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Spin and isospin stability of dense neutron and nuclear matter with hard core interaction
of radius c is investigated with the Iwamoto-Yamada-Jastrow method. Different correlation
functions for two nucleons with identical and nonidentical third components of spin-isospin
are used. Neutron matter shows spin stability. Onset of spin and isospin instability of nuclear
matter is predicted at kpc & 1.1.

PACS numbers: 21.65.+f

1. Introduction

In our recent work [1] (hereafter to be referred as I) the problem of spin stability of
neutron matter (NM), and of spin and isospin stability of nuclear matter (NM) was investi-
gated. In particular, it was found out that for NM with hard core interaction there is
a possibility of an instability at high densities. The conclusion, however, was not definite
because at these densities the applicability of the methods applied in I was doubtful.

One of the conditions for the occurrence of spin instability of NM, considered in I, was

A = E(t, = 1)]N—E(x, = 0)/N < 0, 1.1

where E(x,) is the ground state energy of NM with spin excess a, = (N;—N,)/N.

In case of NM, there are three types of polarization: spin (o) polarization, isospin
(v) polarization, and spin-isospin (o7) polarization, measured respectively by the param-
eters: a, = (4,—~A4,))/4, %, = (N—Z)/A4, and a,, = (N\+Z,—N —Z,)/A. The condition
for the occurrence of x-instability (x = o, 7, 67), analogous to (1.1), is

4, = E(x, = 1)JA—E (% = 0)/A <0, (1.2)

where E,(z,) is the ground state energy of NM with a given value of a,.
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In the Jastrow method of calculating the ground state energies in (1.1) and (1.2),
we used in I the Iwamoto-Yamada (IY) [2] cluster expansion with state independent
correlation functions (cf’s) f(r;;). However, even the simplest state dependence of the cf’s —
different cf’s in different spin-isospin states of the two nucleons — could change the results
obtained for 4 and 4,, and the conclusions reached in 1. Notice that both 4 and 4, are
differences of two big numbers, the ground state energies of polarized and unpolarized
states, and an accurate calculation of these energies is essential for obtaining reliable
results for 4 and 4,.

In the present paper, the o stability of NM and the « stability of NM for hard core
interaction is reinvestigated with spin and isospin dependent cf’s. In the case of NM, the
two-body correlation operator is assumed to be of the form:

fx’j = fri)) 1 +0.6,)2+f(r;;) 1~ 0.,0,.)2, (1.3)

with two cf’s: f{r;;) and f(r;;) for parallel and anti-parallel spins of the two correlated
neutrons respectively. In case of NM, we assume for f; a similar form which involves
not only spin projection operators of Eq. (1.3) but also analogous isospin projection
operators. This simplified ireatment of the spin and isospin dependence of the cf’s (applied
before, e.g., in [4] in the problem of liquid 3He) has the advantage that all our cf’s commute.
Consequently, the LY ecalculation of 4 and 4, requires only minor modification of the
procedure presented in 1.

In Section 2, we outline the 1Y method of calculating ground state energies of polarized
and unpolarized NM and NM for Wigner type two-body interaction, in the case of spin-
-isospin dependent cf’s of the type given in Eq. (1.3). In Section 3, we present and discuss
results obtained for 4 and 4, in case of a pure hard core interaction. Expressions for the
energy expectation values, obtained in the IY approximation with our spin-isospin de-
pendent cf’s, are listed in the Appendix.

Our main result is the predicted occurrence of k-instability of hard core NM at high
densities. Thus the suggestion of I is confirmed by the present improved analysis.

2. Calculation of energy

We apply the Jastrow method, and approximate the ground state energies in instability
conditions (1.1), (1.2) by expecctation values of the hamiltonian H,

&, = CYJHIY D KY YD, 2.n

calculated with Jastrow type wave functions ¥,. By v we denote the spin-isospin degeneracy.
All our equations are written for the case of a Wigner type two-body interaction
v(r;;) with a hard core radius c.

(a) Neutron matter

In the case of NM we have

E(,=1)=&,-1, E(@,=0)8,-, .2
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To calculate &, ,, we could start with the Jastrow Ansatz for ¥, with the two body
correlation operators given in (1.3). However, in the case of spin independent v, we may
consider the N/2 spin up neutrons and the N/2 spin down neutrons as different particles,
and write the Jastrow Ansatz in the form:

Y.l ...N)= Hf("'i) H Jri) ]:I Jf(r;p)@,(1 ... N)2)d,(1 ... N/2), 2.3)
&j i< i<i

where 7, i’ (j, j') denote spin up (spin down) neutrons, and &, (1 ... N/2) are Slater determi-
nants of N/2 spin up {spin down) neutrons. Each of the indices i, ..., j assumes values from
1 to N/2.

