Vol. B13 (1982) ACTA PHYSICA POLONICA No 1-2

SOME ANISOTROPIC HOMOGENEOUS MODELS
IN A MODIFIED BRANS-DICKE COSMOLOGY
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Adding the cosmological term, which is assumed to be variable, in Brans-Dicke theory
we have discussed different cylindrically symmetric models which are of Petrov type 1 or
Petrov type D. The physical and geometrical properties of these models have been discussed.
Finally these models have been transformed to the original form (1961) of Brans-Dicke
theory (including a variable cosmological term).

PACS numbers: 04.20.Jb

1. Introduction

After the cosmological constant was first introduced into general relativity by Einstein,
its significance was studied by varions cosmologists (for example, [1]), but no satisfactory
results of its meaning have been reported so far. Zeldovich [2] has tried to visualize the
meaning of this term from the theory of elementary particles. Further Linde [3] has argued
that the cosmological term arises from spontaneous symmetry breaking and suggested
that the term is not a constant but a function of temperature. Also Drietlein [4] connects
the mass of Higg’s scalar boson with both the cosmological term and the gravitational
constant. In cosmology, the term may be understood by incorporation with Mach’s prin-
ciple, which suggests the acceptance of Brans-Dicke Lagrangian as a realistic case [5).
The investigation of particle physics within the context of the Brans-Dicke Lagrangian
[6] has stimulated the study of the cosmological term with a modified Brans-Dicke Lagran-
gian in cosmology and elementary particle physics. Recently Endo and Fukui [7] bave
studied the variable cosmological term from the point of view of cosmology in Brans-
-Dicke theory [5] and elementary particle physics (especially in the context of Dirac’s
large number hypothesis [8, 9]).

In this paper we have considered the modified Brans-Dicke theory with the variable
cosmological term as an expl'cit function of a scalar field ¢ as proposed by Bergmann
[10] and Wagoner [11] and discussed in detail by Endo and-Fukui [7].
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The Brans-Dicke field equations with cosmological term Q are [7}:
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where the constant u shows how much our theory including Q(®) deviates from that of
Brans and Dicke and as usual w is coupling constant and 7j; is energy-momentum tensor.
Semicolons denote covariant derivative with respect to the metric g;; and commas mean
partial derivatives with respect to the coordinate x". The theory can also be represented
in a different form under a unit transformation (UT) [12] in which length, time and reci-
procal mass are scaled by the function 1/2(x). Then under the conformal transformation

8i; = gij = Pgy; (1.4)
equations (1.1)~(1.3) have the form

G;+3,;0 = Bn)T;j+5 (Qw+3) (A,iA,j—% gijA,kA'k)a (1.5).
A= 4T, A=logo 1.6
—(2w+3)u, = log @, (1.6)
2 R)REET) 8a(l—pu)
Q=(_(f_+__) (———#)DA=L(—”)T; 1.7
4 u 4

where the barred quantities are defined in terms of g; ; as their unbarred counterparts are
defined in terms of the unbarred metric g;; and all barred operations are performed with
respect to the barred metric and barred Christoffel symbols.

In Section 3 we have obtained a cosmological solution which is of nondegenerate
Petrov type L. In Sections 4 and 5 we have obtained two other models both of which
are of Petrov type D. Finally in Section 6 we have transformed these models to the 1961
form of Brans-Dicke theory [S].

2. The field equations
The cylindrically symmetric metric is considered in the form given by Marder [13]:
ds* = A*(dt* —dx*)—B*dy* - C%dz?, 2.1

where A, B, C are functions of x* = ¢ only. This ensures that the model is spatially homo-
geneous. The transformation ¢ — j A(t)d: brings the metric (2.1) into Bianchi type I form.
However, for mathematical convenience we retain the metric in the form (2.1). The energy-



-momentum tensor T;; for perfect fluid distribution is given by
T; = (@+P)ib;— pgy; (2.2)
together with
gud'v’ = 1 (2.3)

where p and g are the proper pressure and energy density respectively and & are the com-
ponents of the fluid four-velocity. We assume the coordinates to the comoving so that

1
t'=0=0*=0and #* = R Scalar field A is also taken to be a function of ¢ only.

