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1. Introduction

The ground state energy Eny of nuclear matter (NM), composed of A, nucleons
with spin up and A, nucleons with spin down, depends on the spin excess:

Exm/A = ey +3 &,[(4,—A)[AT%. 1.1)
The spin symmetry energy, ¢,, plays a crucial role in the problem of spin stability of NM
(1-3], and is related to the energy of the s-mode of the giant resonance [4], and to the
spin dependent part of the single particle potential [5]. Similarly, we define the spin symme-
try energy of neutron matter (NM). It is directly related to the magnetic susceptibility of
NM (see, e.g., [6]) and is crucial in discussing spin stability of NM [1-3, 7]. )

In the present paper, we calculate the spin symmetry energy for the model of pure
hard core (h.c.) two-body interaction of radius ¢. We apply the expansion in powers of
the gas parameter x = kgc (kg is the Fermi momentum in units of #). Whereas the ground
state energy of a spin saturated system of fermions with h.c. interaction has been investi-
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gated for a long time [8-21]}, the calculation of the spin symmetry energy, so far, was
carried out in the quadratic approximation (x?-approximation) only {22]. In the present
paper, we calculate the next, cubic, term in the expansion of ¢, in powers of x. As it turns
out, the cubic term plays a decisive role in the discussion of spin stability of NM and NM.

Let us notice that in the h.c. model, the spin symmetry energy of NM is equal to the
isospin symmetry energy, &, and to the spin-isospin symmetry energy, &,. (The symmetry
energies ¢, and &,, are defined similarly as &,, except that instead of spin excess we consider
isospin (or neutron) excess (N—Z)/4, and the spin-isospin excess (N,+Z,—~N —Z)/4
respectively.)

At sufficiently high densities, where the short range repulsion is the decisive part
of nuclear forces, our h.c. model should approximately describe real NM and NM. Also
at lower densities, the h.c. model may be used as a starting point of an approximation
procedure in which the attractive interaction is treated as a perturbation {see, e.g:, [23-26]).

Needless to say that the h.c. model has been applied to other physical systems, notably
to liquid *He (see, e.g., [27]), and also electrons in metals [28].

The paper is organized as follows: In Section 2, we describe the calculation of ¢, in
the x*-approximation in the case of a general system of h.c. fermions with a degeneracy
number v = 2. In Section 3, we present and discuss the results for NM and NM. Formulas
for integrations, which appear in Section 2, are collected in Appendix.

2. Calculation of e,

To obtain results for ¢, valid for NM and NM, as well as for any other h.c. fermion
system, we consider the general system of 4" fermions (A", with spin up, and A", with
spin down), in which a single particle state of momentum k (measured in units of #) may
be occupied by v patrticles. This means that a single particle state of momentum k and with
a given spin direction (up or down) may be occupied by g = v/2 particles. For NM the
spin-isospin degeneracy v = 4, and the isospin degeneracy p = 2. For NM the spin degen-
eracy v = 2, and u = 1.

At a fixed density ¢ = A/Q (Q is the volume), the ground state energy £ of our system
depends on the spin excess parameter

o= (N,—AHN)DN, 2.1
and we define the spin symmetry energy by
&, = {d* [E(2)/ #]do’} s, (2.2)

where the zero at the bracket indicates that the derivative is calculated at a = 0.
If we write E(x) in the form

E(@) = T(0) +A4E (), (2.3)

where T(«) is the (kinetic) energy of the noninteracting system, and 4E(«) is the change
in E(z) due to the h.c. interaction, we obtain:

g; = % e(kg) + Ade,, 24)
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where e(kg) is the Fermi energy, and
Ae, = {d* [AE(@)/ A"} /da*}q (2.5)

is the contribution of the h.c. interaction to &,.

