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I briefly review the ideas of grand unification and the hot big bang which together
suggest that the universe underwent a series of phase transitions in its early history. 1 then
discuss the nature of these phase transitions and the structures produced at them — domain
walls, which can normally be excluded, strings, which might form the basis of a theory of
galaxy formation, and monopoles, for which the problem is to prevent an over-abundance.

PACS numbers: 98.80.Bp

1. Introduction

The most exciting developments in physics often occur where several very different
disciplines come together. The subject of my lectures is an excellent example, for it involves
cosmology and astrophysics, quantum field theory and particle physics, thermcdynamics
and statistical mechanics, and the physics of condensed matter.

There are two basic ingredients — the idea of grand unification and the hot big bang
theory of the early universe. I shall review each of these briefly and then show how when
combined they lead to the notion that the universe went through a series of phase transi-
tions early in its history. Then I shall explain the various types of structures that can
appear at the phase transitions — domain walls, strings and monopoles. Each of these
poses some intriguing questions, which I shall discuss in turn. Domain walls can be ex-
cluded on the grounds that their gravitational effect would lead to unacceptably large
anisotropy of the microwave background. This imposes interesting, and powerful, restric-
tions on the acceptable grand unified theories (or GUTs for short). Monopoles appear
naturally in almost all GUTs, and are expected to be created in large numbers. The difficulty
is to find a mechanism that will reduce their number to an acceptable level. Finally, strings,
though rather more elusive, do appear in some GUTs. There has recently been a very
interesting attempt to use them to construct a theory of galaxy formation which, though
speculative, seems to be viable.

* Presented at the VI Autumn School of Theoretical Physics, Szczyrk, Poland, September 21-29,
1981, organized by the Silesian University, Katowice.
** Address: Blackett Laboratory, Prince Consort Road, London SW7 2BZ, England.
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1.1. Grand unification

The unification of weak and electromagnetic interactions in an electroweak gauge
theory based on the gauge group SU(2) x U(1) is now generally accepted as a fact. Certainly
the Nobel Committee believes it! We also have in quantum chromodynamics (QCD)
a very promising gauge theory of strong interactions, based on the colour group SU(3),
which has at the very least had some remarkable qualitative successes. (For a review, see
Marciano and Pagels 1978). It is thus quite natural to ask whether one can go on to com-
bine the electroweak and strong interactions in a grand unified theory (GUT) based on
a simple or semisimple group G that contains SU(3) x SU(2) x U(1) as a subgroup. The
smallest possible group is SU(5) (Georgi and Glashow 1974) though SO(10) is another
popular choice (Fritzsch and Minkowski 1975, Georgi 1975, Chanowitz, Ellis and Gaillard
1977).

Non-Abelian gauge theories (unless there are too many other fields present) have
the special feature of asymptotic freedom — their energy-dependent running coupling
constants become smaller at higher energies, in a predictable fashion governed by the
renormalization group. The SU(3) coupling decreases faster than that of SU(2) and even
more so than that of U(1). Thus all three couplings can become equal at a grand unification
mass which can be estimated to be around 10! GeV. By the standards of particle physics
this is enormous. Indzed it is only four orders of magnitude below the Planck mass

mp = G Y? = 1.2%x10'° GeV

at which even gravity becomes strong. The unified value of the coupling at the unification
mass is approximately

o = g*4n ~ 0.025.

The unifizd th:ory is broken spontancously in at least two stages, for example from
SU(5) to SU(3) x SU(2)x U(1) at a mass scale of 10*2 GeV and then to SU(3) x U(1) at
about 100 GaV. Bzatween the two is the uninteresting “desert” though it is possible in
more complicated thzories to make the desert bloom with a whole succession of further
stages of symmetry breaking.

2. The early universe

There are two crucial pieces of observational evidence for the hot big bang. The
first is the cosmic red-shift, th: observation that the spectral lines of distant galaxies are
shifted to the red. If this is interpreted as a Doppler shift they are receding from us with
velocity v = Hr, where r is distance and H is the Hubble constant, H ~ 100 km s~ Mpc—.
Traced back in time, the galaxies must have been close together at a time in the past of
order H-! ~ 101 years ago.

The second observation is of the cosmic microwave background radiation discovered
by Penzias and Wilson (1965) with approximately a blackbody spectrum corresponding
to a temperature of 2.7 K. As the universe expanded, this radiation must have cooled
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adiabatically, so at early times the universe was much hotter than it now is. The universe
is now transparent but when it was much denser and hotter it was not. The radiation we see
is the redshifted remnant of thermal radiation emitted when the temperature was around
4000 K. At even earlier times the temperature must have been higher stiil, hot enough
to induce elementary particle reactions.

If the universe is assumed isotropic and homogeneous its geometry must be described
by the Robertson-Walker metric

ds? = dt* — R(t)*do?

where do? is the metric of a three-space of uniform curvature K. The rate of change of the
scale factor R(¢) is given by Einstein’s equation (see, for example Weinberg 1972)

R\* 82G K
—) =0 = +4,
R 3 R?
where g is the density and A the cosmological constant which is observationally small and
which I shall take to be zero for simplicity. This equation can be interpreted as expressing
conservation of energy of a test particle on the surface of a comoving volume:
Go(3 nR?)
7 =

1R ~1K
Thus if K > 0, which means that ths universe is closed, then the motion is bound: the
universe will reach a maximum size and collapse back to a final singularity. On the other
hand an opzn universe (K < 0) corresponds to unbound motion and will continue expand-
ing forever. At early times, the value of X is unimportant, so we may for simplicity take
K = 0, i.e. choose a Euclidean universe.

During at least part of its early history, when the temperature is large compared to
all relevant masses, the matter in the universe may be treated as an ideal relativistic gas
of massless particles. Its density is then

o = (n*[30)N, T4

where N, is the eff:ctive total number of particle species, counting the two helicity states
of massless bosons separately (and with an extra factor of 7/8 for fermions). In the simplest
SU(5) grand unified theory, N, = 160.75. The expansion leads to an adiabatic cooling,
with T oc R-1. Substituting in Einstein’s equation we easily find that R oc t'/2. The
relationship between temperature and time may be written

T2t = 0.3 N~ YVmp.
2.1. The initial state

At first sight it may seem bizarre to suppose that matter at a density far in excess
of nuclear densities can be treated as an ideal gas. However, it is not really so strange.
In the first place, because of asymptotic freedom, the matter is indeed weakly interacting
at the relevant energies. Moreover, one can show that the mean free path is large compared
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to the interparticle spacing. The number density of particles of each boson species is
ng=n" Y333,

while for fermions there is an extra factor 3/4. Thus there is approximately one particle
of each species in a thermal volume of radius 1/7. All particle cross-sections should be of
order ¢ ~ a?/T?, so the mean free path 4 is given by

A1 = no ~ N, ,T3(@?[T?) = N,o?T.

