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1. Introduction

In these lectures I shall not talk about perturbation expansions, Feynman diagrams,
renormalization etc. for gauge theories. There are several review articles and books which
cover these aspects. Rather I shall talk about the formal quantization of general gauge
theories. After all there are other gauge theories than Yang-Mills which are of physical
interest like e.g. gravity, relativistic particles and strings. Now the most general mathe-
matical characterization of a gauge theory is in terms of Dirac’s constraint formalism
[1-4] within the Hamiltonian formulation. There a gauge theory is a Hamiltonian system

* Presented at the VI Autumn School of Theoretical Physics, Szczyrk, Poland, September 21-29,
1981, organized by the Silesian University, Katowice.
** Address: Institute of Theoretical Physics, S-412 96 Goteborg, Sweden.

(669)



670

with first class constraints. Of course, such a formulation has geometrical consequences
inherent in it which must be consistent with the physical interpretation. (In Ref. [5] an
example of such an inconsistency is describéd.) However, these geometrical and physical
interpretational aspects will not be discussed in these lectures.

In many gauge theories the fermionic degrees of freedom play-an important role.
The supersymmetric theories are e.g. represented by supergravity, supersymmetric Yang-
-Mills, spinning relativistic particles and strings. In these theories the fermionic degrees
of freedom are classically represented by odd Grassmann variables. Such fermionic degrees
are straight-forward to include within the general formalism provided they are of even
number such that one may define a phase space as in the bosonic case [6], and provided
that the leading terms in the constraints are at most linear in the odd Grassmann variables.
If the latter propearties do not hold th: fermionic degrees introduce completely new
proparties in the quantization procedure.

The content of thz lectures may shortly be described as follows: First the key ingre-
dients of Dirac’s constraint formalism are reviewed. Then some important properties of
general gauge theories are mentioned. Since we want to relate Hamiltonian properties
to Lagrangian ones, we find it convenient to define standard Lagrangians for general
gaugs theories. N2xt we turn to the canonical quantization of gauge theories both within
the operator approach and in terms of Feynman path integrals. The transition to standard
Lagrangian forms of the path integrals are also given. Then we consider the covariant
quantization of gaug: theories which played such a decisive role in the development of
a consistent quantum Yang-Mills theory. The most general setting for the covariant quan-
tization procedure has bzen given by Fradkin and Vilkovisky. We review their construc-
tion and show that the end result is equivalent to that of canonical quantization. Since
th: global BRS-invariance is the crucial ingredient of this approach, BRS-quantization is
a more appropriate name than covariant quantization.

Throughout these lectures the general treatment will be in terms of systems with
finite dzgrees of freedom. The generalization to infinite degrees of freedom (field theories)
is straight-forward.

2. Dirac’s constraint formalism {1-4]

Consider a gzneral mechanical system with n degrees of freedom described by the

generalized coordinates ¢'(t),i = 1, ..., n. If the Lagrangian satisfies the condition
2L

Det 0 2.1

prr # 2.1

we have the standard case in which the Buler-Lagrange equations may be given the form

4’ =f4q, q), i.= 1, ..., n. The transition to the Hamiltonian formulation is obtained by

replacing the velocities ¢' by the conjugate momenta p; defined by

oL

pi = -a—q' . 2.2)
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Due to (2.1) we may invert (2.2) to get ¢° = F'(¢, p). The Hamiltonian is defined by the
Legendre transformation

H=pg'-L (2.3)
which due to (2.2) is independent of q* and whose explicit form in terms of g and p is ob-
tained by inserting ¢° = F%(g, p) into (2.3).

Now a Lagrangian for a general gauge theory is a singular one, characterized by

oL =0 24
aq'iaq'j - ()

and in this casc some of the Euler-Lagrange equations will not involve g' but reduce to
. . . o N
constraint equations among ¢’s and ¢’s. In fact if R is the rank of the matrix P R<n
q0q
due to (2.4)), then we have n— R constraint equations. If we try to make the transition to
the Hamiltonian formulation, we find from (2.2) that only R velccities may be expressed
in terms of ¢’s, p’s and the remaining n— R velocities. Since only Rp’s are independent

functions of the ¢’s, we also find n— R independent relations between the p’s and the ¢’s

¢a(q’ p) = 0’ a= 11 e = (n—-R) (25)
These constraints are called primary constraints and follow only from the form of the
Lagrangian. The Hamiltonian as defined by (2.3) is now not uniquely defined on the thase
space spanned by the ¢’s and the p’s. The appropriate Hamiltonian on the whole rhase
space is called the total Hamiltonian and is given by

Hy = H+v,¢° (2.6)

where v, are arbitrary functions. The equations of motion may now be cast in a standard
form

Det

q'i = {qi, Hto!}lp.c.

bi = {Pi: Htot} Ip.c. (27)
where the right-hand side is expressed in terms of the standard Poisson bracket (PB)
{d.¢y={pp} =0, {d,p} =9} 2.8)

Notice that the constraints (2.5) are not satisfied inside this PB. Therefore, it makes a differ-
ence whether one uses H or H,, in (2.7). Thus, there is the important calculational rule
in (2.7) that the constraints (2.5) are only to be imposcd after calculating the PB (which
we have indicated by |, ). The equations of motion (2.7) are then identical to the original
Euler-Lagrange equations and the arbitrary functions v, are related to the velocities which
were not possible to solve out from (2.2).