The field equations (i.5) and (1.6) turn into
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The suffix 4 after 4, B, C denotes ordinary differentiation with respect to ¢. Equations
(2.4)-(2.8) are five equations in six unknowns 4, B, C, @, p and A. For complete determi-
nancy of the system one extra condition is needed. One way is to impose an equation of
state. The other alternative is a mathematical assumption on the space-time and then
the discussion of the physical nature of the universe. We shall confine ourselves to the latter
method in this paper and attempt three cases

(i) C1414 = C2323 =0,
(ii) C1212 = C1313,
(i) €1, = Cp3*?,

where C,;; is Weyl’s conformal curvature tensor. In cases (if) and (iif) the space-time
is of Petrov type D while in case (i) the space-time is of non-degenerate Petrov type I.
The conditions (i) and (i7i) are identically satisfied if B = C and A = C respectively.
However, we shall assume 4, B, C to be unequal on account of the supposed anisotropy.



3. The first model

This model is obtained under the condition C,** = C,;?® = 0 which leads to

A, B,, Csq  B.C,
2y = 22 22 . .
( A )4 2B 2C BC G

When we consider equation (3.1) along with (2.4)-(2.7) and proceed on lines similar to
Roy and Singh [14] we have the metric

ds? = 2179 (dt? —dx®) —1' *edy? — ' T9dz2, 3.2)

a and L being constants. The pressure p and density ¢ in the model (3.2) are given by
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where &k, is a constant.
For reality of p, g and A and the conditions ¢ > 0, p > 0 and ¢ > 3p to hold,

at<1, w<-%, 0>0 (epu>1 3.7
and
~ 3 » 3(a*-1) ~
— (1—a®)t" "3 sec?{ [ D < 20. 3.8
g < 4L2( a®) sec { 2G013) log (klt)} 0] (3.8)

The flow vector # of the distribution for the model (3.2) is given by

=2 =5>=0 = % ga?= 12, 3.9

Clearly 7/ = 0, so that the flow is geodetic. The rotation tensor wy; = ;;~7;; is zero.
The expansion scalar § = 47'; and shear tensor

0 = 5 (By,;+05,) — 0(gi;— b:0))



are given by
(3-d? Fa2=3)/2

0 = 3.10
37 (3.10)
and
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6L ’
033 = — (a*~3a) {@*-2a=1)/2,
6,3
044 = 0. (3.11)
Also the shear ¢ is
2,2
2 ; a (a”+3) aie
o’ = 30,07 = e 23 (3.12)
The nonvanishing components of conformal curvature tensor C,/* are
a(a*—1)
C 12 — C 34 — a2 3
12 34 4L2 ’
a(l-a*
C..13 = C,.2% = 73, 3.13
13 24 a2 ( )

Thus the model represents an irrotational, expanding universe with shear. The free gravita-
tional field characterized by C,; is also nonvanishing.
The pressure, density, scalar field and cosmological constant are singular at

(1) {\/(2@%3)}
t=(—)expin
k, 3@ —1)

The model exists for a finite time

1 1 Qw+3)
<k7> st (k_> exP {" 3(a— 1>} @49

When u = 1, the solution reduces to a simple Brans-Dicke analogue of the solution
due to Roy and Singh [14] in general relativity.

4. The second model

This model is obtained under the condition C;,'? = C;;'® which leads to
?ﬁ_&‘+2‘44 E‘*_E‘ = 0. 4.1)
B C A \C B
So we consider equations (2.4)-(2.8) along with (4.1).