Since Nya? ~ 1/15, we see that A is large compared to the thermal wavelength 1/T and
a fortiori to the mean interparticle spacing (N, '">7)~". This serves to validate the ideal-gas
approximation.

Unfortunately there is another, less satisfactory comparison we can make. From
the formulae above we see that the ratio of the mean free path to the expansion time is

Mt ~ TN a2my,

which exceeds unity so long as T is greater than about 10'7 GeV. In other words, there
is no time for the system to reach equilibrium.

2.2. The homogeneity problem

This brings me to one of the oustanding puzzles about the early universe — the homo-
geneity problem or horizon problem (Guth 1981). Why should the universe be homoge-
neous out to large distances over which there can have been no prior causal contact? In
particular, why should it be in thermal equilibrium when there has been no time to establish
equilibrium ? A randomly chosen initial state would be far more inhomogeneous. Though
we talk of the “hot big bang”, our universe was started apparently in a state of remarkably
small entropy. (This circumstance seems to be crucial to our perception of an “arrow of
time”’.)

The coordinate distance to the causal horizon is easily seen to be

t
f A
R(t")
(¢}

in the standard scenario. The existence of a finite causal horizon is inevitable unless this

integral diverges, i.e. unless R(r) varies as ¢ or faster, which would mean that instead of

0 o« T* we would need ¢ o« T o < 2. (An intriguing alternative has been. suggested by

Zee (1979) in a theory of spontaneously generated gravity which yields ¢ oc T*but G oc T-2.)

If the integral did diverge, then all parts of the universe would be very briefly in causal

contact. But even then, there would still be no time to establish equilibrium. There would
_also be no adequate mechanism for dissipating initial anisotropy.

It seems therefore that we must look elsewhere for a solution of the homogeneity
problem. The most often canvassed solution is to invoke quantum gravity, which is un-
doubtedly crucial in the period before the Planck time. However until we have a proper
theory of quantum gravity this remains pure speculation.
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2.3. The flatness problem

There is another similar problem concerning the initial state which has been high-
lighted particularly by Guth (1981). Observationally, our universe is nearly flat, The con-
dition for the curvature K to vanish is

3 [ R\?
9 =9, = -1
2= 0 = %G \R

The observational limits on g are

0.02 5 g/g. < 2.

If we follow the evolution back in time we find in the radiation-dominated era that while
¢ o¢ R~* the difference o — g, varies much more slowly: g— g, oc KR-2. Thus at the Planck
time we must have had

le—ecl/e. s 10-%5.
This is an extraordinary degree of fine tuning. What is the explanation?

One speculative idea involves the so-called “anthropic principle”. If ¢ had been much
larger than g, the universe would have collapsed back to a second singularity in a very
short time; if it had been much smaller, the universe would have expanded exponentially
and condensation of galaxies and stars would never have occurred. In neither case would
we be here discussing the question. So on this principle, the universe is nearly flat because
only in such a universe could we exist. Perhaps there are many other universes but only
in a few lucky ones are there galaxies, stars, and people!

There is a very similar problem attached to the cosmological constant A. Obser-
vationally, it is tiny in natural units:

|Al/m} < 107122,

Again, however, if it were much larger we would not be here.

3. Spontaneously broken gauge theories

Next let me review some basic facts about spontaneous symmetry breaking in gauge
theories. .I shall consider a gauge theory described by the Lagrangian density

¥ = StrF,,F*"+% D,¢ - D*¢—U(¢)
+Piy*D,y—ply - ¢ + gauge-fixing and Fadeev-Popov ghost terms.

Here ¢ is a scalar Higgs field belonging to some representation (not necessarily irreducible)
of the gauge group G, with real anti-symmetric g2nerators T, normalized so that

tr TaTb = "% 5ab'
The covariant derivative of ¢ is

Du¢ = au¢_gAu¢9 Au = AauTaa
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where g is the gauge coupling constant. The gauge field is
F,, = 0,4,—0,4,+g[A4,, A,].

U(¢) is a G-invariant polynomial of degree 4. This restriction is imposed to ensure renor-
malizability.

The spinor field  also belongs to some (generally different) representation, and its
covariant derivative is defined similarly. The matrix I symbolizes the Yukawa interaction
terms. However the spinor field does not play a very important role in the problems I shall
discuss, and I shall ignore it. One must of course take account of it in any detailed calcula-
tion since, for example, it affects the renormalization group § function, making the coupling
change more slowly than it would in a pure gauge theory.

As a convenient example that may serve to illustrate the discussion let us take the
gauge group G to be SO(N) and ¢ to belong to the fundamental N-dimensional vector
representation. The polynomial U is

U=$h ¢ ¢—n*)
where 7 is a constant defining the scale of ¢ and /2 is a coupling constant. I have chosen
the coefficient of the quadratic term in U to be negalive, so that U has a maximum at
¢ = 0. Its minimum lies on the surface M which here is the (N —1)-sphere. Thus in the
classical (tree) approximation, ¢ acquires a vacuum expectation value lying on M, and
the symmetry is broken from SO(N) to SO(N-—1).

In the general case of which this is a particular example, if ¢ is a point on the surface
M of minima of U and H is the corresponding isotropy subgroup of G, namely

H= {geG:gp = ¢},

then M may be identified with the quotient space G/#, whose elements are the left cosets
of Hin G. Each point on M defines one of the family of degenerate vacuum states. The
symmetry group G is spontaneously broken, leaving H as the -subgroup of unbroken
symmetries.

The case N = 2 of the SO(¥) model is just the Landau-Ginzburg model of supercon-
ductivity. In its relativistic context it is the Higgs model. Note that for any N > 1 there
are as in superconductivity two characteristic length scales, the correlation length & and
the penetration depth A given by

&= mg = hr’: il= my, = gn.

Here m, is the mass of the Higgs scalar, corresponding to the radial component of ¢,
while m,, is the mass of each of the N—1 vector bosons corresponding to broken generators
of G. (Those corresponding to generators of H remain massless.)

3.1. Symmetry restoration at finite temperature

At finite temperature the equilibrium state is determined not by the potential U(¢)
but by the effective potential ¥(¢), which is the minimum free energy density in states with
a given expectation value of ¢. It is calculated from the sum of all one-particle-irreducible
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Feynman diagrams with zero-momentum external ¢ lines only (because of the assumed
translational invariance of the vacuum). We must of course use the finite-temperature
Feynman rules with a periodic imaginary-time variable of period 1/T.