Now in order for the theory to be consistent all constraints must hold for all times.
One has to require the consistency conditions

4)“ = {¢a’ }Ilot}|p.c. = 0. ) (29)
These equations may lead to that some functions v, will be determined and/or that new
constraints are generated. In bad cases one may obtain completely inconsistent equations.
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When new constraints called secondary constraints are generated, one has to repeat the
consistency condition (2.9) also for them. Finally one ends up with, let say, s linearly
independent constraints & = 0, a = 1, ... m, which satisfy

¢° = {07, H,} = @ (2.10)

The classification into primary and secondary constraints are only with respect to
the particular Lagrangian chosen to describe the system. Within the Hamiltonian for-
malism the important classification is in terms of first and second class constraints [1].
A first class constraint y = 0 satisfies

{p, ) =21 a=1,..m (2.11)

while a second class one does not. The complete set of constraints ¢* = 0 may thus be
uniquely decomposed into first and second class ones.

. _ ¢a=0,a=1,...k
o =0, a—l,...mé{wr= 0, r=1,..m-k.

Dirac has shown [2] that second class constraints ¢° = 0 satisfy

Det {¢*, ¢°} # 0 (2.12)
while first class ones satisfy
{vrs ¥} = v (2.13)

The second class constraints may be eliminated by means of the Dirac bracket (DB) tech-
nique. The expression [1]

{4,B}* = {4, B}—{4, ¢"}4"{¢", B} (2.14)
where 4”{¢°,¢°} = 6, may be shown to be a Poisson bracket inside which ¢* = 0 holds
strongly. We may now replace the original PB (2.8) by the DB (2.14) and impose ¢° = 0.
The resulting theory will thzn be defined on a new phase space, the. phase space of the
DB (2.14), and it will only contain first class constraints. Notice that

{wr’ WS}*|¢=0 = C;st’/’r
{Wrﬁ }Itot}*l¢=0 = C;s'l’s- (2'15)
The treatment of such a theory will be our main concern in what follows.

3. Properties of general gauge theories [4]

Consider a Hamiltonian system defined on a phase space I' of dimension 2n with
only first class constraints. It is characterized by
{vr: v} = ey
{wr’ Htot} = d’s%
=0, r=1,..m<n 3.1)

for some functions d,; and c,,.
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Now these properties define a general gauge theory. The constraints i, generate the
gauge group and their.closed PB algebra in (3.1) is the gauge algebra which is a Lie algebra
when ¢, are constants. F(«) = «,y, where «, are infinitesimal parameters generate in-
finitesimal gauge transformations which also are infinitesimal canonical transformations.

The first class constraints , = 0 trace out a hypersurface M in I of dimension 2n—m.
We seek now a PB defined on M inside which ¥, = 0 holds strongly. Such a PB is ob-
tained by means of gauge invariant functions. A function f on I' is gauge invariant when
it satisfies

{j; wr} = hrswss r=1,..m (3.2)

and gauge invariant functions satisfy a closed PB algebra since

{fghwvt=—-{g vhf}

+{{fiv}, 8 =d’yp, r=1,...m. (3.3)
Hence, for gauge invariant functions f and g we may define a consistent PB on M as follows
{fla g} = {/, 8}In- (3.4)

From this definition it follows

{flM, wr}l = {j; wr}|M = 0. (35)

Now we may always find m variables on I', ', r = 1, ... m, such that

Det {x’, y,} # 0. (3.6
However, from (3.5) we have
)
—Ls = 0, 3.7
o |m

i.e. gauge invariant functions are independent of such variables. We may therefore impose
the additional constraints

X¥=0 r=1..m (3.8)

called gauge conditions without affecting anything. Now the first class constraints together
with the gauge conditions (3.8) form a set of second class constraints ¢, = (y,, x°) since

_ {wr’ ws} {%, X’}
Det {¢,, $} = Det ({x', v {0, 1) )

= (Det {y,, ¥'D*+c,p, # 0. (3.9)
We may therefore construct the Dirac bracket (2.14), and we find on M

{4, B}Y*|y = {4, B}y —{4, y M’ B} |+ {4, X }M, {95 B} |m> (3.10)
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where {y’, v,}M; = ,,. For gauge invariant functions f and g we obviously have

{/, 8}*Im = {/, 8} @3.11)
The definitions (3.4) and (3.10) are therefore equivalent.

