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LETTERS TO THE EDITOR

THE ZERO QUANTIZATION AS AN ORIGIN OF DIRAC SPIN
AND FERMIONIC GENERATIONS

By W. KROLIKOWSKI

Institute of Theoretical Physics, Warsaw University™*
( Received May 21, 1982)

A new ‘“zero quantization” is introduced by taking, as its basic kets, four orthogonal
directions u = 1,2, 3, 4 in a complex space-time. The “wave function™ of the zero quanti-
zation y(u) becomes a complex Fermi *'field” of the first quantization. Then it defines 2x 15
Hermitian matrices generating the group SU(2,2) x SU(4), where the first factor is the usual
conformal ‘group related to the spin 1/2 and other Dirac degrees of freedom; whereas the
second describes new internal degreed of freedom giving 4 fermionic eigenstates possibly
interpreted as 4 generations. So, through a quantization procedure, we relate the Dirac
spin and fermionic generations to the notion of direction in the complex space-time.

PACS numbers: 12.90.+q

In this note we turn to the geometrical foundations of the particle physics. Namely,
we show how the existence of the Dirac spin and fermionic generations may follow from
the fundamental notion of the direction in a complex extension of the physical space-
-time, if the idea of quantization is invoked on a very primordial level.

We conjecture that, in the logical structure of quantum theory, the usual level of the
first or particle quantization should be preceded by the level of the zero quantization which
would be in an analogical relation to the first quantization as the latter is to the second
or field quantization. We-introduce the zero quantization by the requirement that its
state space is spanned on four orthonormal kets |u> (u =1, 2, 3, 4) intetpreted as four
arbitrary orthogonal directions in the complex space-time defined as a manifold of points
7, = x,+iy, (u =1, 2, 3, 4), where x,, with x, = it are coordinates in the physical space-
-time. We do not decide at the moment whether y, is imaginary or real, while y;, y, and
s are taken real. These kets define, of course, the identity operator I of the zero quanti-
zation,
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Having defined the basis {u) (¢ = 1,2, 3, 4), we can speak about the warve function in
the corresponding representation [1],

() = <{u |y, )
where v is the abstract state vector (on the level of the zero quantization),
y=2lwyw), <yl =2lpwli*=1L1 3
u It

The wave function (2) can be interpreted as the probability amplitude of measuring the
direction g = 1,2, 3, 4 in our complex extension of the physical space-time. Qbviously,
v, = p() (u = 1, 2, 3, 4) are complex Cartesian components of a versor p in the complex
space-time. This a priori arbitrary versor becomes determined when a state equation
(on the level of the zero quantization) and an initial condition are imposed on y = y(¢)
in the Schrédinger picture. Evidently, all versors in the complex space-time form the
state space of the zzro quantization. Note that beside the pure states described by the
state vector (3) there may exist also mixed states corresponding to the density matrix [2]
(on the level of the zero quantization),

o=3 lwelu, Yo,=1, C))
" 13

which leads to the statistical weighting of directions in the complex space-time.

Although it is tempting to procede further with the construction of the zero quantization
formalism and its probabilistic interpretation, we shall stop at this point in order to avoid
a possible false step which is likely to be taken in this new physical situation. Instead,
we would like to elaborate to some extent the transition to the first-quantization level
where we should meet a more familiar physical content. In this transition we are led by
the analogy with the well-known transition from the first to the second quantization level.

So, when passing to the level of the first quantization, the wave function w(u) of the
zero quantization becomes a quantized “‘field”” defined on the discrete space of four orthog-
onal directions u = 1,2, 3,4 in the complex space-time. Then, after the first quanti-
zation is carried out, we get

p() = a,,

where g, and a; are some annihilation and creation operators obeying in the simplest case
either the Bose-Einstein or Fermi-Dirac statistics. Tentatively choosing for y(u) the Fermi-
-Dirac statistics, we obtain ‘
{a,, a)} = 6,,, others anticommuting. ®)
In the case of the complex Fermi “field” y(u), Eq. (5), we can form 8 Hermitian
operators
1

Yu = ay+a:> Hy = ”Z._(au—a;) (7)
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satisfying, due to Eq. (6), the extended Dirac-like anticommutation relations:
Ywrel = 20,,  {n,n} = 29,,, others anticommuting. (8)

Obviously a, = 3 (7“+in”). The operators y, and #, can be represented minimally by
16 x 16 matrices. E.g. we can write