At large T the leading correction terms coming from the one-loop contribution to
V(¢) yield

V($) = U(d)— 53 NoT*+ 35 MAST? +O(T),

where as before N, is the effective number of helicity states of “light” particles (those
with masses <T), and M2, which is ¢ dependent, is the sum of the squared masses of
these helicity states (counting fermions with a factor ). For example in the simple SO(¥)
model I discussed earlier, with ¢ belonging to the vector representation, one finds N, = N2
and
M) = 3 NWX($*—n?)+h2¢> +3(N - 1)g*>.

Thus we obtain

(}) = 5 (P> +3 (—F h*n? + ATH¢$* +p-independent terms
where

A = 3N-Dg>+ L (N+2)h
Clearly there is a transition temperature 7T, given by
T2 = *n?24 ~ 2.

For T > T, the coefficient of ¢? in V is positive, and so {¢> = 0. The system is then in
a symmetric phase. When T falls below T, the coefficient of ¢> becomes negative, and ¢
acquires an expectation value given by:

P>* = (1 =T*I2).

Thus the system is in an ordered phase, with {¢) playing the role of the order parameter.
Note that the correlation length ¢ is given by

£ = &I -T2~

where &, = 1/hn. It is of course infinite at T = T.,.

4. History of the phase transitions in the universe

If these ideas are broadly correct then we may conclude that the universe underwent
at least three phase transitions during the course of its early history.

The first of these is the grand unification transition which occurs more or less at the
temperature corresponding to the grand unification energy scale, 10! GeV. This is only
four orders of magnitude below the Planck mass. This transition happens when the universe
is only 10-37 s old, at a redshift Z of 10?8 (i.e. since then, the radius of a comoving volume
has increased by a factor of 10°%). Before it, the universe was in a state with the full sym-
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metry of the grand unified group, for example SU(5). After it, the symmetry is broken.
If it breaks directly to SU(3) x SU(2) x U(1) the next transition does not occur until the
temperature has fallen to 100 GeV or so, after about 10-*!s (with Z ~ 10'5). This is the
eleciroweak transition at which the SU(2) x U(1) part of the symmetry breaks to the U(1)
of electromagnetism. In this case there is a huge uninteresting “desert” between 10'5 and
10? GeV. However it is not hard to devise ways of making the desert bloom with multiple
transitions if one wishes to do so.

The last phase transition is connected with quark confinemsznt, the transition from
a quark and gluon soup to a gas of identifiable hadrons. It presumably occurs at about 1
microsecond, when thz temperature is a few hundred MeV. It is associated with the colour
SU(3) group but is not a symmetry-breaking transformation. I shall not consider it further.

From that point on the history of the universe is rather less speculative and more
conventional. As the temperature falls the various massive particle species annihilate
and disappear, first the baryons, then the mesons and finally the leptons, leaving only the
small excess demanded by nonzero average values of the baryon and lepton numbers.
Once the temperature has fallen well below 1 MeV, when thz universe is a few seconds
old, it contains essentially only the stable or nearly stable particles — a plasma of electrons
and protons together with photons and neutrinos. The remaining neutrons either decay
or are incorporated in dsuterons or h:lium nuclei. This plasma era lasts for about 10*
to 10° y:ars, until thz decoupling timz, at T ~ 4000 K, when thz electrons and protons
combine to form atomic hydrogen, and th: radiation effectively decouples from ths matter.

4.1. Structures formed at a phase transition

Let me now turn to the question of what happens when the universe goes through
a phase transition (see also Kibble 1980). Above the transition ths order parameter {¢>
vanishes. When T falls below T, {¢> becomes nonzero and lics on the minimum surface
M — but where on M?

The situation here is very similar to that of a ferromagnet cooled through its Curie
point. It acquires a spontaneous magnetization, but the direction of magnetization is not
entirely predictable and is determined in practice by stray external fields or random initial
fluctuations. In the early universe too, the choice of one point rather than another on the
minimum surface M is random. Moreover there 'is no reason why {¢) should make the
same choice everywhere. Indeed, it is hard to see how thzre could be any correlation
between the choices in far separated regions, certainly when they are beyond the causal
horizon.

In these circumstances there may be trapped defects, regions in which {¢) is prevented
from taking on a value on M by a topological obstruction. The various possibilities can
be well illustrated by considering the SO() model for different values of N.

Let me take first the case N = 1, which is not a gauge theory at all, but simply a model
of a single scalar field ¢ with a ¢* interaction and a negative mass term. Here at low tem-
perature there are two minima, close to the points ¢ = 7. Thus we may expect a domain
structure to form, with some paris of the universe choosing (¢> = n and others (¢) = —n
Where the two m:et there must be a domain wall. As wz go through the wall from one
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domain to the other, {¢> must vary from 5 to —#, passing through 0 on the way. Thus
the wall represents a local concentration of energy. No smooth change can eliminate it,
except by shrinking one of the domains to the vanishing point.

Next, suppose that N = 2. Then M is a circle, and we can have string singularities,
as in a superconductor or superfluid. As we go around the string, the angle specifying the
point on M chang:s by 2z (or a multiple thereof). Once again, {¢) must pass through zero
somewhere inside such a loop, in the core of the string.

Finally, if N = 3 then M is a sphere and we can have point-like monopole singularities
such as the famous monopole solution of *tHooft (1974) and Polyakov (1974). Here {¢)
has the h:dgzhog configuration, pointing radially outwards all around the monopole.
In the centre it must pass through zero.

42. Singularities .and homotopy groups

It is easy to find gzneral conditions for the existence of such singularities, in terms
of the homotopy groups of the manifold M of degenerate vacuum states.

For example, the existence of string singularities is governed by*the first homotopy
group 7,(M). The elements of this group are homotopy classes of closed curves starting
and finishing at some designated point ¢, in M. Two curves belong to the same class if
one can be smoothly deformed into the other. The identity element of x,(M) consists of
curves that are homotopically trivial, i.e. that can be smoothly shrunk to a point. Group
multiplication is defined in an obvious way: if ¢; and ¢, are closed curves in M starting
and finishing at ¢, then ¢, - ¢, is the closed curve obtained by following first ¢, and then
¢,. For instance the homotopy classes of a circle S* are labelled by integers specifying
the number of times the curve winds around the circle, so #,(S*) = Z. Similarly the homo-
topy classes of a torus are labelled by 2 integers: n,(S'xS') = ZxZ.

What is required for the existence of strings is that the first homotopy group be non-
-trivial, 7,(M) # 1. (I prefer to use the notation 1 rather than 0 to symbolize a group
of just one element.)

In exactly the same way, the condition for monopoles to exist is that the second
homotopy group be non-trivial, 7,(M) # 1. The elements of this group are homotopy classes
of closed surfaces in M, maps of the 2-sphere S$2 into M such that a designated point
X, € 8% is mapped into ¢, € M.