From (2.4) and (2.5), we have

A A, (B, C,\ B., B.C
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Also from (2.5) and (2.6), we get

Equations (4.1) and (4.3) lead to

A\B c/)

Since B # C, equation (4.4) gives

A = N (const).
From (4.2) and (4.5), we have
B B,C
magipui b RN}
B BC

Equation (4.3) after integration gives

B4C—BC4 = kz,

(4.2)

(4.3)

(4.4)

4.5)

(4.6)

4.7

k, being the constant of integration. On substituting B/C = o, BC = f§ so that B*> = af,

C? = fa equation (4.7) reduces to

(-
(5L

ﬂ44 = 0,

From (4.6) we have

From (4.8) and (4.9), we get

which gives
B = (kst+b),

where k5 and b are constants of integration. From (4.8) and (4.10) one has

o = k4ﬁk2/k3.
Therefore

B2 = k4(k3t+ b)l-‘hkﬂk3

(4.8)

4.9)

(4.10)



and
2 1 1-ka/k
C* = — (kst+b) ~5/"
kq
Consequently the line-element takes the form

1
ds? = N2(dt* —dx?)— ky(kst+b)* T¥2/*sdy? — = (kst+b)! TF2/kagz2,

4

By the following transformation of coordinates
Nx—-x, Nt—t, ki?y->y, ki'z-:z

this line-element reduces to the form
k 1 +ka/ks k 1—kafka
ds*> = di*—dx* - (»]\% t+b> dy*— (75 t+b> dz?.

Now for the metric (4.14) the pressure and density are given by

k2—k32 2 12y T
8np = ( 2) sec2 3=k log {1 ks ks t+b)e | =<
ks oV 2 N

4< 3 t+b) 42w +3) i

k2—k2 2__ 2 k .
8np = _(k3 2) S sec2 (I; —k3) {ks (—3 t+b)} +Q.
4(_3 t+b) 4k3(2w+3) N |

Also the scalar field A is given by

e [l )]
= log sec [ 0w +3)log{k5 N t+b s

and

el (f—ki) zsec[ =13 | { (%Hb)}],
i Z(Ws . +b) 4Kk22w+3)

The model is real and the conditions @ > 0, p > 0, ¢ > 3p hold when

K>k, w< =32 0>0 (ie.p>1),

2_ 12 N
Q<-M sec? (k3 —k3) log { ks LI <20.
< ks )2 4k2Q2w+3) N
4(—=t+b ?
N

and

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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The nonvanishing components of the Weyl conformal curvature tensor C,* are

(k3—k3)
Ci' = Cpi» = kz—z ) 4.21)
6 (W t+b>
k2_k2
C1212 — C3434 — (k3 2) -
12 (7\;— t+b>
k2_k2
C1313 = C2424 = - ( l: ) 2°
12 <W$ t+b)
The flow vector #' is given by
it=0"=0"=0, =1, (4.22)

It satisfies z‘;fjﬁj = 0, so that the flow is geodetic. Also w;; = 0.

The scalar of expansion is
6= k3 t+b N (4.23)
IN . .

The non-zero components of shear tensor g;; are

k4 k3 -1
0y = IN —t+b) ,

Bk, +kj3) [ ks ka/ks
= — —— 2 _ " ¢t4+b ,
722 on \n'T
3k —k2/k3
o= B (k) @29
and the shear o is
k% +3k2 -2
o = (1—;—1\72)<N t+b> . (4.25)

Thus the model represents an irrotational, expanding universe with shear.
The pressure, density, scalar field and cosmological constant are singular at

‘N 1 Qo+3)
= (75) [_“ (i?) exp {“k3 R }]



1t

‘The model exists for a finite time

N 1 NT 1 QCw+3)

— | =b+ — <t < —| =-b+[—]e ky [ ————+1. 4.26

clre]e<i] (&) N feaes [l o
When u = 1, the cosmological term @ vanishes and the model (4.14) reduces to a

Brans-Dicke analogue of one of the models due to Roy and Prakash [15] in general relativ-
ity.