The energy &, -, consists of three parts: the energy of spin up neutrons, the energy
of spin down neutrons {these two parts are equal), and the interaction energy between the
two types of neutrons. By applying to each of them the IY cluster expansion, we obtain:

&y = Fep N +ED+8Y, (2.4)
where & = N for NM (N = A for NM). The Fermi energy
Epy = hzklz"v/2Ms (25)

where the Fermi momentum &g, is connected with the density ¢ (number of particles per
unit volume) by

ki, = 67%o/v. 2.6)

Expressions for the two-body cluster energy &', as well as for &>, are given in
Appendix.

To determine the cf’s, fand f, we follow the procedure of I. First, we find f and f which
minimize &{¥,/N with subsidiary healing conditions (see Appendix for definitions of
7y and 7,),

e jdr(1—f?y, = const, (2.7

o f dr(1-f%)7, = const, (2.8)
imposed on f and f. Second, we determine the two Lagrange multipliers connected with
conditions (2.7) and (2.8), f* and B?, by minimizing &2 +&¢>.

The minimization of &$* with the subsidiary healing conditions leads to the following
Euler equations:

af (2 dy, |\ df ,

e + \E + Va %)—dz —z Uffep,—B(f—1) = 0. 2.9
a’f  2.df |
a + R ‘;E -z tf [ep,—P*(f—1) = 0, (2.10)

where { = kg,r. For spin unpolarized NM v = 2 in Egs. 2.1-(2.10).

The energy of spin polarized NM, &, . 1» depends only on one cf, f, and the calcula-
tion of &,., presented in I is not affected by the spin dependence of the ct’s, Eq. (1.3).
Consequently, in calculating 4, we use for &,_, the results of I.
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(b) Nuclear matter

In the case of NM, we have
Efa, =1)=&Eyon, Efo, =0) =2 6,y 2.11)

The calculation of &,., has been described in Section 2(a). To calculate &,-, we
closely follow the method of calculating &,.,. Obviously, we could generalize the two-
-body correlation operator, Eq. (1.3), by introducing isospin projection operators. However,
in the case of spin-isospin independent v, we may consider the 4/4 spin” up neutrons, the
A/4 spin down neutrons, the 4/4 spin up protons, and the 4/4 spin down protons as diffe-
rent particles, and write ¥ (1 ... 4) in a form obtained by generalizing Eq. (2.3) to four
different kinds of particles. Although we now have four types of particles, we have only
two distinct cf’s: the cf of a pair of identical particles f, and the cf of a pair of different
particles f. The energy &,_, is now four times the energy of 4/4 identical particles plus
six times the interaction energy between A/4 particles of one kind with 4/4 particles of
a different kind. By applying the 1Y cluster expansion to each of the two parts of &,_,, we

obtain for &, -, Eq. (2.4) with expressions for {2, and &{¥, given in Appendix. The cf’s

fand f are determined as in case of v = 2. The healing conditions, Eqs (2.7)—(2.8), and the
Euler equations, Eqs (2.9)-(2.10) remain unchanged (except that now v = 4).

3. Results and discussion

In the case of pure hard core interaction of radius ¢, considered here, the solution
of Eq. (2.10) (with v = 0), which vanishes at { = x = kg,c and approaches unity at large
distances, is:

JQ) = —exp [- P&~/ (3.1.)

On the other hand, Eq. (2.9) for f has to be solved numerically for a few values of .
With these functions f and f, &{ + &> was calculated, and the values of f# and B were

TABLE 1
Results for energy compared with those obtained in 1 and in the x3-approximation
v X B B e | e | Ev | Eqy | Eud)n | e®je@
2 1.01 1.1 0.6 0.39 0.19 1.18 1.23 1.16 0.50
1.26 1.1 0.7 0.59 0.38 1.57 1.64 1.50 0.64
1.39 1.1 0.7 0.71 0.52 1.84 1.91 1.72 0.74
1.51 1.1 0.8 0.85 0.71 2.16 2.24 1.96 0.84
1.76 1.1 0.8 1.15 1.27 3.03 3.11 2.57 1.11
4 0.8 1.5 0.9 0.77 0.41 1.77 1.81 1.72 0.54
1.0 1.5 1.0 1.07 0.79 2.46 2.52 2.30 0.74
1.1 1.5 1.0 1.24 1.07 2.91 2.98 2.75 0.86
1.2 1.5 1.0 1.44 1.41 3.45 3.53 3.20 0.98
1.4 1.5 1.1 2.87 2.37 4.84 4.94 4.30 1.10
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determined for which &(®4- &> attains its minimum. The whole procedure was repeated
at each density considered.