We conclude that the PB (3.4) is defined on a phase space I'* of dimension 2n—2m.
From Darboux’ theorem I'* is, at least locally, described in terms of conventional canon-
ical coordinates ¢*° and p} [7]. From the equivalence of the two definitions (3.4) and
(3.10) it follows that there always exist gauge invariant functions ¢** (g, p) and p¥(g, p)
such that

7" P)lu = 4"
JACR IV (3.12)

The left-hand sides are called gauge invariant extensions of the right-hand sides [8]. The
physical variables are certain specific projections from M. In fact gauge transformations
trace out so called fibres in M and gauge invariant functions are constant along these
fibres. When the gauge group s a Lie group we have the following general formulas for
gauge invariant extensions [9].

gly = | dQ|Det {}'(Q), pD} 15" (D)),
Pipy = | dQ|Det {y(Q), p ()} 15" ((Q)p{Q), C (B13)

where ¢'(Q) and p(Q) represent finite gauge transformations parameterized by the group
space coordinates. Formally we have the relation

I+ = M/Q, (3.14)

where Q is the group space.

In order to find canonical coordinates ¢*°, p** in I'* the following tricks are useful:
i) When the gauge algebra is abelian i.e. when {y,, 9,} = 0 then we may perform the
canonical transformation

(qi’ p;) - (q*s’ P:, Pr: Qr)s (3'15)

where P, = p,, and eliminate P, and Q" trivially since the gauge conditions may be written
as Q" = f"(g*, p¥). :

if) In the general case we should choose the gauge conditions ¥” = 0 such that {)", x*} = 0,
because then it is still possible to perform the transformation (3.15) now with 3" = 0.
v, = 0 may then be written as P, = g,(g*, p*). (x" should be chosen such that v, is as
linear as possible in P, in order to avoid multiple solutions.)

4. Standard Lagrangians for general gauge theories

We have defined a consistent Hamiltonian system with first class constraints (3.1)
to be a general gauge theory. Now there are usually several different Lagrangians which
yield one and the same Hamiltonian theory. We shall therefore define a standard Lagran-
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gian for a gauge theory given by a particular Hamiltonian system. (In fact, as will-be
shown later, it is exactly this Lagrangian which is to be used in Feynman’s path integral
quantization.) First we shall assume that the Hamiltonian system is minimal in the sense.
that it does not contain any trivial constraints. Trivial constraints we define to be constraints
of the form P; = 0. They generate translations in unobservable coordinates and are
trivially eliminated. The system is then characterized by

{vr v} = o'y
{r Ho} = ¢y,
v,=0 r=1L.m<n @.n
where the PB is defined on a phase space I" of dimension 2#. The Hamiltonian is given by
H = Hy,+V'y, 4.2)
where " are arbitrary functions. The equations of motion are
a = {4\ H} = {¢’, Ho} +v'{q’, v} 4.3

and p; = {p;, H}. Now these equations together with the constraints (4.1) are derivable
from the phase space Lagrangian

L= Piéi—Ho—l"V)r> 44

where v" are Lagrange multipliers to be treated as dynamical variables. However, making
a transition to the Hamiltonian formalism we now also find the primary constraints

P, =0, 4.5)
where P, are the canonical conjugates to v,. We have thus the total Hamiltonian
H, = H+ C:r-Pr (4.6)
and the dynamics expressed by
A= {A, Htot} |P,.=0- (4-7)
In particular we have
P = —y,. 4.8)

Hence, consistency requires u, = 0, i.e. the original constraints appear as secondary
constraints. The original Hamiltonian system is obtained by eliminating the trivial primary
constraints.

So far we have only a Lagrangian in phase space. However, if we require that (4.3)
should be possible to rewrite as

pi=f4,9,v) 4.9)

then we may cast the Lagrangian (4.4) into the form L = L(g, ¢, v). This prescription,
which may impose restrictions on v,, should work for all gauge theories which allow for
a Lagrangian description in configuration space.
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What are the gauge symmetries of the Lagrangian L(g, g, v) ? The answer may be found
in the following fashion: First we consider a generator of a general infinitesimal gauge
transformation

G = o'P,+fy,, (4.10)

where o, and f, are infinitesimal parameter functions of z. Then we require this generator
to be conserved

G=Glp,=0 (4.11)
which yields the solution
GB) = (B +Fc/+ e )P+ [y, (4.12)
since
P, = ¢y, . 4.13)

By means of the Jacobi identities involving y,, v, ¥, and v,, w,, H, one may show that
the generator (4.12) satisfies the algebra

{G(), GB)} = G() (4.19)

where y, = o'f°%,,. Now using the inverse Noether theorem it follows that transfor-
mations generated by (4.12) leave the action { dtL(g, 4, v) invariant. Furthermore, since the
generator of infinitesimal gauge transformations in the original Hamiltonian formulation,
i.e. F(o) = a"y,, also satisfies-the algebra (4.14), we conclude that the gauge invariance
of jdtL is the same as that of the original Hamiltonian system. However, now this in-
variance holds “off-shell”, i.e. not just on the level of the equations of motion where the
Hamiltonian formulation ‘is given.