5. The third model

This model is obtained under the condition C,,'? = C,32?® which leads to

A C B,C A, (B C
Ta) _Tas T4 T4fTa T4 .1
A)J, C BC  A\B C
From (2.4)-(2.6) we obtain
A\ A,(B, C,\ B., B.C,
S+ s B =2y 52
(A )4 A (B C B ' BC (52)
and
B44 C44
= T 5.3
B C -3)

From (5.1), (5.2) and (5.3) we get

% (% - %) = 0. 54
Since 4 # C equation (5.4) gives
B = N’ (const). (5.5
Equations (5.1) and (5.5) give
<%>4+ A;g“ =0. (5.6)
From (5.3) and (5.5) we get
C = kgt+k, (5.7

ke and k, being constants of integration.
Equations (5.6) and (5.7) after integration give

A = M(kgt+k;)*"*, (5.8
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where M and K are arbitrary constants of integration. Consequently the line-element
takes the form

ds® = M*(kgt+k;)2X*e (dt* — dx?)— N'2dy* — (ket + k-)*dz>. (5.9)
By the following transformation of coordinates
ket+k, —>t, kex—x, Ny-oy, z-2z, ki'M->M
the line-element (5.9) reduces to the form
ds? = M**Xke(de? — dx?)y —dy* —1*dz>. (5.10)
Now for the metric (5.10) p, ¢ and A are given by

R S (—K)
8np = Ve 2+ K/ke) g2 { 2013 log (kgt)} -0, (5.11)
- K (-K) ~
8 = 32(1+K/k6) \/ k ! .
ng = e sec { 2013) fog( 8t)} +0 (5.12)
Also the scalar field A is given by
(—K)
A = log sec? {\/(2w+3) log (kgt)} , (5.13)
and
A (,u D 201+ Kike) 2 / (=K
¢ — ] .
0 = 4# [MZ sec Vw3 og (kgt) > |, (5.14)

kg being a constaht.
The model is real and the conditions § > 0, p > 0, g > 3p hold when

K>0, wo<-3, @>0 (e u>1 (5.15)
and
(-K)
0 < 22(‘”‘/"6) sec { (§w+:)%) log (kst)} <20. (5.16)
The nonvanishing components of Weyl’s conformal curvature tensor are
K
23 = 6
C1414 — C23 — 3_]\71_“2 t2(1+K/k ),
K
szu — ‘3434 3M2 22(1 +K/k5)’
2K
C1313 — C2424 = _ :’Wz 12(1+K/k6). (517)
The velocity vector #' is given by
1
= =92 =0, = Kk, (5.18)
M
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Clearly z';fjéj = 0, so that the flow is geodetic. The scalar of expansion 8 is given by

_ UKk kg
3M

0 (5.19)

The tensor of rotation w;; is zero. The non-zero components of shear tensor o;; are

| 2K>
ykG £"1

(1+ K)
— ke (1 +K/ke)
Ty LD
(K 1)
o —_— k’6 =z z(l_Kﬂ%) (5 20)
¥ 3Mm :
and the shear o is
1 K\ K
T [ e B e S Ak 5.21
TYE {( ks) ké} (>.20)

Thus the model represents an irrotational, expanding universe with shear.
The pressure, density, scalar field and cpsmological constant are singular at

‘= <_1 ox {7: (2w +3)
kg P 2 (-K) |~
The model exists for a finite time
1 1 2 3
(—)<t< — exp{fi \/( @+ (5.22)
kg kg 2 (—K)

When 4 = 1, we get a Brans-Dicke analogue of one of the models due to Roy and
Prakash [15].

6. Transformations of the solutions and discussion

Under the transformations

gij = 8ij = > g T;—-T;=oTy
T->T =T, p—p=d*p,
¢~ o =%, - =

¢
0- Q= a0, 7 =0t = @M% (6.1)
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the field equations (1.5)~(1.7) are changed into (1.1)~(1.3). We now apply these transfor-

mations to the solutions obtained in Sections 3,4 and 5.
The first model is transformed into

_ o f (3@ |
P = sec { 22013) log (k1t)f,

3@’-1) -,
gij = COSs { 4(2 +3) (k t)} gtp

1.e.