For domain walls what is relevant is 74,(3f) which in general is not a group but simply
denotes the number of distinct connected components in M. (It may also be defined in
terms of homotopy classes of maps of S° into M. Here S° is a set.of just two points, but
since one point is the base point x, which must always be mapped into the chosen base
point ¢, of M, what varies is the image of just one point. Two maps are homotopic if
these imagss belong to the same connected component.) Domain walls are produced
if and only if M is disconnected.

I our case, M may be identified with the quotient space G/H of the gauge group G
by its unbroken subgroup H. This allows its homotopy groups to be computed in terms
of those of G and H. In particular, let us suppose that G is not only a Lie group — which
automatically ensures that #2(G) = 1 — but also connected, so that n,(G) = 1, and simply
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connected, so that 7;(G) = 1. This last condition may be ensured by replacing the original
gauge group by its simply-connected covering group, for example SO(3) by SU(2). When
these conditions are satisfied there are standard theorems which show that

(M) = no(H), mAM) = m:(H).

Thus the condition for the existence of strings is that H have disconnected pieces.
Note that to apply this criterion to the SO(2) model, we have to replace this group by its
simply connected covering group;-i.e. to take G = R. Then H = Z, which is obviously
disconnected. Indeed n;(M) = no(H) = Z.

Similarly for monopoles to exist we require that H be non-simply-connected. In parti-
cular, any U(1) factor in H yields a factor Z in m,(M). Since the last stage of symmetry
breaking leaves us with an unbroken U(1l) symmetry, that of electromagnetism, we are
guaranteed that at some transition, monopoles are produced.

Note that in both these cases the relevant homotopy groups may also contain finite
factors such as Z,.

4.3. Domain walls

Let me now discuss the three types of singularities in more detail, beginning with the
case of domain walls.

Clearly a domain wall has a finite energy density. In equilibrium, its thickness is of
the same order as the correlation length & at the relevant temperature. Thus its mass per
unit area, which for these relativistic walls is the same thing as the surface tension o, is
in order of magnitude

o ~ EAf ~ hpP(1=T*T2)*2,

where Af is the height of the potential hump separating the two minima.

This is a huge number. It was pointed out by Zel’dovich, Kobzarev and Okun (1974)
that even for domain walls formed at a transition at 100 GeV, the mass of a single wall
stretched across the universe would vastly exceed that of all other matter and hence intro-
duce an unacceptably large anisotropy in the microwave background radiation, as well
as other gravitational effects. For GUT domain walls the situation would be much worse.
Indeed it is clear that if such massive walls ever existed in the universe they must have
disappeared a very long time ago.

Unfortunately this is not easy to arrange. Suppose we start with a more or less random
distribution of the two types of domain. Then for energetic reasons we may expect that
locally one type will grow at the expense of the other. Small isolated pockets of one will
disappear, and the overall length scale of the domain structure will increase. However if
in the initial configuration there was no overall bias as between the two types, then we
cannot expect ever to eliminate either type throughout the whole universe. At the most
we may expect the size of the typical domain to be comparable with the horizon distance,
that is we may expect to see of the order of one domain wall across the visible universe.

The most likely application of this result is to rule out theories of spontaneously
broken CP invariance. It is only possible to avoid the disastrous conflict with observation
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by introducing some kind of bias. Oge can for instance have a nearly left-right symmetric
thedry, in which the approximate symmetry is broken spontaneously, but with a small
intrinsic asymmetry that ultimately favours one type of domain over the other.

It has recently been suggested by Kuzmin, Shaposhnikov and Tkachev (1981) that
the conflict may be avoided in a theory where the symmetry is broken and then restored
at a lower temperature. But of course in such a case the spontaneous symmetry breaking
can have nothing to do with the observed low-temperature CP violation, which must again
be attributed to a small intrinsic asymmetry.

Another way out might be to arrange that the symmetry is never restored at any
temperature, as can be done in suitably complicated models. (I shall have occasion to
consider a similar suggestion later in connection with monopoles.) In a sense, however,
this does not solve the problem, but merely removes it from the realm of dynamics to that
of initial conditions. Even if the symmetry were broken right from the start, we could
still ask why the universe chose one domain initially rather than the other, and indeed
why the same choice was made everywhere.

It is possible that a resolution of the horizon problems which explains why far sepa-
rated regions of the universe have the same temperature might also explain why they belong
to the same domain, and hence resolve the problem of domain walls. If no such resolution
is possible then it remains true that no theory involving purely spontaneous breaking of
a discrete symmetry, without intrinsic asymmetry, is viable.

4.4. Strings

Next let me turn to the case of strings. The mass per unit length or tension, g is given
approximately by

pu~ EAf ~ (1 =T3T2).

This number is still large. In conventional units the mass of a string produced at the grand
unification transition is about 10 tons per fermi! However because strings are only one-
-dimensional rather than two, they would not if present in small numbers give an excessive
contribution to the mass density of the universe.

Consider for example a single string stretched across the visible universe, of length
4. Tts mass is M, = 4tu. Let us compare this with the total mass of the visible universe,
assuming that we are in the radiation-dominated era. The density is

¢ ~ 0.03/Gr2,
so the total mass is
M = (4n/3)0(2t)® ~ 0t/G.
Thus the ratio of the mass of a string (well after the phase transition) to that of the universe
is
MM ~ AGu. ~ 4(nfmp)* ~ 10-7.

This is a sufficiently small number to cause no difficulties with the observational isotropy.
It is interesting to mnote that it is independent of the epoch ¢
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It will b: important for our subsequent discussions to estimate the typical length
scale of thz structures that are formed at the phase transition. Consider the situation when
thz temperatare has fallen just below T,. At this stage the central hump in the effective
potential ¥{¢), of height 4f, is still quite small. Thus thermal fluctuations back and forth
across th: hump will be quite common. Th: temperature at. which this ceases to be true
is th2 Ginzburg tempzrature Tg (Ginzburg 1960). It is determined by the. condition that
the energy of a fluctuation back to ¢ = 0 on a lengih scale of the order of the correlation
length should be equal to T

E3Af ~ T.

For the case of waak interaction, T lies not far bzlow the critical temperature T, in fact
(Kibble 1976)

T.—Tg ~ KT,
The correlation length at this temperature is
& ~ k.

Once T has fallen below Ty, fluctuations back to ¢ = 0 are improbable except on
a leng:h scale too short to be of relevance. Thus topological features like strings may
bz regardad as frozen in. It follows that the initial length scale we may expect is of order &g.

Th:ir tension will tend to make strings straighten and shorten. Their subsequent evo-
lution is quite a complex problem to which I shall return later, in the context of a recently
proposed theory of galaxy formation.