Ex. 1. A free relativistic particle

may be described by the Hamiltonian system
Hy =0, v=p,p'—m 4.15)

The phase space Lagrangian (4.4) becomes here

L = p3*—uv(p,p*—m?). (4.16)
From the equations
x* = {x*, o(p,p"—m*»} = 2vp" 4.17
we find
Pu = L Xy (4.18)
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which when inserted into (4.16) yields

1
L= i +} Vor? (4.19)

where V' = 20. This is the so called ecinbein Lagrangian for the free relativistic particle
{10]. V is the einbein variable. When the solution of the equation for ¥ is inserted back

into (4.19) one obtains the usual Lagrangian L = m NS

Ex. 2. A free relativistic string

The relativisitic string is usually given in terms of the Nambu-Goto action

A= jd‘L’ [ de&(x, 0)
—-w 0

1
L(1,0) = — —— V(& X)—=(x)? (X)2. (4.20)
2no
In the Hamiltonian formulation one finds the following two primary constraints (and
Ho =0)

., ()?

v, = P+ =0, y,=2x"=0, (4.21)

Qra'y?
which are first class. The standard Lagrangian density in phase space is

L(r,0) = P =219, — Ay, 4.22)
Varying 2, one finds (requiring 1, # 0)

TR (Xu—42%,) 4.23)
which when inserted into (4.22) yields
1 1.2 . /1§ '11
P(r,0) = —— 2= 2z x'+ |2 - 2. 4.24
o) = ¥ g ¥ ¥ (41, (Zna')z),(x) (4.29)

This Lagrangian is equal to [11]
! v 785, x"
P(r,0) = — o ~Det g,5 87°0,x"0;sx,, 4.25)

where o, B,y,6 = 1,2 and 0, = d,, 3, = 8,. Superficially the last expression contains
three Lagrange multipliers g’(= g’*). However, due to the conformal invariance g*° — gg"*
it depends only on two, as is made manifest in the form (4.24). Varying the Lagrange
multipliers and solving the resulting equations and inserting back the solutions into the
Lagrangian (4.24) or (4.25) the Nambu-Goto expression (4.20) is obtained.
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Ex. 3. A pure Yang-Mills theory
with a compact semi-simple gauge group is given by the Lagrangian density
LX) = ~5 Fop(F () (4.26)
where
Fop(%) = 0,44~ 0,4,,+ 8Cobc AppAcy 4.27)

¢ are the totally antisymmetric structure constants of the gauge group. The conjugate
momenta to 4,, are

El(x) = aaf = F*(x) (4.28)

from which we find the primary constraints
EJ(x) = 0. (4.29)
Since the canonical Hamiltonian density is
H(x) = Ho(x)—gAI(x)G (%) (4.30)
where

Ho(%) = —F EDEu(x)+% FP()F (%)

G~ —;— D! = - BN x) = can EX) ) @31)

g
the consistency conditions E9 = 0 requires the secondary constraints
G, (x) = 0. (4.32)
These constraints satisfy the local Lie algebfa of the gauge group
{Gux), G} = 03(x = y)capGe(X)- 4.33)

Since the primary constraints are trivial, E; atid A4 are trivially eliminated leaving the
Hamiltonian theory described by the Hamiltonian density (4.31) and the constraints
(4.32). The Lagrangian (4.26) is obviously in the standard form.

5. Canonical quantization of gauge theories

In the operator version of canonical quantization one turns ¢' and p; into operators
¢’ and p; (carets will denote the corresponding quantum operators in what follows), satis-
fying

14", p;l- = —ihs; (5.1)
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and the corresponding eigenstates

d'lg) = 4'\aD, p.1p> = pi\p) (52

which we assume normalized according to

{qlq"y = 8"(q—q), <p\p"> = &"(p—Pp'),

i-q
{qlp) = @nh) ™% * |
fd*qlgxql =1, [d"p |pxp| = 1. (5.3)

This transition may be performed at any time instant. States at arbitrary times are obtained
by means of unitary transformations generated by the Hamiltonian:
W
‘q’ t> = e# lq>: (5'4)
where |¢) is assumad to be an eigenstate at t = 0. The Green function for the wave function
¥(g,t) ={g, t |p) is thus
;¢ g

ght'lgty=<gle * g (5.5)

By means of the completeness relations (5.3) we may subdivide the time interval ¢'—¢
into infinitely many pieces
N—-1 N-1

g\t t) =lim [[ [d"q, H {Gis 1, tor1 |Gt

-vcoml

=331:°de"quJ‘(2 hy ( Dy Aqk"—fTAtH(pk Qk)>
f qu h exp{ J dt(pg—H(p, q))} (5.6)