We use the notation e(k) = k?/2.# for the single particle kinetic energy (. is the
mass of the particle divided by ©2), and kg for the Fermi momentum of our system (at
a = 0). It is connected with the density ¢ by:

ki = 6n’g/v = 3n’g/u. (2.6)

To achieve our final goal — the expansion of A¢, in powers of x = kgc — we will
expand 4E(«) in powers of x. We start with the expression for 4E(«) in terms of the Brueck-
ner reaction matrix J:

AE(@) = AE() "+ AE()® + ... Q.7

where AE(x)™ denotes the part of AE(x), which is ‘of the n-th order in . Obviously,
there are no second order terms.
(i) Terms of first order in A"

The first order part of 4E(«) is:

AE@)® = 4 p?

1 .
X{Z E [(m1m2|9ifmc|m1m2)—I(mlmz‘fmc'mzmlﬂ

< <ji
1
+ z Z [(m1m2|9{).xlm1m2)“ ;‘(m1mzl%u|m1m2ﬂ
™ " <K <A
+2 2 Z (mtmzifxx‘m1m2)} > (2.8)

where k and A are Fermi momenta of the spin up and spin down particles:

-

K= ke(1+a)'3, A= ke(1—0)'3, 2.9

We write the reaction matrix equations for the on-energy-shell % matrices, which
appear in expression (2.8) in the form [22]:

(PP A ilmymy) = (plpzll?i”’lmlmz)

o, Quilky, k;)—P
+ z Z (Pl }i‘lkl)8(,,,,)-{-3(;112)—s(kl)‘“é‘(kz)
k>

ky

X (kKo A lmymy), (2.10)
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“where 2 indicates the principal value, and the exclusion principle operator

1 fork, > x and k, > 4,

0 otherwise. (2.11)

Qx;.(ku kz) = {

By 2#°°, we denote the reaction matrix for an isolated pair of particles. The expansion
of A#° into partial waves is [20]:

1 An
(P1P2|H °|mymy) = a Opm E QI+ 1A P (p, m)P(pm), (2.12)
1
where
A(p, m) Ame 1 i(pe)/n(me) 2.13
, m) = — —— — ji(pc c). (2.
\p Y ch’ p 1 ( )

Here, M and m (and similarly P and p) denote the total and relative momenta:
M=m+m;,, m=(mg—my)2. (2.14)

By expanding 27} in powers of ¢, and neglecting terms of higher order than c3, we
obtain:

1+% (me)> —% (po)® =0,
H(p, m) = — * 1 pmc? for 1{=1, (2.15)
0 > 1

All the contributions to AE(a) which are linear and quadratic in ¢, are contained in
AE(a)V. They are produced by the S wave part (! = 0) of %), approximated by 4nc/.#,
Eq. (2.15). The approximation " ~ 2" in Eq. (2.8) gives the linear contribution. To get
the quadratic contribution, we insert into Eq. (2.8) the o matrices obtained by the first
iteration of Eq. (2.10) for & in terms of % °. The corresponding contributions to As,
are then obtained by inserling the linear and quadratic parts of 4E(x) into Eq. (2.5). The
final result for ¢, in the x2Z-approximation is [22]:

e, = 2 o(ke) {1_ %x+ 7%[(2;:—1) (11-21a 2)/15—u]x2}- (2.16)

Now let us consider the three contributions to AE(@)® cubic in ¢, which give rise to
the following three parts of Ae, proportional to x3.
(i1) The S wave part (de,)s3

This part is produced by the c3-part of A, Eq. (2.15),

4nc?

H(m, m)g; = - dm? 2.17)

which in the approximation "~ ~ #° gives:

(mym,| A |mimy)s; = (mmy| A {mym,)s; = %_mz. (2.18)
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By inserting expression (2.18) into Eq. (2.8), we easily obtain:

[4E@) VA4 Jss = éf;e(kp)x3[(u~1)f(a)+ug(a)], (2.19)
where |
f@ =3[+ +1-0)*"],

g(@) = 2[A—-a) A +a)*+(1+a) (1—2)*?], (2.20)

and Eq. (2.5) gives:

2
(de,)ss = § e(ke)x*(u—2) on " (2.21)

(i2) The P wave part (de,)p
This part is produced by o#°-,, Eq. (2.15). Proceeding similarly as in the case (il),
we get:

1
[AE@) VA e = 5 (k)X [(n+ Df (@) + pg@)], (2.22)
and

2
(de,)e = % e(kp)x (u+2) 5 (2.23)

(i3) The second order exclusion principle correction (4&,)g,2
This part arises from the second iteration ot Eq. (2.10), in which % is approximated
by its part linear in c:

4nc
(P1p2| X lmlmZ) = EérM VA (2.24)
Notice that approximation (2.24) is valid tor both on- and off-energy shell. The off-energy
shell effects appear first in the next term (cubic in c), [19], [29].
The second iteration of Eq. (2.10), with approximation (2.24) for ¢, leads to the
following expression for the part of ), ; cubic in ¢

3

(mym,| A G lmymy)g,, = L(my, mz)z, (2.25)

Qn.H

where

I (m,, my)=— J dk, f dk, Q"ﬂ"»k” gé(M K). (2.26)
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Expression (2.25) for &, inserted into (2.8) leads to the following contribution to
AE@)VIN

[AE@)") N Tz = e(kp)x® Ry

nzklg/
{(u—1) [X(x, K)+ X, D]+ plX(x, D+ X, 0]}, (2.27)
where
K A
~ A 1 2 2
X, 2) = s dm, | dm,I (m, m,)", (2.28)
i
where we use the notation:
fdm, = [ dmm}{dm,. (2.29)
0

To obtain {4e,)g,,, we insert expression (2.27) into Eq. (2.5). Taking into account
the dependence of the X’s on a through x, and A, Eq. (2.9), we get:

4
(Ago')Exz = % E(kF)x3 7@?

d*X(kg, kr) dX(kg, kg)
2u—1)| k& -2k
X {( H )l: F dky F dkg

2
—duk? [M] } ) (2.30)
0

CKoA

where the zero at the last term indicates that the derivative is taken at o« = 0, i.e.,
at K = l = kF'
Since X(kg, ki) is equal to kg® times a constant, we have

dX(kg, kg)
: - = 8X(kg, kg),
F dk, (kg kg),

d*X (kg, k
K2 _%El;_j? = 56X (ke ke), 2.31)
F

and Eq. (2.30) takes the form:

16
(ASG)EXZ = %s(kF)xs 7737(;8:

2y~ .
x {10(2,1—1))((1@, k) — ke [a—g;g—(,';')] } (2.32)
0
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From the definition (2.28) of X{(k, 1), we easily obtain:

0’ X(k, 1) R R
(4702 [W]o = k;fdkn f dkFZIkaF(kFI’ k:rz)2

o d
+ki | dkgy | dmy, — Ipre(keys m,)*
dkg

kg k¢ N
+ j dm; J dm, {% [d"kpk;(mx, mz)/dk;{]

+ 2L i (my, my) [621;:/1("‘1, mz)/a’faﬂo} > (2.33)

where kg, and kg, are vectdrs of length kg.
An elementary integration gives (for M < 2kg, and m < kg) for I, Eq. (2.26):

Ligke(my, mo) = 3 {kﬁrM/2+[(k§—Mz/4—m2)/M]

(kg+M[2)2—m* M2+ kg—m
xIn—5—s"——7 +mln — (2.34)
kf—M*j4—m M2+ ke+m
To calculate @21 ,/0k0A, we use the definition (2.26):
0 Ix}(mla mz) 1 (’ 5(M K)
— dk, |} dk 2.35
dkdA  4n 2 mP—k?’ 2.33)
where we use the notation:
fdk, = { dk,k?{ dk,. (2.36)
From the expression (2.35), we get (for M < 2kg, and m < kg):
azlu(mn m,) k2
e M*4+m*—k 2.3
[ i ]0 ZM/ (MPJ4+m* = k). 237)

After inserting expressions (2.34) and (2.37) into Eq. (2.33), we perform the integra-
tions in Eq. (2.33) numerically (by Gauss quadrature), applying the formulas given in
Appendix. In this way, we obtain the value of [02X(x, 4)/0x04],. A calculation of X(kg, kg)
is not necessary since its value is known from previous calculations of AE(ax = 0)® [18],
[19].