5. Monopoles

Meanwhile, let mz turn to the case of monopoles. As I pointed out, they are ubiquitous
in ths sznse that any GUT, which starts with a simple or semisimple grand unification group
G and ends up with an unbroken U(1) subgroup, is bound to produce monopoles at some
transition. Moreover thzy are liable to be produced copiously, but since they carry a con-
served chargs can only disappzar by annihijation which is usually a slow process. There
is thus a serious difficulty in avoiding an overabundance of monopoles in the universe
now.

Using th: sam: simple argumant as before, one would arrive at an estimate for the
monopole mass of

&4 ~ (k) (1 =TT,

This is at best a lowar limit, since it completely ignores the contribution to the energy
of th: gaug: fizld. In fact a much better estimate of the zero temperature mass, which
is a good approximation except for very small values of A/g is (Bogomol'nyi 1976)

my =~ 4nn/g.

For monopoles produced at the grand unification transition, this is of order 10'¢ GeV
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A simple estimate of the initial density of monopoles is obtained as before from the
correlation length at the Ginzburg temperature. We expect the position of {(¢> on the
surface M of minima of V to vary randomly from point to point, with a correlation length
of order &g. This gives

ny~p é(_}s’

where p is a numbrical factor of order 0.1 (whose value can be predicted from the structure
of the group G).

A convenient parameter to use in discussing the density of monopoles is the ratio
r = ny/T?, because in the absence of annihilation r will be nearly constant during the
adiabatic expansion of the universe. (It would be more accurate to use the monopole-to-
-entropy ratio, but the difference is not siginificant when discrepancies of many orders of
magnitude are in question). The estimate made above gives

r ~ phS,
50 a reasonable order-of-magnitude guess for the initial value of r might be 10-7.

5.1. Annihilation of monopoles

The subsequent annihilation of monopoles has been discussed by Preskill (1979)
(see also Zel’dovich and Khlopov (1979)). The monopoles and antimonopoles must diffuse
towards each other and then become bound in Coulomb orbits before annihilating. As the
universe expands this becomes an increasingly slow process. Thus Preskill concludes that
if r initially exceeds 1019, it will be reduced to about that level but no further.

This level is far too high to be acceptable. Such heavy monopoles might have escaped
direct detection, but would contribute to the overall mass density of the universe. Imposing
the requirement that the total mass of the monopoles in the universe now. cannot exceed
the observational upper limit on the mass of all matter gives r < 1024, One might possibly
argue that in the r_eéent history of the universe monopoles have migrated preferentially
to special places, such as centres of galaxies, where their annihilation rate is enhanced.
Even so, there is another limit that comes from an earlier stage in the history of the universe.
The amount of helium synthesis is very sensitive to the expansion rate of the universe
and hence to its density at the time. Requiring that monopoles should not excessively
increase this density gives the limit r < 10-'%.

Many authors have suggested ways of avoiding this paradox. One of the most straight-
forward was proposed by Bais and Rudaz (1980) who argued that the correct expression
for the initial monopole density when the monopoles freeze out at the Ginzburg temperature
should be the equilibrium density for particles of mass equal to the monopole mass at that
temperature, i.c.

r = my[Tg = [mu(To)[2nT6T" exp [—mu(To)|Te).
They calculate the value of the exponent and show that it has the form

mM(TG)IITG = Ch/g = Cms/mv,
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where C is a model-dependent constant whose value is somewhat uncertain -— mainly
because of uncertainty in the precise specification of the Ginzburg temperature. However
the factors in C that can be calculated are quite large, of order 30. If in addition,
we assume that the Higgs coupling constant is rather large, say A/g = 2.5, then we can
reduce r to an acceptable level, 1032 or less.

This explanation would favour a large value of the Higgs boson mass, ms/m,, = 2.5,
which may be difficult to reconcile with GUT phenomenology. A more serious objection
to this proposal has been raised by Linde (1980a) who pointed out that in the circumstances
considered, the probability of finding close monopole-antimonopole pairs is much larger
than for monopoles alone. In such a configuration there are large cancellations of the long-
range gauge-field contributions. Thus there is no exponential suppression of monopole
pairs and we should in fact expect a monopole density closer to the original estimate.
The argument of Bais and Rudaz may be correct in a modified form, in which my, is replaced
by the mass of a monopole in a plasma of monopole-antimonopole pairs.

Linde (1980b) has also suggested an interesting alternative mechanism for eliminating
excess monopoles. This is based on an analysis of the infrared behaviour of non-Abelian
gaugs theorics. Linde suggssts that in addition to the “electric”” gauge-boson mass of
order g7 which is calculable in perturbation theory there must be a non-perturbative
“magnetic” mass of order g2T. Linde then argues that below about 10° GeV monopoles
and antimonopoles would be connected by a relatively light string, or tube of magnetic flux,
which will lead to rather rapid annihilation. It is not at all clear however whether this
is the correct interpretation of magnetic mass. A diffefent interpretation is suggested
by recent lattice calculations (Billoire, Lazarides and Shafi 1981).

5.2. First-order transitions

A considerable number of authors have proposed ways of eliminating monopoles
involving first-order phase transitions (Guth and Tye 1980, Einhomn, Stein and Toussaint
1980, Cook and Mahanthappa 1981, Billoire and Tamvakis 1981, Guth and Weinberg
1981, Einhorn and Sato 1981, Kennedy, Lazarides and Shafi 1981). So let me now turn
to that subject.

For several reasons the transitions are in fact likely to be first-order rather than second-
-order as we have hitherto assumed.

First, there are one-loop radiative corrections to the effective potential at zero tem-
perature of the form

+(m?/8r%)* In (m?/y?),

where p? in some renormalization point. These corrections are significant in special cases —
if the Higgs coupling is very weak, 4% ~ g* (Linde 1976), or if there are no quadratic terms
in U(¢) (Coleman and Weinberg 1973). The effect is to make the effective potential V()
have a minimum at ¢ = 0 separated from the absolute minima on M by a hump, thus
giving a first-order transition.

In many cases, there are cubic terms in U(¢) which will have a similar effect. For
example, in SU(5) with a Higgs field in the adjoint representation, U(¢) would be expected
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to contain a term proportional to tr (¢*). Even if no cubic terms exist at T = 0 they will
appear in the temperature-dependent corrections, which involve terms like

—(m*[12m)T.