Path ¢

where go=¢, to =1, g =4 to =1, A = Gus1— G and G = 3(f+1+90. The
right-hand side is the phase space version of the Feynman path integral [12]. In what
follows we shall assume that H(p, g) is the classical Hamiltonian and that we may perform
Gaussiah integrations inside the path integral although there are examples. where the
above definition does not allow this [13]. (This difference is only formal. Renormalization
by means of different regularization procedures restores the equivalence [14].) Thus,
if H{p, ¢) is at most quadratic in p we may integrate over p to obtain the standard con-
figuration space version of the pa[th integral

{q,tg,t) = JH dq ) exp{ N JdtL(q, ‘1)} (5.7

Path ¢
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where N(g) is a normalization coefficient. For instance, if H(q,p) = 1p: A - p where
A is a matrix, possibly g-dependent, then

H JHM“P{ (””@q- p~A~p)}

¢

- : { .f }
= —— exp dtiq A1
J2nih /Det 4 h 2
t

H N exp { Jdt(2 g A - g—Lih5(0)In Det A)} . (5.8)

This is the standard quantization procedure of a regular classical theory. However, exactly
the same procedure is applicable even in the case of a general gauge theory, namely if one
first reduce the original phase space to the physical one by means of the Dirac bracket
technique. We have

¢

dq*dp*
g 1> = jH s ep{ jdtcp* §*—H**, *»}. (59)

Path ¢ t

The right-hand side may be rewritten as

dk *g ko %

Path ¢

x 8"(P—f(q*, P*)) exp{, ~[dt(p*q*—l‘z”“)}

t

dk
fH e ,)f d"Qd"P5"(Q)3"(y)

t

x |Det {Q", zps}lexp{h fdt(p* *4PQ~— Ho)} (5.10)
t
where Q" = " = 0 are the gauge conditions which in this construction is required to
satisfy {x", ¥’} = 0. Formally one may now perform a canonical transformation on the
right-hand side obtaining Faddeev’s expression

¢

d"
[ T] Gt mcosemipet ton eriesn {5 [ atoi-0). 510

Path ¢ H
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A gauge transformation changes only the form of the gauge conditions. However, since
x — x' is a canonical transformation, {}’, ¥} = 0 implies {¥”, *} = 0. Even when
{2, ¥’} = 0 (5.11) does not always reduce to (5.10), since this also requires x to be chosen
linear in those components of g (or p) which are to be eliminated. Anyhow, if this is assumed
one may derive (5.11) from the operator quantization as in (5.6) in the foilowing fashion:
First one projects out physical states by the conditions [1]

2(p, q) Iphys) = 0,r =1, .., m, (5.12)

where ¥, are the operator form of the first class constraints. They are required to satisfy
the commutator algebra

[";‘;rs ";’s]-' = Crst{i)t (513)

which is a non-trivial requirement if C,; are g-numbers. Then one construct the gauge
invariant extension of ¢*,i.e. ¢*(q, p) and requires

g*(¢, p)lg*, phys) = g*|g*, phys}. (5.14)
This together with (5.12) yield the solution
lg*, phys) = [ d"qf(g*, 4) 19> (5.15)

The function f(g*, q) is then normalized by the condition that the resulting states should
satisfy the standard normalization (5.3). Finally the Green function is

'(t t),\

(g*, t'lg*% ty = (q*,physle * |g*, phys). (5.16)

This formula only holds when the constraints have no explicit time dependence (cf. the
relativistic particle). The expression (5.11) is now obtained by cutting the interval r—¢’
in infinitely many pieces as in (5.6).
This operator quantization is possible to perform even if {y,, x;}¢0 in which case
the expression (5.11) is not obtained (cf. the spinning particle in the time-like gauge [15]).
We now turn to some formal equalities satisfied by the path integral formula (5.11).
Obviously it may be rewritten as [4]

¢

d"qd"pd™v
J I l-—g-—p—;—é'”(x)lDet o, ws}nexp{ fdt(pq Ho—v«m} (5.17)
(2rh)

Path ¢

which is a Lagrangian phase space version of the Hamiltonian one (5.11). Again if H,
and y, are at most quadratic in p we may perform the integration over p obtaining

¢

[T] oo sy oDt vt s eno o [tz 0f. - 29
oq

Path 2
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Notice that

(T ot fai-} (- ) T v foi-a)

r'd

é 1 (@Lg, p\ 1 i : .
() w e f ate o =1 (55 ) g i [ o}

(5.19)
Thus, the expression (5.18) is obtained from (5.17) by eliminating [[4"p and replacing p,
t

by OL/dq' everywhere and inserting the normalization factor 1/N(g, v).
The expression (5.17) may be obtained from the naive expression in the following
formal way when the gauge group is a Lie group

v

d"qd"p ] .
T ol fo s

d*qd"p
j H 9P 32 Det (1@, (D)}

@n f)

Path ¢

X eXp { 5 jdt(p g—Hy—v" tp,)} = Vox(5.17), (5.20)

where d™Q is the group measure and x'(Q), p,(2) are the gauge transformed variables.
Va = [[]4™2. The first equality follows from the fact that [9]
t

§ d"Q0™(x(2))|Det {x,(Q), v} =1 (5.21)

and the last equality follows since the naive expression is gauge invariant under gauge
transformations generated by (4.12). (By adding [ [][d™Pé™(P) = 1 the measure becomes
t

canonically invariant and since P, is strictly invariant the statement follows.) Eq. (5.20)
is a particular form of the Faddeev-Popov trick.