Results obtained for &, = &,/¢g,, together with the optimal values of § and B, are
shown in Table I which also contains results obtained in I, &,(I), and in the x3-approxima-
tion, &,(x?). (The x3-approximation is the known cubic approximation of the expansion
of &, in powers of x = kgc — see, e.g., 1.) The resulting values of A/ep, and 4,/ep, are
shown in Figs 1 and 2 in the interesting ranges of x, = kg,c. (Values of &,.., for calculating
A were taken from I).

We settle the question of the range of reliability of our results similorly as in 1. We
consider our results as unreliable in the range x, > X, in which &/ > 1 (we have

JHI)
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Fig. 2. The function Ay/eFs (notation as in Fig. 1)
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X, =23, ¥, = 1.67, and X, = 1.22). As tar as the x3-approximation is concerned, we
expect it to be meaningful only for x, < 1. The broken parts of the curves in Figs 1 and 2
lie in the regions in which we consider the results to be unreliable.

Our present results confirm the spin stability of dense NM treated as nonrelativistic
hard core gas. Actually, Fig. 1 reveals a greater spin stability of NM according to our
present results (curve J) compared to the results of I (curve J(I)). The reason for it is that
our present more flexible correlations, Eq. (1.3), lower the expectation value of the energy
of unpolarized NM, whereas this flexibility is ineffective in case of spin polarized NM.

In case of NM the flexibility of our present correlations is effective in both polarized
and unpolarized states. Notice that in, e.g., spin polarized NM (v = 2) there are two
possible intrinsic states of each nucleon: the proton (p) and the neutron (n) state, and
accordingly there are four possible intrinsic states of a pair of nucleons: pp, nn, pn, np.
In the first two of them the two nucleons are correlated by f, and in the remaining two
by f. Consequently, we cxpect f and f to appeare in our calculation of &,_, with the same
weight 1/2. The same argument applied to unpolarized NM (v = 4) suggests that here
fand f should appeare with weights 1/4 and 3/4 respectively. This, in fact, is revealed in
expression (A.1) for £». Obviously, introducing two different cf’s, fand f, should be most
important when the two cf’s appear with the same weights, i.e., in polarized NM. This
explains why introducing two cf’s lowers &, .., more than &,_, (compare &, and &(I) in
Table 1). Consequently, the resulting values of 4,, curve Jin Fig. 2, lie below those obtained
in I, curve J(I) in Fig. 2.

Our present results confirm the suggestion of I concerning x-instability of NM. At
x4 = 1.1 4, changes sign. Since it happens at the point where £(>/£(» =~ 0.86 (0.74) for
v = 4(2), we hope that our calculation of 4, at this point is still reliable. Consequently,
we expect at x, = 1.1 the onset of o, 7 and o7t instability of NM treated as nonrelativistic
hard core gas. (For ¢ = 0.4(0.5) fm, x, = 1.1 corresponds to about eight (four) times the
equilibrium density of NM).

APPENDIX
Expressions for &2 and &3

We apply the Clark-Westhaus [5] form of the kinetic energy. We denote the number
of particles by A (& = N for NM, and 4 = 4 for NM).
For the two-body cluster term, ¥, we have:

éagz)/-/V =30 j drip{wiy (ke +(v=DW 7.}, (A.1)
where 7, and 7, are the radial distribution functions in the absence ot interaction for identical
nucleons (i.e., with the same third components of spin and isospin) and nonidentical
nucleons respectively,

Po(kpi12) = [1_l(ka"12)2]/'V, Py = 1/9, (A2)
where

i(kpyri2) = 3j(kpyri)(keri2) = 1h2 (A.3)
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The effective two-body potentials between identical and nonidentical nucleons,
w,, and W,,, are:

Wiz = f(ri2)20(r2) + (W2 M)f'(r2)?,

W2 = fri2)2e(ri)+ (W2 MF(r5) (A4
In presenting the results for &', we apply Clark’s notation (sce, e.g., [6]):
&3 = (1-17/105)8py + E o+ G, (A.5)

where the four-body term linear in 4 = f2—1 and h = f?—1 (approximated, as suggested
in [3]) is included into &,,, and

Enl A = (R*2M) (e/v)* [ dryadrysroF s { S5 fraf (2 fiafis(1+ 2000505, — 203, = 133)
+200= D fi2 S 2 J i T =B+ (=D 35 o 12 fis fla(1=133)
+(v—1) (V-z)fzzsflzﬂzfxaﬂs}, (A.6)
En N = (0/v)? [ drypdr s{wiohis(lalysls — 33)—(v—=D#,h,505:), (AT
Euml N = F (@) [ dryadr 3{w;o[hyshys(1-13,
+ 211505305 =2153) +(v— 1) 3h,5(1 = 13,)]
+W1,[2(0— DA 3hy3(1 = 53) +(v—1) (v—2)h3h55 ]} (A.8)
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