In all such cases, we may expect a degree of supercooling. At the critical temperature
T, where the minima at ¢ = 0 and nonzero ¢ are degenerate nothing will actually happen.
Instead, the universe will cool further and the transition will occur discontinuously and in
an inhomogenzsous way, by the spontancous formation of bubbles of the new phase which
then expand to mezet and fill all of space. This may happen either due to thermal fluctua-
tions or by quantum tunnelling. '

Let us consider first thermal fluctuations. The energy of a small bubble of the new
phase may be written in the thin-wall approximation as

E(r) = —(4n[3)r*4f+4nr?s,

where Af is the difference in free energy density between the symmetric and asymmetric
minima, and ¢ is the surface tension of the wall separating the phases (related to the in-
tegral over the hump in V). If the bubble radius once reaches the critical value r, = 20/4f,
it will continue to grow spontancously. Thus the probability of bubble formation by ther-
mal fluctuations is proportional to exp (—E,/T) with E, = 16n63/34f2. This probability
peaks at a tempearature not far below T. If the minimum value of E,/T is reasonably small,
the transition should occur rapidly. In that case we have a weakly first-order transition,
not very different in character from a second-order one. In this case the initial monopole
density would be of the same order of magnitude as the density of bubbles,

Ny = phy,

which would again be much too large.

On the other hand, if E /T is never small, thermal fluctuations are unlikely to trigger
the phase transition. In that event we may have extreme supercooling. That is the possi-
bility I examine next.

5.3. Strongly first-order phase transitions

What is relevant now is the probability of bubble formation as a quantum tunnelling
process. This probability is of the torm Ae”®, where B is the Euclidean action for the
“bounce’” solution (for details see Coleman 1977, Callam and Coleman 1977). It is possible
to estimate the value of B in specific models, (see for example Cook and Mahanthappa
1981, Guth and Weinberg 1981, Einhorn and Sato 1981) but we shall not need to do so
here.

If the transition is strongly first-order, and occurs by a rather improbable tunnelling
event, then the size of bubbles produced will typically be large, so the monopole density
should be small. Moreover when the transition eventually occurs at a temperature T < T,
it releases large latent heat, generating entropy which further dilutes the monopoles by
increasing the denominator of the monopole-to-entropy ratio. By the same token, of
course, it reduces the baryon-to-entropy ratio. Thus one must arrange that the latent
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heat released reheats the universe at least to a temperature equal to the Higgs mass m,,
to allow baryon number to be regenerated.

There are grave difficulties with this scenario, arising from the rapid expansion of
the universe during supercooling. Once T has fallen well below T, the density ¢ is domi-
nated by the vacuum energy

oy~ kPt
which plays the role of a cosmological constant. In particular, the Einstein equation
(R/R)? = 8nGo,[3-
leads to exponential expansion, as in the de Sitter universe:
Roc ™, H~ hi/mp.

If the maximum value of e”? is rather small, then because those parts of the universe still
in the old phase are expanding exponentially, the growing bubbles of new phase never
catch up, and the transition is never complete. The universe would then be very inhomog-
eneous — impossibly so unless the visible part of it is entirely contained in one original
bubble. ‘

The exponential expansion has another effect too. It introduces event horizons.
The usual particle horizon or causal horizon of the universe is the surface beyond which
no causal contact could have occurred in the past. An event horizon is a surface beyond
which no future contact can occur. The distance to the event horizon is H~! ~ mp/hs?.

Hut and Klinkhamer (1981) have pointed out that the existence of event horizons
implies mode-mixing of positive and negative frequencies for modes with wavelengths
greater than H-!, or frequencies w < H. They argue therefore that once T falls below H,
the phase transition will be induced by mode mixing, so that further supercooling is halted.
Similar conclusions have been reached on rather different grounds by Abbott (1981)
and by Horibe and Hosova (1981). For the grand unification transition, H ~ 10** GeV,
so this argument seems to rule out supercooling by more than about four orders of magni-
tude — not enough to reduce the monopole density to an acceptable level.

5.4. Multiple transitions

Another possible escape from the problem of overabundant monopoles is to invoke
a series of transitions.

‘One explanation of this type is due to Langacker and Pi (1980). It was noted by Wein-
berg (1974) that it is sometimes possible to have a phase transition in which the symmetry
of the high-temperature phase is lower than that of the low-temperature one. An example
of a substance that displays such behaviour is Rochelle salt (sodium potassium tartrate).
Langacker-and Pi constructed a model involving three Higgs doublets that exhibits the
symmetry-breaking pattern

SU(S) - SU3) x SU(R) x U(1) — SU@3) = SU@G) x U(1).

The U(1) factor in the symmetry group of the second phase means that monopoles are
present, but they become unstable and disappear at the second transition. Of course, there
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must be an unbroken U(1) factor in the symmetry group of the final phase. It appears
at a third phase transition, which can be made to occur at a relatively very low temperature.
Although some monopoles may be produced at that transition there need not be many.
Their number may be suppressed by a large exponential factor because the temperature
at the transition is far below the monopole mass. (Alternatively if the monopoles were
light they would be relatively insignificant for cosmology.)

The general case of two successive transitions

G- H-H

has been analyzed by Bais (1981). The question is, if monopoles are produced at the first
transition, what happens to them at the second? There is in fact a wide range of possibil-
ities. The H' phase may exhibit monopoles of either or both of two distinct kinds — light
monopoles which carry only an H’ charge and heavier monopoles that carry both H and
H’ charges.

A monopole in the H phase may do any one of several different things cn passing
through the second transition. It may remain -essentially unaltered, or decay to a lghter
H’ monopole or to the vacuum. It may acquire a flux tube that joins it to another mono-
pole and pulls them together, leading to annihilation either to the vacuum or to an H’
monopole. Finally, there is an intriguing possibility pointed out by Steinhardt (1980) —
it may become unstable to radial expansion. Effectively what happens in this last case
is that the core of the monopole makes the transition to the H’ phase and when it becomes
energetically favourable to do so, expands to form the vacuum of the new phase. Where
these expanding bubbles meet, regions of the old H phase may be trapped to form new
monopoles.

The simplest case to analyze is when H' is a subgroup of H. In that case, what happens
to a monopole can be described in terms of the homomorphism

y:n(H') - n,(H)

of the fundamental group of H' into that of H. If the H monopole corresponds to an element
a of n;(H) belonging to the image im v, then it converts to an H' monopole with a magnetic
charge corresponding to one of the elements in y~q, generally one of those with the smallest
possible total H’ charge. On the other hand if the H monopole corresponds to an element
a that does not belong to imyp, then it must acquire a flux tube, a relatively light string
that ties it to another monopole. In this event the two will be drawn together and will
annihilate (Bais and Langacker 1981).

