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PHASE-VARIABLE EQUATION FOR THE BOUND-STATE
PROBLEM OF CONFINEMENT POTENTIALS

By A. A. ATANASOV
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The method of phase-variable equations has been used for the bound-state problem
of confinement potentials. An equation yielding the bound-state spectrum for the confine-
ment potential has been obtained.

PACS numbers: 03.65.Ge, 14.40.Pe

1. Introduction

Several long-range models of quark confinement have been considered with particular
emphasis on gluon exchange analogous to Coulomb and linear potenials. It is often instruc-
tive in particle physics to keep nonrelativistic analogues describing the bound-state system
by the Schrédinger equation in mind. It has been suggested that the study of the dynamics
of a nonrelativisic two-particle system under the influence of confinement potentials may
have some interesting bearing on the phenomenological aspects of a hadronic system such
as charmonium [1]. :

Various authors [2}, [3] have independently given first-order, non-linear differential
equations for the phase shift in the case of short-range potentials. They are superior to the
Schrédinger equation formulation for numerical computation because the quantity desired
is obtained directly rather than inferred from the coefficients of oscillating terms in the
wave function. The phase equations are useful for analytical purposes such as deriving
approximations, variational principles, and studying complex “angular momentum.

The aim of our investigation is to offer a version of the phase method for a bound-
-state system of two-body nonrelativistic spinless particles interacting by the confinement
potential.

The applicability of the phase method to the bound-state problem of the confinement
potential has been discussed in Section 2. In Section 3 the formal series method is applied
to approximative solving of the phase-variable equation for confinement potential.
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Bulgaria.

75)



76

2. Phase-variable equation

In order to discuss the bound-state problem for the confinement potential

o
V(r) = — - +pr, 05
we shall consider the radial Schridinger equation
d*y
R [E-V(n]y =0, %))

where as usual i = ¢ =1 and the reduced mass M = . If the potential contains a centri-

I(I+1
fugal term (—2— )— the same method may be used after substituting I(/+1) - (I+1)%
r

Consider the boundary conditions [4]

p(0) =0, y(o0) = 0. v 3)

It is convenient to introduce the two new parameters defined by the relations

d
P0) = A@)sin g(r), = = kA() cos g(1), @)

where k = E'/2, Then from Schrédinger’s equation (2) it is easy to obtain the phase equation

d
df k- —I(c—) sin? o(r). (5)

Before discussing it further it is worth writing down some expressions for the wave
function at infinity and in the neighbourhood of the classical turning point. At distances

o o
well above the point \/ —l——l— the Coulomb term — — is negligible in comparison to the
r

linear potential. Therefore, at r > \/ —— the solution of (2) can be approximated by

mw=MQ“G—%», ©

where Ai(z) is the Airy function, defined by

o

1 %3
Ai(z) = . J cos (zx+ —;) dx. (7
0

In the neighbourhood of the classical turning point the equation (2) can be written as

dztp
X —r—aw =0, ®
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where
_ dv _ a +p 9
T= dr /.-, T ' ©)
The solution of (8) is of the type (6):
y. = Ai(y’(r—a)). (10)

The values of v, and y, at r = a are

n , y3'er(%)
y(a) = Iy’ y(a) = — T (11)
Therefore the solutions (6) and (10) are connected by the relation
vo= wy BT HERT —y 28 a) (12)

and both tend to 0 at infinity.
To obtain an equation for the eigenvalues E, we consider the solutions of (5) satisfying
the boundary conditions:

Po(0) =0,  @y(0) = 0. (13)

Having in mind that the wave function v is continuous at every intermediate point r* within
the interval 0 < r < o0 we have

(pO(Em r*)”‘ qaoo(Em r*) = K(n + 1) (14)

When the intermediate point r* coincides with the classical turning point the equation (14)
for the eigenvalues should be written down as:

@ola) +arc tg (ky~**1.370) = n(n+1). (15)

The phase function gy(r), determined by a boundary condition at the origin can be approxi-
mated by iterations or by the variational procedure. In the next Section we shall consider
the formal series method for approximating the phase function.