Ex. Quantization of the free relativistic particle [15]
Here we turn x* and p, into operators x*, f),, satisfying
%%, p)- = —ihd) (5.22)
and corresponding eigenstates
Xx) = xx>,  Pulp> = pulpd
fdéx|xxx| =1, [dplpxp| =1 (5.23)
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Physical states are projected out by the condition (y = % (p?>—m?) = 0)
(p,p"—m?) [physy = 0. (5.24)
‘The gauge choice
X=x0—t=0 (5.25)

leave x' and p; as the canonical variables that span the physical phase space. The gauge
invariant extension of x' is obtained by means of the formula (3.13)

jd()\Det {Xeos %}lé(x,,)x(i,
= [ dO|Po|5(x° +0P° —1t) (x*+ 0P

JiO Pi .
= po + _ﬁ t= :x(x’P, t) (526)

which is gauge invariant since the Poincaré generators are gauge invariant. Imposing the
further condition

%'(x, p, N)|x, t, phys) = x|, 1, phys) (5.27)
and the normalization (¥|¥') = 83%(x—x') we find the solution [15] (h = 1)
I, 7, phys) = (2n)~>/2(8(0)) /2
x § dx°8(x°~1) { d*pd(3 (P* —m?)) (|Po|)*/
x exp (ip,.x")|p>, (5.28)

where 6(0) is defined by (6(p?—m?))? = 6(0)5(p>—m?) and is connected to the infinite
group volume. Obviously

(X', t', phys|x, ¢, phys)
= (2n)~2 [ d*p|P°|8(3 (P —m?)) exp (—ip,(x"*—x")) (5.29)

where x° =, x'° = ¢,

The gauge condition (5.25) requires the first class constraint to be solved in such
a fashion that P, becomes a dependent variable. However, since y is quadratic in p there
are two solutions (P, > 0 and P, < 0) and hence two disconnected physical phase spaces
which have to be treated separately in a standard quantization (5.9). The above method
on the other hand takes into account both physical solutions since (5.28) and (5.19) are
linear combinations of both physical states and Green functions. Cutting the time interval
in infinitely many pieces as in (5.6) we obtain the path integral expression

g

.

4
G R > = j H LI (x0 — )P I (P2 i) exp {—;— J drp,,fc“} (5.30)

@nh)?

Path ¢
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which is exactly Faddeev’s expression (5.11) for this case. Eq. (5.30) may also be written

as
I l d“xd“pdV
X, )%, 1) = J by —— §(x° — 1) | P°|

Path t

X eXp { 5 f de(p, 3"~ 5 V(p? mz))} (5.3D

t

Since the Hamiltonian is quadratic in p we may integrate away the momenta to obtain

TroanT — 4
X, ) —-‘ fHd de—-—N(V) o(x%—1) |—
Path t

t

X Xp { 5 Jd«: ( 7 +5 Vm2>} (5.32)

where N(V) o« V2 and where we recognize the einbein Lagrangian (4.19).

The non-covariant form of the Green function (5.29) is due to the chosen normali-
zation of the physical states (5.27). A covariant form is obtained when the physical states
are constructed according to the rules

lg*, phys> oc (Vo)™ V% [ d"Q8™(Q) | d"pd(v(g, p)) IDet {Q, y} exp (ip - @) Ipd.  (5.33)

This rule was used throughout in Ref. [16].

0

6. Covariant quantization

The Faddeev-Popov trick [17] consists of adding to the naive path infegral expression

the factor
—-—A(q, p) f H dm Q8" (1(2)) ©.1)
where
Vo= [ T140
4, p) = [ 1 d"28"0() 6.2

and where 4(q, p) is the Faddeev-Popov determinant which is gauge invariant due to
the invariant group measure. This is equivalent to the construction (5.20). However, the
above construction may formally be generalized to gauge conditions y which also contain
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v and 5. Furthermore, it is possible to lift up all the inconvenient factors in the measure
to an effective Lagrangian: The Faddeev-Popov determinant by means of Faddeev-Popov
ghosts [17] and the delta function in the gauge fixing conditions by a kind of average
expression. The resulting effective Lagrangian has then e.g. the following form for Yang-
-Mills theories