If H' is not a subgroup of H (nor H of H’) then it is usually not possible to say of
a particular monopole that it must transmute in a particular way. Rather, it has finite
probabilities of making various different transitions. The details are certainly complex,
and no very general analysis seems to be possible. It is clear however that if both H and
H' phases can exhibit monopoles then it is extremely difficult to arrange that all the
monopoles disappear without creating H' monopoles in-their place. The number may be
reduced but not by many orders of magnitude.
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One possible solution of the monopole problem might be to arrange that all H mono-
poles disappear and are replaced by lighter H’ monopoles. If the second transition occurs
at a sufficiently low temperature, say 10° GeV, and the number density is limited by some
degree of supercooling, it might just be possible to achieve sufficient reduction. Against
this, however, is the fact that the observational limits on monopole density are consider-
ably more stringent for very light monopoles.

For strings there are similar options at a second transition. Most strings either sur-
vive unaltered or decay, though there is also in principle the possibility that they may
become joined by relatively light walls. As with monopoles it is possible for strings to
nucleate the transition.

6. String theory of galaxy formation

I now want to turn to the final topic of these lectures, the still rather speculative idea
of using strings to explain the formation of galaxies.

Let me start by surveying briefly our present understanding of this problem (see
Peebles 1980). Consider a uniform gas cloud of density . If a small scale density pertur-
bation appears, it will tend to die away but there is a minimum scale beyond which such
a perturbation will grow. This occurs when the gravitational attraction can overcome the
gas pressure. The required minimum scale is the Jeans length

Ly = ¢[(Go)'"?,

where ¢, is the sound velocity. So long as the gas is ionised, ¢; = 1/,/3. Thus, during the
radiation-dominated era, we have

Ly =c¢t =13,

so that the Jeans length is comparable with the horizon distance. However after the
decoupling time, when the electrons and protons combine to form neutral hydrogen atoms
and effectively decouple from the radiation, ¢, falls rapidly to the value characteristic of
atomic hydrogen, namely

¢, = (5T[3my)'/2.

Then L; < ¢. On scales larger than L;, the density perturbation 69/ ¢ can start to grow,
essentially like t*/3. Thus to ‘achieve a density contrast of order unity at about 10'¢s one
requires 6g/¢ ~ 103 at the decoupling time (# ~ 10'25s),

There are essentially two existing theories of galaxy formation. The first is based on
adiabatic perturbations, for which

(5Q/Q)rad ~ (4/3) (5Q/Q)matter'

Before these come inside the horizon, i.e. for times ¢ such that t < A (where 4 is the wave-
length of the perturbation at time ¢, a quantity that initially grows like #'/2), the density
contrast suitably defined grows like ¢. However during decoupling these perturbations are
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heavily damped by photons diffusing out of the high-temperature regions on all scales up
to the Silk mass,
Ms“g > 1012 MO‘

(Here M is of course the solar mass.) Thus only the largest perturbations can survive.
The resulting theory, largely due to Zel’dovich (1970), is often called the pancake theory
because it envisages the formation of a layered structure that later breaks up into indi-
vidual galaxies.

There are several difficulties with this scenario. The predicted large-scale inhomo-
geneity is close to the limit allowed by observation of the isotropy of the microwave back-
ground radiation. There is a problem with the generation of unwanted secondary isothermal
perturbations at the decoupling time. Finally there is no satisfactory explanation of the
reyuired initial spectrum of density perturbations. Press (1979) has suggested one possible
explanation, based in fact on a phase transition occuring very early in the history of the
universe. However his theory depends on the assumption that Higgs ficlds are so special
that their gravitational interaction differs from that of everything else. This is not easy
to accept.

The alternative theory of galaxy formation (Peebles 1980) is based on isothermal
perturbations, for which (6¢/¢),.a = 0. In this case, the perturbation does not grow before
coming inside the horizon -— dg/¢ is essentially constant for ¢t < A. These perturbations
are not much damped at the decoupling time and on scales larger than the subsequent
Jeans mass (about 10°M ) they can begin to grow, like #2/3. Here the initial condensations
are on the scale of stellar clusters which subsequently clump together to form galaxies.
The major problem with this theory is that any mechanism that generates baryon number
will destroy whatever isothermal perturbations are present initially. So the question is —
what then generates do/¢? There seems to be no good answer to this question.

Since neither of these existing theories is very satisfactory, it is matural to look for
an alternative. Strings offer one possible source of initial density perturbations. The ques-
tion is — can they survive long énough to be relevant? If so, can they generate density
perturbations of the right size?

The first suggestion that strings might be useful in this context was made by Zel’dovich
(1980). However, a rather more attractive version of the theory has been put forward by
Vilenkin (1981 b, ¢).

6.1. Early evolution of strings

To explain how this theory works I have to go back to the strings that are produced
in some models and discuss how they evolve in time (Kibble 1976).

Initially they are produced in a rather random tangle. They are moving in a dense
medium, so their motion is quite strongly damped. In fact, the damping force per unit
length on a string moving with velocity v through a medium of density ¢ is of order £,00
(In later stages, this is no longer true, for reasons I will explain, but it is adequate for an
initial discussion.) Thus the typical damping time is

ta ~ p/éo@ ~ hnPt3mg.
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Initially ¢ is roughly the time of the phase-transition, i.c.
t~ t, ~ Hip/n?.

This leads to 73 ~ A/y. This may be compared with the typical length scale L of the system
of strings which as I showed earlier is of order

L~ &g~ 1R,

It follows that 3 < L < ..

However, this situation does not last long, as I shall show. During the period of
heavy damping the strings will tend to shorten and straighten. Fhe total length of string
will decrease through this process and the shrinkage and disappearance of closed loops.
Moreover strings may sometimes cross and exchange partners, producing new kinks that
straighten out in turn.

Consider a section of string with radius of curvature r. It will experience an initial
inward acceleration of order u/ur = 1/r but damping will quickly bring it to a limiting
velocity of order #4/r. Hence the typical time scale for straightening of kinks is r?/¢;. We
may expect therefore that the length scale of the structure will grow at a rate given by

Initially, this means that L grows like the square root of the elapsed time. However on
a longer time scale, #, is not constant because g is falling like 7% or -2 so that as noted
above 73 is proportional to 2. This yields

tgoct?, L oct??,

Clearly t, will eventually catch up with L. In fact this occurs according to this analysis
when

ta~ L~ t~ mhhp® ~ 10-3%s,

A more careful anaiysis (Everett 1981) shows that this conclusion must be slightly
modified. Once the temperature has fallen well below 7, the typical wavelengths of particles
are large compared to the thickness of a string. In these circumstances, the effective cross
section presented by a string is not its thickness but the particle wavelength. Thus the
damping is considerably increased. In fact, #; now behaves not like ¢2 but like ¢*/2. Thus
we have

ty o132 Lo t%4,

However it remains true that ¢z will eventually catch up with L, though at the somewhat
later time

ta~L~1t~ 107285,

This is still very early in the history of the universe.
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6.2. Later stages of evolution

What happens subsequently is less clear. Since the motion of the strings is no longer
heavily damped, they may acquire relativistic velocities. It is clear that the typical length
scale of the configuration of strings cannot grow faster than the causal horizon distance,
i.e. L $ ¢t Let us for the moment assume (as does Vilenkin 1981 b) that in fact L ~ #.
This means that at any epoch there is approximately one string across the visible universe.