_ . D D _ 0'i><0'2><1><1 [l=i=1,2,3
Yu=ruxl ‘{1xa3x1x1 f=4 ’
—1x0,%x0,X0 p=i=1273
. ] -.DD= . 1 i 3 3 “>
n“—ysxf)’s'}’u {1)(0_1)(_1)(0.2 u ___:4 > (9)
where 2,17 and 93 = —y5yN} are 4x4 Dirac matrices (f = ~if%7, )% = B°),

while a; and 1 denote 2 x 2 Pauli matrices. Introducing the matrices
0 = 0p x1° = Ix0,x1x1,
0, = 1°x gp = 1x1x1x 0y, 10)

we can see that y; = ¢, Z;, ¥4 = B = 03, 1: = —0105T; and 5, = @,w,, where
2, =2Px1P = g;x1x1x1,

T, =1°x2P = 1x1x0;x1. 1)

Egs. (11) and (10) give us four independent (i.e.-commuting) sets of three spin-1/2-like
matrices.
Note that two sets of 15 matrices

2, 0 Ziow T o Ty (12)

(each supplemented by the 16 x 16 unit matrix) define two independent (i.e. commuting)
Dirac algebras. Identifying the matrices of the first set (12) with the corresponding Dirac
matrices [3] logically related to the physical space-time¢ we generate the usual conformal
group SU(2,2) contalnmg the Lorentz group SO(3,1) generated by the particle spin —E
and particle velocity & = 0,Z (times the imaginary unit). Then the second set (12) is logi-
cally related to the manifold of points y, (u = 1,2, 3, 4) and describes new internal degrees
of freedom of the particle. Choosing in this case the compact option (corresponding to
real y,) we generate a new internal group SU(4) implying the existence of 4 new internal
eigenstates for a spin-1/2 particle. It is tempting to interpret these 4 eigenstates as the
fermionic generations and, therefore, to identify the new internal group as SUg(4), a hori-
zontal group of 4 generations which may be denoted as e, y, 7, ©.!

1 Choosing for the horizontal group the non-compact option SU(2,2) = SO(4,2) (corresponding to
imaginary ys) we lose finite-dimensional unitary representations, implying thereby the existence of an
infinite number of fermionic generations described by an infinite-dimensional unitary representation.
Finite-dimensional non-unitary representations appearing in this case can be used -only in collaboration
with the translational degrees of freedom y, and their conjugate momenta g, in order to construct unitary
representations.
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Note that the matrices X; and g, can be represented in some equations by their Dirac
4% 4 forms XP = o;x1 and ¢} = 1xa, if the matrices T; and «, are absent from these
equations. An example of this situation is the usual Dirac equation.

We can summarizz our procedure and results as follows. We start from the zero
quantization, where basic kets are four orthogonal directions p = 1, 2, 3, 4 in the complex
space-time. Then we get on the level of the first quantization a complex Fermi “field”
defined on the discrete space of u =1, 2,3,4. This “field” implies the existence of (i)
15 Dirac matrices generating the conformal group SU(2,2) (connected with the spin 1/2
and other Dirac degrees of freedom) and (i/) additional 15 Dirac-like matrices generating
in the compact case a new internal group SU(4) (connected with new internal degrees of
freedom). The resulting number 4 of new internal eigenstates may be interpreted as the
fermionic generations e, y, 7, . When the translational degrees of freedom y, and their
conjugate momenta ¢, are physically absent (or, alternatively, included into the diagonal-
ized mass matrix), a free fundamental fermion is described on the level of the first quan-
tization by the Dirac equation

Py +m)p(x) = 0, (13)
where p, = —id/0x, and
px) = <x |y (14

is the wave function in the position representation (x = (x,)), v being the abstract state
vector (on the level of the first quantization. In Eq. (13)

Ve 000 Pe(x)
_poq_|0y.0 0 _ v
yll_y#XI - 0 0 y‘? OD ’ "P(x)— ,‘pt(x) (15)
0 00 yp, YolX)
and
me0 0 0
{0 m,0 0
=10 0 m o0 (16)
0-0 0 m,

In the Dirac equation (13), the real part y, of the complex Fermi “field” y(x) collaborates
with the momentum p, conjugate to the position x, being the “physical”” part of the complex
Bose “field” ¢(u) = z, = x,+iy, defined on the discrete space of u=1,2,3,4 (the
conjugate momentum to this “field” is Il(y) = —id/dz, = 3 (p,—iq,)). An analogy with
the level of the second quantization is evident: there a number of Fermi and Bose fields
(defined in that case on the physical space-time) collaborate to give a description of a fun-
damental physical system. The level of the second quantization is, of course, necessary in
order to describe particle interactions in a fully relativistic way.

Note that the diagonal mass matrix m in Eq. (13) can be replaced by a mass operator M
including the matrices T; and w, (and eventually the operators y, and g,). Then the relation

@ - p+pM)? = p>+M? an
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still holds. Th= operator M here need not to be invariant under the whole internal group
SU(4), similarly as the Dirac equation is not invariant under the whole conformal group
SU(2,2) unless M = 0. This may give mass splitting between fermionic generations.

I would like to thank Ryszard Raczka for an informative discussion on the Dirac
algebra.
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