1
°g(x) = _% F:vFanv_ ‘2—; (a“A:‘)Z + 6ﬂﬁa(au’7a~gcabcAbunc) (63)

where 7, and 7, are the anticommuting scalar Faddeev-Popov ghost fields. The possibility
of a covariant quantization of Yang-Mills theories was first shown by Feynman at the
one-loop level [18], and was then further developed by de Witt [19]. Faddeev-Popov
treated two covariant theories: one given by (6.3) and one with an explicit delta function
8(0,4%) (formally the a — 0 limit of (6.3)). In the last version the Lorentz conditions hold
off-shell .while this is not the case in (6.3). (However, they. hold on-shell in (6.3) as we
shall see.) One crucial property of the gauge fixing term is that it must contain (4,°)?,
i.e. a kinetic term for the Lagrange multiplier field 4,°. Otherwise (6.3) would still have
a local gauge invariance which has to be fixed. As a consequence the term (8,45)* must
always be there in a covariant treatment, but other covariant terms may be added. Another
crucial property of {6.3) is its invariance under the following global supertransformation
(so called BRS-invariance [20])

5Aau(x) = A(aurla + gCabcAbunc)

g
6’7a(x) =41 3 Cabcnb”c

M) = -2 1 0,48 (6.4)
o

where A is an x"-independent odd Grassmann parameter anticommuting with n and 7.
Since repeated transformations yield zero, the corresponding conserved supercharge @
satisfies

0 =0. (6.5)

Now one may show that, in the quantum theory of (6.3), the unitarity in the physical
subspace is ensured if one requires [21]

~

Q |phys) =0 (6.6)

which also generates the Slavnov-Taylor identities [21]. Fradkin and Vilkovisky [22-23]
have given a Hamiltonian formulation of the covariant quantization scheme for an arbi-
trar);, general gauge theory as defined in (3.1). In what follows we shali review their formu-
lation and show that (6.6) is a sufficient condition for the determination of physical states
and that the resulting theory is equivalent to the non-covariant canonical quantization.
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7. Fradkin-Vilkovisky formulation [22-23]

In the formulation of Fradkin and Vilkovisky the BRS-charge Q plays a fundamental
rdle. They give the following general form of Q for an arbitrary gauge theory

Q =PP +yn —% WP (1.1

where P, and v, are the primary and secondary constraints of the standard Lagrangian
defined in Sec. 4. 2", 7", " and 2" are 4m additional phase space variables of the odd
Grassmann type satisfying the PB relations

Py =58, o, 2} =7, (7.2

with remaining PB’s zero. The algebraic properties of PB’s with Grassmann variables
follows from the relations [24]

{E, e0} = e{E, O} = {¢E, O},
{e0,E} = ¢{O,E} = —{0,¢E}, (7.3)

where E is an even and O an odd Grassmann variable and £ an ‘odd constant. Thus,
£0 is even and ¢E odd. In particular it follows that

{gss ’7’}4- = {'7', 'Ws}+ = 5rs- (74)
Using the Jacobi identities involving v,, y,, y, one finds
{Q’ Q}+ = % {Cstr’ Cuux}nsqtnunvyryx' (75)

For bosonic theories the right-hand side is claimed to be zero in Refs. [22] and [23]. A BRS-
-invariant Hamiltonian is defined by

H, = H,+{0. Q) (7.6)
where ¢ is an odd gauge fixing variable and where
H, = Hy+4C°P, a.n
satisfying (from Jacobi identities between v,, w,, Hy)
{0, H.} = 3 {C,, CYr'n* 2,2, (7.8)

which is also claimed to be zero in Refs. [22] and [23] for bosonic theories. Thus, assuming
the right-hand sides of (7.5) and (7.8) to be zero, we have (a more general treatment is
given in Ref. [25))

{H, 0} = 0. 1.9)

Notice that H, = H, where ¢’ = g+A{g, Q}+is a (finite) generalized BRS-transformation.
Hence H, is independent of the gauge fixing variable ¢ when chosen among the equiv-
alence class generated by Q. The corresponding Lagrangian is

L, = pq'+ Py + P + P, — H,. (7.10)
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A suitable form of g is

0 = PV +7 (1, +7 aP,) (7.11)
which leads to

H, = Hi+{o, 0} = Hy+n'C P+ PP +P (1,+% aP)+1"y,
+10 s Y3+ C a0 =5 0" {1s, C* 3P’ (7.12)

Now varying P,, #, and 2, in the action of (7.10) one finds the equations
1 M r =r
Pr =;(Ur~Xr)9'@ =-n

P = i +nCl+C G 5 0, Cln''. (1.13)
Inserting these expressions into (7.10) one finds

L,=L+Lys +Lgp (7.14)
where |

L =Piéi—Ho“l“r1l)r
L 1 &=x) @ =1
g.f. T 2& Cp— X\ 4

Lep = A, +0CloHg+ Cofit’n =07 {te s w)1° ~ 3 07 { 10 Cost I (7.15)

which is the conventional decomposition of the effective Lagrangian in the covariant
quantization: L is the original Lagrangian, L,;, is the gauge fixing part and Ly the Fad-
deev-Popov ghost part. In the path integral quantization one may now make use of L,
which has no gauge invariance. However, L, has a generalized BRS-invariance since
Q is conserved (7.7). On the other hand this is now just an ordinary global invariance.
The requirement that physical amplitudes must be BRS-invariant, is an externally imposed
condition on the theory. Inserting the expression (7.13) for 2 and 2" into Q (7.1) one
arrives at

0 = G +5 "ty CTu} P+ Cluti’®™’' (7.16)

where G(n) is given by (4.12). Hence, the part of Q that is linear in 5" is just the generator
of infinitesimal gauge transformations with »" as infinitesimal parameters.

