations.

b) The state of fluid with P, = P u"w, 0, # 0.4 14, ¢.P # const.

Generally speaking (2.9) does not contradict the conditions (3.2)~(3.4) in the following
cases

Qmankl;n = 07 umankl;n #* 0, (39)
umankl;n = O’ Qmankl;n #* 0 (3.10)

and in the cases (3.7), (3.8).

At first we consider the condition (3.9). Contracting (3.1) with o' and using (2.4),
2.9), (3.9) gives ¢"K,,;, = 0, where

Ku =G 0mt" — P ") gty —2(0 + P)opttyy.

Simultaneously we have ¥"K, = 0. By virtue of ¢" # 0, ¢" # ¢ _,u™" it follows from
'K, = 0 and ¢"K,; = 0 that K, = 0. Contracting K,,, = 0 with g" gives

% Q,mum = P,mum, Opp = V. (311)
If 65 = 0 and P, = P u"u,, the velocity field (2.2) can be written as

8
Ui = 3 hy. (3.12)

The integrability conditions of (3.12) are equivalent to the equations

1 U; 0 1,0
3 8indn— _3‘ upd — 6 gy = 7 W Ry (3.13)

The contraction of (3.13) with g* and the use of equations (2.1) gives
04u; = 0, (3.14)

From equations Py, = 0, with the aid of the substitutions P, = P, u"ty, (3.11)
and (3.12), it is possible to obtain

(0,u") sty = (0,4"), iU (3.15)

With the help of (2.9), (3.14) and (3.15) after some simplifications we have from
04" +(e+P)0 = 0 that uye 0 = 0. If 8 = 0, we obtain from g u"+(¢+P)§ = O that
04" = 0. In this case we have P,, = 0 from (2.9). The relation P,; = 0O contradicts the
equation (2.9). Therefore, § # 0. If 6 # 0, it follows from uye 0 = 0 that uyey = 0.
However, this relation contradicts the equation (2.9). Consequently (2.9) and (3.9) are
incompatible.

Now consider the case (3.10). The contraction of (3.1) and the use of (2.9), (3.10)
gives upg ;) = 0. The relation w0, = O contradicts equation (2.9). Therefore (2.9) and
(3.10) are incompatible.

Similarly it can be shown that (2.9) and (3.7) are also incompatible.
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Further we consider the case (3.8). The contraction of D,,; = 0 with g™ and the use
of (2.9), (2.1) gives Ry t™t’ = % (o, u4"u,— ;). Contracting (3.1) with ' and using
2.9) and R" " = 3(0 "uy—0,) we obtain ¢, = ¢ u"u,. This relation contradicts
equation (2.9). Consequently equations (2.9) and (3.8) are incompatible.

We considered all cases (3.9), (3.10), (3.7) and (3.8). In all the cases we have obtained
contradictory relations. Therefore the equation (2.9) does not satisfy either (3.2)~(3.4) or
Einstein’s field equations.

¢) The state of fluid with ¢ = const, p # const.

If P, # P,u"u,, the equation (2.10) does not contradict the conditions (3.2)-(3.4)
when the relations (3.5)-(3.8) are valid.

If P, = P ,u"u, equation (2.10) satisfies (3.2)-(3.4) when the relations (3.7)~(3.8) are
valid.

However, for a definite conclusion it is necessary to consider the details.

Let P, = P u"u; and ¢, = 0. If g, = 0, it follows from ¢ u"+(¢+p)8 = O that
6=0.1f 0 = 0 and P, = P,u"y, it follows from (2.2) that

u,-;k = o.ik' (3,16)
The integrability conditions of (3.16) are
Oitsnn = 7 W'Ruia- (3.17)

Contracting (3.17) with g* and using (2.1) gives

+3P
o = Sy, (3.18)
2
. . : . o+3P .
The contraction of (3.18) with z and the use of u'o;; = O gives 0 = — . It is impossi-

ble because o > 0, ¢+ 3P > 0. Consequently P, = P "y, and (2.10) are incompatible.

Now let us assume that P, # P "y, and the condition (3.5) is valid. Contracting
(3.1) with P’ and using (3.5), (2.10) gives P01y = 0 or P, = 0. Simultaneously we
have u"s,, = 0 and P"s,; = 0; that could be possible if o, = 0. In this case it can be
shown that the conditions (3.5) and (2.10) are compatible. Consequently the equation
of state (2.10) does not contradict Einstein’s field equations.

Similarly it can be shown that equation (2.10) does not satisfy the conditions (3.6)—(3.8).

d) The state of fluid with P, = 0, ¢, # 0.

Generally speaking in this case we have either g, = @ ", or o, # @u'u. If
Qx # o'y, equation (2.11) does not contradict the conditions (3.2)-(3.4) when the
relations (3.9), (3.10), (3.7) and (3.8) are valid.

We first consider the case g, # ¢,u"u, and (3.9). Contracting (3.1) with o' and using
(2.4), (2.11) gives @"ry = 0, where

Pakt = 5 Q" 8upity — 2(0 + P)0 .

From @y = 0, u'ryy = 0 we have r, = 0. It follows from r,, = 0 that g u" =0
and g,; = 0. Simultaneously it follows from ¢ " = 0 and ¢ 4" +(¢+P)6 = 0 that 0 = 0.
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If0=0,P, =0, o, =0, the equation (2.2) takes the form u;, = 0. From the integra-
bility conditions of the relations u;,, = 0, w4, = $1"R,5 = 0, it follows that ¢+3P = 0.
This is impossible. Consequently ¢, # ¢,u"u,, (2.11) and (3.9) are incompatible.