(a -D,
420+3)

3@®-1)
g3 = — { 3a )lg(ko}““

o
=
-
ll

log (klt)} ree,

4Q2w+3)

3@’-1)

= —COS
2 420+3)

" log(k, t)} trre

( 2—' ) —a?
844 = COS { m log (klt) thl 5

_ -3_ . 2y,4%—3 6 3( 2_ ) _(”’ 1)
8np—4L2(1 a“t sec { /m)lg(k t)}[l 2—M:|,

= 3 iy e \/@ (1)
8re = ;z(1—a’)t sec{ 10T3) log(klt)}I1+Tu],

vl — UZ — U3 — 0, 1)4 — ¢1/21—}4

1 (a2—-1)
v*=—1t 2 sec i—~—)
42w+ 3)

L
(I" ) a2 3 4 \/ 3(02 - 13
Q= 4# ‘:ZLZ (1—a*)t sec { 4201 3) log (klt)}} .

The second model is transformed into

(k3—k3) { ks

b =sec?| |2 ool (X2
se¢ [ aK22o+3) BN t+b)} ’

K2=K3) ks
j=cos?| [~ " log{ks|— Fi:
8ij = €08 [ 4202w+3) B S(N H'b) }g“’

log (klt)} ,

(6.2a)

(6.2b)

(6.2¢)

(6.2d)

(6.2¢)

(6.32)

(6.3b)



i.e.
(k3 —K3) ks ]
2
— 2 k[ =2
811 = 8 4220+ 3) S\'N t+b> 1K
(=KD ks (ks )
= —cos?| [—2—* loglks|— t+b =3
g2z = —005" |\ 3oy OB e LN TR\ R ’
(k3=15) ks N (ks )
—cos?t [—2 " fogldk. | — 3
233 cos IE00+3) og ks | t+b N\~ t+b ,
(k3 —k3) ks
= cos? A | kol =
Bas = COS [ et L ]
2 2 - ., 2 4o+ ~
8ap = —(ki—ﬁ_se@ (k3—k3) ks (=17
np P 2 N i2Ga13) o8 2 14b 1-—],
4<7vit +b> 4k22w+3) N 1L |
(k3—k3) [ (K= k2
810 = — 20 5 sec’ (kz—k3) log ~3-t+b (” 1.
432w +3) N | 2 f

4(—"’\—3t+b) L

k2—k2
=0 =0 =0, ov*=-sec [\/4l(c§(2w-:)3) log {ks( t+b>}] ,
(k3—k3) sec |: {k (
2 t+b)}:| .
ey (k—3 t+b) ’
N

In the third model we have

& = sec’ {\/ (=K) log (kgt)
(Qw+3) 8
L [EB
gij = COS {\/(2 +3) log (kg )} Jijs
2 ( K) 22K/k6
—COS {\/(2 3 log(kst)}M

= —cos® {\/( K) log (kgt) ¢,
(Qw+3) s
LR
833 = —COS {\/(2 +3)10g( 8‘)}

(E—k%)
4k2(2w+3)

log

i.e.

811 T

15

(6.3¢)

(6.3d)

(6.3¢)

(6.4a)

(6.4b)
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(—K)
844 = cosz{ 20T log (kgt) p M*1*K/ke,

_ K aaikme 6 \/NS’K) )
Snp—Mzi sec (2w+3)log(k8t) 1 —-——2H R

_ K ke e{\/ (=K) }[ (p—1)]
ST[Q - Mz ! sec (2(D+3) log (kﬂt) 1+ 2# )

1
v' =0t =0 =0, o¢*= iRk

sec{ -(»_—K—)— log (k t)}
M QRw+3) s

0- (#;11)[_2]‘5(7 5201+ K/ke) sec“{ (=K) log (kst)}].

(2w +3)

The reality conditions should also be imposed on the solutions in (6.2), (6.3) and (6.4)

similar to those in Sections 3,4 and 5.

7. Discussion

When u = 1, the cosmological term vanishes and the models (6.2), (6.3) and (6.4)
reduce to cylindrically symmetric universes with p = g in the 1961 form of Brans-Dicke
theory discussed by Singh and Rai [16]. All the models obtained in this paper arc new
and like other models with p = ¢ they may be used in the relativistic cosmology for the

description of very early stages of the universe expansion.

Editorial note. This article was proofread by the editors only, not by the authors.
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