Finally we remark that if « = 0 in (7.11) we would not have been able to solve out
P, from the equations of motion (varying P, we find o,—y, = 0). In the functional integral
the above procedure corresponds to the integration over the momenta. If one there in-
tegrates over P, the delta function §(5,— y,) appears (cf. the Landau gauge formulation in
Yang-Mills),
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8. BRS-quantization

The equivalence between the canonical and the covariant quantization is far from
obvious. The formal equivalence proofs within the path integral quantization does not
dispel the puzzling differences between the two formulations. In one formulation we have
a singular Lagrangian with local gauge invariances and in the other we have a regular
Lagrangian with.only global invariances. However, within the operator quantization
one may give a simple algebraic equivalence proof which also explains the differences
between the two formulations [25].

If we within the covariant formulation require physical states to be invariant under
generalized BRS-transformations, then we must require within the operator quantization

Qlphys) = 0. @8.1)
Now since 02 = 0, a physical state will only be defined up to a zero norm state [21]
x> = Qlunphys). (8.2
Obviously
{xalx2> = {xIphys) = 0. (8.3)
Hence, any matrix element between physical statés is unchanged by the. transformation
[phys) — Iphys)>+ (). 8.4

Thus, although |y is a physical state according to (8.1) it will not contribute to any observ-
able quantity and is therefore really unphysical. The condition (8.1) subdivides the original
state space into three different sectors: One sector contains genuine physical states with
non-zero (positive) norm, one sector contains physical zero norm states which are orthog-
onal to the genuine physical states, and finally one sector contains unphysical states.

Corresponding to (8.1) we define a physical operator ¢ to be an operator which
transforms physical states into physical states. ¢ must satisfy

[¢,0l: = £,0. (8.5)

As there were two types of physical states there are two types of physical operators which
we shall call 4- and B-type operators. A B-type operator satisfies

B=1[C 0l (8.6)
where C is an unphysical operator and an A-type operator cannot be written as (8.6).

By means of Jacobi identities one may easily show that A- and B-type operators satisfy
the algebra

[4,, 4,); = 4, or B,[4, B,]; = B.. [B,, B,], = B,. @7
On physical states 4- and B-type operators yield different results:

Alphys) = |phys), Blphys) = [x). (8.8)
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Hence only physical operators of A-type are genuine physical operators. B-type operators
on the other hand may be viewed as generators of a new type of gauge transformations.
Notice that a physical operator ¢ satisfies

[B:, ¢ = f5BY,. (8.9)
The properties (8.7-9) of the B-type operators establish these as gauge generators. The
difference between the canonical and the covariant quantizations is that Blphys) = 0
is replaced by Biphys) = |x)> with identical results for physical amplitudes. Are the gauge

generators B the same in the two formulations? From the form (7.1) of the generalized
BRS-charge, i.c.

0 = P+ -+ OB aw (8.10)
we find the following B-type operators
r = i[@* A'—Ir]+ = ﬁr
=il0, 5] = 2,
B =il0,2). = 9,~C\ 27
B! = il@, x)- = M" (8.1

where M., = M,.,+ [C'o %] " M, = (s> %,]-- B, we identify as the canonical primary
constraints. B tells us that physncal states do not depend on %", Provided y" are consist-
ent gauge choices to y,, B, tells us that physical states do not depend on P, and #° has
zero eigenvalue. From the form of B, this means that also 9, generate gauge transfor-
mations. The equivalence between canonical and covariant quantization is thereby estab-
lished.

Ex. In the case of a Yang-Mills theory we have the following expression for the BRS-
-charge

[+

~

B

~

Q = [ Px(G (M) +E)(X)P ()~ Coc Pt c(X)). (8.12)
The above construction yields that G, n,, E, and P, are gauge generators. However,
notice that E, = —1 0,45 since the Lagrangian is given by (6.3). The expression (6.3) is
obtained by means of the gauge fixing variable
0(x) = P, A, +ii0:ds+] «E,). 8.13)
Since physical states satisfy
Ejlvhys) = |1> (8.14)
this may be written as
2,4 Iphys) = 1. (8.15)

This shows the similarity with the Gupta-Bleuler formalism. On¢ may consider the BRS-
-quantization as the consistent form of Gupta-Bleuler quantization.

Finally I would like to thank the Organizing Committee for the invitation and for
a nice stay in Poland.
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