Similarly it can be shown that the conditions (3.10), (3.7), (3.8) and g, # ¢, u,
(2.11) are also incompatible.

If 0, = ¢4 u,, the equation of state (2.11) does not contradict the conditions (3.2)-
—(3.4).

Thus we have shown that the following equations of state satisfy the conditions
(3.2)~(3.4) or Einstein’s ficld equations: 1. 0, =0, P, # P u"u, #0, 2. P, =0, o,

n
= 0 U U.

=4

4. The equations of state with ¢, = ou"u,, P, = P, u"u,
and @~ 0 u"u, = a(P— P u"uy)

The equation of state (2.12) and (3.2)-(3.4) are compatible in all cases. Moreover
the equation of state (2.12) satisfies the thermodynamically correct condition ¢ = o(P).
For this class of equations of state it can be shown that

umankI;n = 0: Pmankl:n = 05 QmR"mkl;n = 0 (41)

The conditions (4.1) imply that the gravitational field of an irrotational perfect fluid
satisfying (2.12) are conformally flat.
Now we consider the equation of state (2.13). Here we use the formalism of the differen-

tial forms. Besides, we use some results of calculations which were obtained in [13].
Let

o = wdx' (4.2)

be the differential form of the I-st order, where u; is the velocity field satisfying (2.2) and
dx' is a basic form of the 1-st order.

-~

. . . clu; i
According to the definition we have dw = —, d¥* A dx' = u;,dx* A dx', where dw
ox

1s the differential form of the 2-nd order. Using (4.2), we see that
—2dw = aydx' A dx*, 4.3)

where dy = u;, —u, ;. Moreover, from (2.2) it follows that @y = fuy—t;. Hence we
obtain det (a;) = 0. In this case, by virtue of theorem 2 (see [13], p. 415), we have Pf (a;,)
= 0, where Pf(a;) is the pfaffian of the tensor a,.

The relation Pf(ay) = 0 means that g4, = 0. This, together with (4.3), gives
do A do = 0. Consequently, the differential form o is the form of class 3 (see [13], p. 414).
In this case the Darboux Theorem implies that there exist three independent functions
7, @, 11 such that o = 7;+n¢,; (see [13].

It follows from u; = 1;+n¢; that a, = n,¢,,—n.p,. Moreover, we have a; = ru,
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—tu; from (2.2). The relations a4 = n,9,—%,:p, and @y = tay,—tu; are different
presentations of the same tensor a;,. Comparing dy = #,9,,— 1,9, and ay = tu,—ty,
we get u;;, = u;and t;, = t;. If u;, = u, ;, we have by virtue of w,u" = 1 that ¢; = u;,u"
= 0. This is valid only in the case when we could construct the antisymmetric tensor
@y = Uy, —Uzy from wu, . It is impossible only in the static gravitational fields of a perfect
fluid. Consequently the following theorem is valid.

In nonstationary gravitational fields of an irrotational perfect fluid the acceleration
of fluid particles is zero.

According to this theorem for nonstationary gravitational fields the equations of state
(2.13) are equivalent to (2.12).

Tor static gravitational fields we have ¢, # o 4", Py # P "y, 0 " =P " = 0.
In this case (2.13) becomes g, = oP;.

Generally speaking, the equations .of state ¢, = aP, do not contradict relations
(3.2)~(3.4), if either D,y =0 or u"R"pyy, =0, P"R'pun #0, "Ry #0 or
Pmankl;n =0, Qmankl;n =0, umankl;n # 0.

After more careful calculations one can show that the condition #”R",;., = 0 gives
the contradictory relation uy(e+P)y; = 0. This relation does not satisfy the conditions

PmR”mkl;n 76 0’ Qmankl;n # 0.

d
IfD,, = 0,wehaveo;, = 0,0 =0andx = o= 1. Consequently, in this case the equa-
.p

tions of state are ¢ = p+a, a = const and the velocity field equation (2.2) may be written
as
P ju

Uy = ———. 4.4
“= 4P (4.4)

I_f Pman“;" = Qmankl;n = 0, umanH;" ;é 0 we haVe from (3-1) that o-ik = 0, 0 = 0

d
and a = ?1% # 1. In this case equation (4.4) is also valid.

5. Conclusions

It is shown that the equations of state (2.10), (2.12), P = const, g; = @ ,u"u, # 0
d—g’ P " = g u" = 0 do not contradict Einstein’s field equations.
P
However, the perfect fluid satisfying (2.10) and P, = 0, g, = ¢,u"u, # O has unrealistic
equations of state. Such a fluid does not satisfy the condition ¢ = @(P). Therefore, the
thermodynamics of this fluid does not correspond to the thermodynamics of a real perfect
fluid.

The gravitational fields of the irrotational perfect fluid with the equations of state

and Ok = (XP'k, o =

d
(2.12) and g =aP,, a = % are physically realistic. These fields satisfy the condition

e = o(P).
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APPENDIX A
In this appendix we prove the validity of identities C",p., = 0. From (2.3) we have
3 (Ctmm + Climtont + Clitmans) = Riggstomy-
Using the Ricci identities in the above mentioned relation we obtain
Cittznim+ Climicmst + Clitminske = RutR%um+ Ry R+ Ry R (A1)

The contraction of (A1) gives
Cnmkl;n;m = 0.

Similarly we may obtain

n — n nm _
R kilin — R Liksno R klynym — 0.
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