This implies that the strings must be losing energy. I remarked earlier that a single
string stretched across the visible universe at any time within the radiation-dominated era
would contribute a fraction 4Gu ~ 10-7 of the total mass. On the other hand the strings
are constantly gaining energy from the expansion of the universe (because of work done
against the string tension). So if it is true that L ~ ¢, there must be an energy loss mechanism
that constantly transfers energy from the strings to the radiation.

Does such a mechanism exist? The answer is certainly yes, namely gravitational
radiation, though whether this is the dominant mechanism is rather hard to assess. Vilenkin
argues that the crucial step is the formation of closed loops. From time to time a string
will self-intersect, forming a closed loop, typically with a radius of order ¢. Alternatively,
larger closed loops may form by chance but will have no effect until they come within
the horizon and can as it were see that they are closed.

Once formed, a closed loop cannot escape eventual disappearance, unless it should
happen again to cross a longer string and become reattached. It will oscillate back and
forth under its own tension, with a frequency w ~ 1/ for a closed loop of roughly circular
shape, of length 27/. One energy loss mechanism that certainly operates is gravitational
radiation. (Exactly circular loops would not radiate, but are unlikely to form by chance.)
The rate of energy loss is roughly

M ~ —GM?w? ~ —(21u)*G,
since M ~ 2nlu. This leads to a lifetime 7 given by
1/t ~ M|M ~ 2nGy/l
or
T~ 1081,

If this is the dominant-energy loss mechanism, the loops live a long time. Those born
at time ¢ live to about 10° ¢ before finally annihilating into particles of various kinds. In
total the many small closed loops that have not yet disappeared contribute much more
to the total mass than the long strings with a length scale of order ¢. In fact the contribution
of the loops gives

Qloops/Q ~ 10-3'

This is very encouraging because this is precisely the order of magnitude of density constrast
needed to trigger galaxy formation.

Another good feature of this theory is that the scale of the loops is about right. A mass
M enters the horizon at a time given roughly by

1~ 1075 (M[M)s.
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Thus for example a galactic mass ~ 10'2M, enters at about a year. Loops produced at
that time with a galactic scale survive to about 10° years, that is well past the decoupling
time,

An intriguing feature of the strings is their rather curious gravitational field (Vilenkin
1981a). The space-time around a string is in fact flat. A test particle in the neighbourhood
would experience no gravitational force. However, they do have an effect. The space
near a string is cone-shaped, as though a wedge of small angle had been removed and
the two sides joined together. The missing angle is of order

8 =~ 8nGu~ 1078,

Thus objects beyond a string might show double images. The string acts as a cylindrical
gravitational lens. This might possibly explain the observation of double quasars with
almost identical spectra.

6.3. Problems with the string theory

There are however difficulties with this attractive theory. One question that must
be asked is whether any non-gravitational energy loss mechanisms exist. Though strings
do not carry for instance electric charge they certainly do interact indirectly with the
electromagnetic and other fields, and it is far from clear that accelerated strings do not
generate higher-multipole electromagnetic radiation (but see Everett 1981).

Another possibility that has not been taken account of in our discussion so far is
that an oscillating loop may self-intersect and break in two. Since smaller loops lose energy
more rapidly, this will reduce the mean lifetime. It is hard to estimate the probability that
a loop in an initially random configuration will subsequently intersect itself. However,
it seems plausible to suppose that the probability of this occurring in any oscillation cycle
is some fixed and non-negligible number, 27p, say. In that event a typical loop would
fragment into two within a time of order //p. The pieces would then oscillate faster and
break again after a time //2p. Clearly, the total lifetime would be reduced to about 2//p.
Unless it could be shown that p were very small indeed, this would mean that the total
contribution of loops to the mass density would be far too small to be of relevance to
galaxy formation.

It would be possible to avoid this problem by adopting the original suggestion of
Zel’dovich (1980), who hypothesized a transition much closer to the Planck mass, at
about 10'7 GeV. Strings formed at such a transition would be heavier and so even if the
loops were rather short-lived might contribute enough mass to provide the requisite density
contrast. It should be noted however that in that case the surviving loops would all be rather
large. All galaxy-sized loops would have disappeared by the decoupling time. Thus in this
scenario it would be clusters of galaxies that condense first. It is also important to ask
whether realistic grand unified theories exist that exhibit strings. The relevant criterion,
as I indicated earlier, is non-triviality of the first homotopy group #,(M), or equivalently,
if G is taken to be simply connected of no(H). The simplest GUT based on SU(5) does
not produce strings, but it is not difficult to invent models that do so.

Possibly the simplest example that might be considered at all realistic is based on the
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grand unification group SO(10). If the Higgs field is chosen in the 54-dimensional symmetric
tensor representation, the potential may be arranged so that the symmetry breaking scheme
is

SO(10) — S[O(6) x O(4)].

This subgroup is locally isomorphic to SU(4) x SU(2). x SU(2)g, which of course breaks
at a second transition to SU(3) x SU(2), x U(1).

Note that the unbroken subgroup is not simply SO(6) x SO(4). In addition to rotations
within the two subspaces of dimensions 6 and 4, it contains rotations through = in planes
such as (67). It follows that

(M) = ng(H) > Z,.

The model therefore produces “mod-2” strings — rather than strings carrying an additive
quantum number.

This is not a very satisfactory model tor other reasons (Lazarides, Magg and Shafi
1980). In particular it seems difficult to avoid a whole series of transitions in rapid succession
with symmetries of the form S[O(10-k) x O(k)].

7. Conclusions

If we accept the idea of grand unification, which is certainly attractive, then we are
forced to accept also the existence of phase transitions in the early universe. Various
interesting structures can be formed at these transitions. Strings in particular may possibly
provide a new theory of galaxy formation. It will be necessary first to support the arguments
about energy loss from loops by more detailed dynamical calculations.

Possibly the most serious problem concerns the cosmic monopoles whose production
is an almost inevitable feature of GUTs. Though there are several proposals for reducing
their number to an acceptable level, none can at present be regarded as wholly satisfactory.

In conclusion I would like to thank the organizers for their hospitality at what has
proved to be a very enjoyable and successful autumn school. I also acknowledge helpful
comments from several of the participants at the school.
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