Our result for (de,)g,,, Eq. (2.32), is:

(de)grs = 2 e(ke)x[0.4271(2u — 1) ~0.6038u]. (2.38)



760

(i) Terms of third order in X

As we are interested in the x*-approximation of ¢,, we approximate ) by J° given
in Eq. (2.24).

We shall consider two types of third order terms: (1) hole-hole (hh) interaction terms,
and (2) particle-hole (ph) interaction terms.

There are two more types of third order terms: hole self-energy terms, and particle
self-energy terms, but their contributions to AE(x)® cancel if o is approximated by (2.24)..
(Notice that in the so called *“‘standard” low order Brueckner theory hole self-energy
terms are included while particle self-energy terms are neglected.)

(ii1) The hh interaction part (4e,)yy

The contribution of the hh interaction to AE(x)®)/A", [AE(0)'®/A 1, may be easily
obtained by properly modifying the expression for [AE(x = 0)®/ 4],y given in [19] (and
denoted there by ¢,). We simply have to split this expression into three parts representing
respectively interaction between two spin-up holes, betwegn two spin-down holes, and
between a spin-up hole and a spin-down hole. In this way, we get

[AE@D) N T = elke)® 2y

=
% {(u—1) [¥ (6, 0+ Y( D]+ u[ Yk, 2+ Y(L, )T}, 2.39)

where
2
Y(x, 4) = (Zl?i) jdkl j dkyd Ky, k) (2.40)
K A

Tk, k) = f dm, Jdmz oK~ M) . (2.41)

Proceeding with expression (2.39) similarly as in (i3), we get

16
(de)pn = 3 E(kF)x 3k
F
x {1021 — )Y (ke, ki) — KE[3? Y, D[O7]0}, @42)

and from (2.40) we obtain:
(4n)? [8*Y(x, 1)/2xdA]o

= k;:f dl}Fl j di%szkaF(ka kF2)2
— kg | dkgy kI dkydJy (ke y, k)?[dke
F

+ kj. dk, j dky[dT, 4. (ky, ky)[dke] 2/2+2‘]k;kp(k1’ k;) [02Jx,1(k1, ky)[0kor]o.  (2.43)
F k¥



From Eq. (2.41), we obtain:

Jkrrkp(kl’ kz) = % {kF—K/Z—{(kﬁ—-Kz/dl.—kz)/K]

(kp—K/[2)*— k> .y k+K[2—kg

0(Q2kz—K), 2.44
ki—K2/4—Kk> nk—K/2+kF}( ==K (249

(6% ik y, ky)[0k04) = k26(2kg— K)[[2K(kE— K*[4—k?)]. (2.45)

Integrations in Eq. (2.43) were done numerically, by applying formulas given in
Appendix. The value of Y(kg, kg) was taken from previous calculations of 4E(x =0)¢®
[18], [19].

Our result for (de,)un, Eq. (2.42), is:

(de)un = 2 e(ke)x*[0.0765(2u~1)—0.15624]. (2.46)

(ii2) The ph interaction part (de,),p

We obtain the contribution of the ph interaction to AE(a)¥/ A", [AE(@)®)N 1o, bY
modifying the known expression for [4E(x = 0)®)/A4 Jon given in [19] (and denoted there
by &5), which may be represented as a sum of eight diagrams shown in Fig. 9 of Ref. [19]
as diagrams (a)—~(h). Three of them (diagrams (f)-(h)) involve only one particle, and each
of them, in our case of a # 0, gives rise to two distinct diagrams involving either 2 spin
up or a spin down particle. Four of them (diagrams (b)-(e)) involve two particles, and here
the modification in the case of a # 0 is essentially the same as in (7i1). One of them, the
three body cluster diagram (a) involves three particles, and in the case of o # 0 gives
rise to eight distinct diagrams with specified spin direction of each particle. In this way,
we obtain

24
[AE(a)(S)/‘/V]ph = S(kF)xs 3, 8
kg

*{u=1) (u=3) [Z,(x, )+ Z,(4, 1]