3. Approximative solving of the phase-variable equation by the formal series method

To solve equation (15) in the interval [0, @] with the boundary condition ¢(0) = 0,
we obtain after integration

@(r)+Glr, p(r)] = 6(r), (16)
where

6(r) = kr, G[r, ¢(r)] = fzfg) sin? g(r)dr. an
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The functional G[r, ¢(r)] can be represented as a Volterra series:
1
G[r, ()] = z rFJ. J‘G,,(r; X1y Xgy oeny X)@(x1) ... @(x)dxy ... dX,. (18)
nx2

The solution of equation (16) can be represented by the ratio of two power series of the
coupling constant [5]-[7]:

Pk, r) 2, P

o(r) = Q(;c) =2 (19)

M

where

P(k,r)=Fexp{—fdyW}g(r)_ (- 1)J‘ Id .

o0(y)
m j del v dxpL(xY, 0(x)) ... L(x,, 6(x,)), (20)
N L B = P
n= 0
X m 6[ es J dx'l wes dx,',L(x;, 0(x'1)) .. L(x,',, e(x:'))’ (21)
s V(x)
( 0( )) -T s1n G(x) (22)

and the symbol T indicates that all functional derivatives must be on the left, acting thus
on all tunctionals which are put on their right.

The approximation obtained is valid for the strong coupling constants « and . When
the numerator and denominator of (19) are replaced by N-th degree polynomials instead
of the corresponding infinite series. of the coupling constant, the N-th diagoral Padé
approximant type of approximation is obtained. We shall use this approximation by trun-
cating the coupling cor.stant at the first degree in both the numerator and denominator.
It is an easy exercise to verify that

Po(k, d) = ka, (23)

k%a®  kasin 2ka
4 4

Pk, a) = % (In ka—Ci(Qka)+C)— Eﬁ; ( —cos 2ka —}-%)

aa [ . 7 pa .
+ 03 (51 (2ka)+ 7) - Py (sin 2ka —2ka cos 2ka), (24)
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Q=1 25
=M% oka+ T B (sin 2ka—2ka cos 2%
0, = ?[i (51( a)+ _2—):] ~ (sin 2ka —2ka cos 2ka), (26)
where
i (o) = f Bl Cie = f L an @7

and C is the Euler constant.
In the first approximation the equation for the eigenvalues E, is:

b (a) +arctg (ky™*/* 1.370) = n(n+1), 28
where
P,+P
(1,1 _ 0741
¢ ZoTTt (29)
° Qo +0Q,

As an example we shall discuss the case when o« = 0. Upon introducing dimensionless
energy and distance parameters

e=p"*E, o=p"r (30)

the numerator and denominator in this case can be represented as

sz 1 e &?sin2e¥*  cos2e¥? |
PQ+P1 = & nd 6‘—3/2

4 4 8 :
— 1 (sin 2¢%% —26%/? cos 2¢%'%), 31
1
Qo+Qy = 1= o573 (sin 267/~ 26/% cos 267%). (32).

By solving the equation (28) numerically, we get ¢ = 1,89 while the first zero of the Airy-
function Ai(—s¢) is ¢ = 2,34,

4. Conclusion

The energy eigenvalue problem associated with the confinement potential is related
to the study of a first-order nonlinear differer:tial equation for the phase shift. The formal
series method has been used to solve the phase-variable equation obtained. This method
seems to be well adaptable for computatioral purposes. In the near future we are planning,
to program it for the next order approximations and describe the charmed particle spectrum.,



80

REFERENCES

{1] E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, T. M. Yan, Phys. Rev. Lett. 36, 500 (1976).
{21 F. Calogero, Variable Phase Approach to Potential Scattering, New-York and London 1967.

[3]1 V. V. Babikov, Metod Fazovykh Funktsii v Kvantovoi Mekhanike, Moskva 1976.

f41 V. B. Uvarov, V. J. Aldoniasov, Zh. Vychisl. Mat. Mat. Fiz. 71, 436 (1967).

[5] M. Dubois Violette, Preprint Marseille 69/251 (1969).

[6] M. Dubois Violette, J. Math. Phys. 11, 2539 (1970).

{71 A. A. Atanasov, K. I. Ivanov, Acta Phys. Pol. B6, 129 (1975).