+u(u—1) [Z,(¢, 1) +2Z,(x, D)+ Z,(4, K)+2Z5(4, ¥)]

—u[Zs(k, ) +Z5(4, ¥)]}, (2.47
where
Zl(K: '1) = (i> Jﬁ dmljdleu(mh kl)za (248)
4r

K

1)\? i
Zy(k,2) = (l—l;c) Jdmx J dkyLy;(my, k)L (my, k,), (2.49)
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1\ 7
Zy(k, 2) = (Z&) dm, J dk,L,(m,, k), (2.50)
< )

A
~

1 d ~k,—k
Ly(m,y, k) = Z; dm, | dk, (m;+m, 1 2)

m—m\E (k—k\ (2.51)
() - (05

Proceeding with expression (2.51) similarly as in (¢3) and (iil), we get:

32

(de)pn = § e(kp)x® rE: {10Q2u—1) 2u—3)Z(kg, ke)

— p(p=1ke[0*(Zy(, D) +2Z5(x, 1))|0k0A],

+ukg[0°Zy(k, 2)[0Kk0AT,}- (2.52)

(At k = A = kg the three functions Z; become identical, and are denoted by Z.)
From (2.48)-(2.50), we easily obtain:

(An)*{8*[Z (%, ) +2Z,(x, A)]}/0xdA},

kg
= 2{1"% I dkn[kj dp;— j dpl]deka(pls kF1)2/dkF

ke
+ | dm, kj dky[dLy . (my, k) [dke]*}, (2.53)

(4n)*[8°Z5(x, 1)/0KO1]o
= _k; j dkn j dleszka(ka kF2)2
+2kz § dlzm{ kj dp,[0L,py, ke1)/02]o

kg
- j dp.[0L;(p;> kn)/aK]o}LkaF(l’n kg1)
kr
+2 [ dmy | die,[OLsc(mis k)[02]o [OL(my, ki)/0To

+ Ly g, (my, k) [6°L(my, k,)[6x07],. (2.54)
From Eq. (2.51), we obtain:

1
Ly, (my, k) = — . {2P1kF+kFP1x1+[k%‘“’(P1 +3 Pix,)°]

1
P.x,/2

n pit+ke+Pixy[2
kp—pi+P1x,/2

x 1 ;
p1—kg+Pix,/2

+Pyx, [Pl_kF+2P1 In ]H(kF—Pl)} > (2.55)
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kf-‘ p1+kF+P,x1/2
oL L k))6A]y = — — | O(kg—p,) In 21—~ WU
[L;(m,, k1)[6A]o 4p,[: (ke—p1) In Pox, 2
p1+kF+P1x1/2]
+0(py —kp) In ————— |, 2.56
(pu=koin ot (2:56)
kF P1x1/’2
OLs(my, k)[oko = ~ ~—5 O(ke—py) In — ,
[OL(m, D/ox]o ap, (ke—p1) nkF—p1+P1x1/2
ke\? O(kg—
[0°Ly(my, k))[0xdA], = ("E) _(__1_:‘_17_1_) 2.57
P 4p x,
where
P, =ki+m, p =((k,—m)2 x = p1l31- (2.58)

Integrations in Eqs (2.53) and (2.54) were done numerically, with the help of formulas
given in Appendix. The value of Z(kg, k¢) was taken from the previous calculations of
AE(a = 0)® [18], [19].

Our result for (de,)n, Eq. (2.52), is:

(de,)on = 2 6(kp)x>[0.3817(2p — 1) (2t —3) — 1.7289u(u— 1) +0.55004].  (2.59)

3. Results and discussion

Adding all the contributions to ¢,, calculated in the preceding section, we obtain
in the x3-approximation:

2 8
e, = 2e(ky) {1 = 2 x4 S T@u-D (11=2 I D5

+(0.9245—0.2447#—0,2020u2)x3}. (3.1)

In the x*-approximation, only the interaction in S and P states contributes to g,.
The contribution of the P state interaction, (4¢,)p, appears only in the term cubic in x,
and is given in Eq. (2.23).

For NM (u = 1), and NM (u = 2), Eq. (3.1) gives:

£,(NM) = 2 e(kg) (1—0.6366x —0.2911x2 +0.4778x>), 3.2)
e,(NM) = 2 e(kg) (1 —0.6366x —0.0626x2 —0.3728x°). (3.3)

Eqgs (3.2) and (3.3) agree quite well with Eqs (3.13) and (3.21) of [1], where the coeffi-
cients of the cubic terms were estimated only.?

! The coefficient 0.5583 in Eq. (3.21) of [1] should be replaced by 1.1875. Furthermore, the
number 0.6 in column C of Table 1 of [1] should be replaced by 0.96. Also the factor 1/2 in
Egs (2.3) and (2.11) of [1] is superfluous.
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The cubic terms in sa(NTd), and g,(NM), calculated in the present paper; are essential
for discussing spin stability. The positive cubic term makes &,(NM) positive at all values
of x, and consequently NM is stable against spin polarization. In the case of NM, Eq.
(3.3) shows that e, (NM) = 0 at x = x(g,) = 0.95, and is negative for x > x(g,). This
means that in our h.c. model, the x3-approximation predicts the onset of instability of
NM against spin polarization at x = 0.95, i.e. for ¢ = 0.4fm, at about six times the
equilibrium density of NM. Although the validity of the x3-approximation at x = 0.95
may be questioned, nevertheless the predicted outset of instability of h.c. NM at x ~ 1
is supported by variational estimates {1], [3].

In the case of NM, the most important contributions to the cubic term in ¢, are (de,),s
which is negative and (4e¢,)p which is positive. The other contributions are of an order
of magnitude smaller. Consequently, the value of the cubic term in the symmetry energy
of h.c. NM obtained in [30] in a calculation, in which the ph interaction is neglected,
is misleading.

We might mention, that the cubic term.in ¢,, Eq. (3.1) becomes more negative with
increasing p, i.e., with increasing number of internal degrees of freedom of particles with
a fixed spin direction. As a consequence, a system with u = 4 would become spin unstable
at x(e,) = 0.61.

APPENDIX
Formulas for integrals

Here, we list the formulas for integrals which appear in the present paper. We use
the notation: P = p,+p,, p = (po—p)/2, x = Pp, and B = (p*>+P?*/4—k})/Pp. For
the functions F(p,, p,) = f(P,p), and G(py, p,) = g(P, p, x), we have:

kg kr
(4m)™% | dp, § dp,F(py, p2)

ke 2(kg = p) 2vkpZ—p? ,
= fdpp*{ [ dPP’+ [ dPPA(=B)}f(P,p), (A1
0 0 (kr —p)

(dr)~2 J dp, ,.‘j dp,0Q2kg—1p,+ p,)F(p1, P2)

2kp kr+P/2 o) 2
= [ dPP*{ | dpp’p+ | dpp3}(P,p), (A2)
0 Vke2 - P3j4 ke+P/2

133
(475)“2 5 dp, kf dp,G(p1, p2)

2kp kg2 —P2]4 1 kg+P/2 1
=3{fapP’[ | dpp® [ dx+ | dpp®{adx]
0 kg-P/2 -8 Vigi-P4 8
© P/2+kp 1
+ § apP* [ dpp*[dx}g(P, p, %), (A3)

2kg Pj2~kr B
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(@n)"2 | dkg, | dp,Glkesr p2)

ke Wiri=p2
=ke' Jdpp | dPPg(P,p,x =), (A.9)
0 2(kp—p)
(4”)_2 j dEFl j dp,G(kgy, p2)
kg
_ k¥ 2(kg+ p) @® 2(p+kr)
=ke'{fdpp | dPP+ [dpp [ dPP}g(P,p,x = p), (A.5)
0 2Vkr = p? ke 2(p—kg)

(475)—2 j‘ dkn deEFZG(kFU ke,)

kg —
= 2kz* | dppg(P =2 VkZ=p% p,x = 0), (A.6)

Where kFl = kFZ = kF‘
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