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THE ERNST EQUATION AS A CHIRAL MODEL

By J. Gruszczak
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It is shown that the set R of solutions of the Ernst equation can be mapped on a subset
Rg{ of the set of solutions of the Chiral model on the group G of “unimodular” matriges.
The map is a bijection which depends-on the choice of a set .# of unimodular matrices; the
set plays a role of an external holonomic constraint in the Chiral model. Symmetries of the
equations of the Chiral model are investigated. It is shown that (2k+ 1)-soliton solution

of this Chiral model generated from go = 1 can be mapped on a solution of the Ernst
equation.

PACS numbers: 04.20.Jb

1. Introduction

The problem of integrability for the Einstein (in the vacuum case) and Einstein-
-Maxwell field equations for metrics with two commuting Killing vectors has very inten-
sively been investigated in the last 12 years. The papers by Emst (1968a, b) and Geroch
(1971, 1972) have initiated developing of the integration methods for Einstein equations
in this case (Kinnersley 1977, Kinnersley and Chitre 1977, 1978a, b Hoenselaers et al.
1979, Cosgrove 1977, 1980, Harisson 1978, Neugebauer 1979, Hauser and Emst 1979a, b).

In our paper we shall investigate the problem of finding vacuum axially-symmetric
and stationary gravitational fields. We adopt the Zakharov-Mikhailov inverse method
(Zakharov and Mikhailov 1978, Belinsky and Zakharov 1978, 1979) for integration of the
Ernst equation (Ernst 1968a).

In the complex Ernst formalism describing the problem one introduces two related
potentials E and &(E = (£ —1)/(£+1)). They allow to rewrite the Einstein equations in the
case in a short and elegant form of the Ernst equation. In the formalism the norm of the
time-like Killing vector K, is related in a simple way with ¢ and E:

1¢1%-1

K,K!=ReE = T (¢))
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The relation (1) introduces two regions on the §-plane: Z: = {&:|¢> > 1} and
D: = {|¢:|€]* < 1}. On the boundary of & and 2(# : = {{: |£|*> = 1}) K, changes its
character from time-like (in &) to space-like (in 9) and the metric determined by & changes
its physical properties. The SU(1,1) symmetry group of the Ernst equation (in the homo-
graphic representation) acts transitively on 2 and on 9, i.e. Z and 9 are homogeneous
spaces of the group. Since SU(1,1) is isomorphic to SO(2, 1, R) we can map in one-to-one
way & and @ onto homogeneous spaces of SO(2, 1, R), namely on »#*) and »#(7):

Z o HD: = {wiguww =1 w'>0}, 9,=dag(, -1, -1),
D> H T = {Wingagww =1, w® <0}

The mapping can be done by means of a hyperbolic analogue of the stereographic projec-
tion (Hirayama et al. 1978, Mazur private communication):

1 . 2
h:‘;f:=9f‘+’ux’<’>aw»§=wl+'t eC. @
—-w
The inverse transformation has the form:
112 +1
Rr:Caé - (¢P-1)" | —2Im &) e o#. 3)
—2 Re &

The map 4 maps the Ernst Lagrangian density into the Lagrangian density of the nonlinear
o - model:

& = Vi Twia, @
W = L. %)

It is seen that nonlinearity of the Ernst equation is not a result of the dynamics (since the
Lagrangian (4) describes a linear model) but arises from the existence of an external
holonomic constraint (5).

The main purpose of this paper is to show integrability of the Ernst equation by
means of the Zakharov-Mikhailov inverse method (1978). In Section 2 we establish a
1:1 connection between the constraint (5) of the ¢ — model and a certain set .# of uni-
modular matrices. The condition g €.# is compatible with the equations of motion of the
Chiral model on the group G of “unimodular” matrices. Therefore, there exists a 1:1
relationship between the set Rg of solutions of the Ernst equation and some subsets
R, of the set of solutions Rgy of the Chiral model on G.

In Section 3 we construct a special set.#..#, is connected with other choices of .# by
a set of transformations. A subset of these transformations exhibits the H symmetry of
the Ernst equation (Section 4). In Section 5 we investigate (2k+1) - soliton solutions of
the Chiral model on #, generated from g, = 1. It turns out that one can interpret them
as solutions of the Ernst equation.
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2. Integrability of the Ernst equation

We formulate the problem of solving the nonlinear ¢ —~ model (4), (5) as an integra-
bility problem of a Chiral model on the group G of complex ‘“unimodular” matrices:

G:={geGL@2,C), detg=¢ &= 41} 6

with an additional holonomic constraint ge 4. For this purpose we define a subset
M CG as a common part of G and of a real vector space F: M :=GNnJ. Jis
a vector space over R generated by a system of three linearly independent matrices o,:

Fr={AdeMat,,(C):A=0"; weR; a=0,12} (7)

We assume that the matrices o, are chosen in such a way that:

(@) A #¢,

(b) mapping s:9 3w — s(W) = o, €# is a bijection (# = #M U H#).

It results from (a) that for g = o,w° €.#, the matrices o, and a vector w satisfy:

Tw'w =1, ®

where the object T, is a system of 9 matrices made up of

01
g = (_10) and a,:

T = 0,8 0ne.

®
If s maps o into . then for

Tany = 11 (10)

the restriction (8) holds for any we #.

1t follows from (10) that s(o#) = .# and the generators ¢, are linearly independent.
A mapping s*:R?®3 w — g,w° € # is linear, thus it is a bijection. A restriction of s® to
a subset & of R3 is a surjection of & in #. Since s is a restriction of s* to J# (s = s¥|,¢)
and s(o¥) = .#, s is a bijection of 3 on /.

We have proved the
Theorem 1: If o, is a system of three matrices satisfying (10) and # is the vector space
(7) then #: = Gn # # ¢ and the mapping s is a bijection.

Thus we have found a map of the holonomic constraint (5) onto the set .#. Now, if
one considers the Chiral model on G with the Lagrangian

Len =+Tr(VgVg™) an

(operator V is in the cylindrical co-ordinates g, z) and assumes that g e.# then one imme-
diately sees that (11) is transformed into the Lagrangian (4) of the ¢ model. This suggests
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to describe the integrability problem for the Ernst equation in terms of the Chiral model
on G. The suggestion is not obvious at all since the constraint g e.# does not have to be

compatible with the field equations resulting from (11). This is not the case, however,
and we can prove the following:

Theorem 2: If ¢ is a solution of the Ernst equation, w is a three-dimensional vector deter-

mined by £ according to (3), g = ¢,#°(&) is an “unimodular’”’ matrix, then g is a solution
of the field equations resulting from (11):

(V’g)g™! = Vgvg! (12)
iff Ty = 1. Morever,

Theorem 3: If T, satisfies (10) and g(p, z) is a solution of equation (12) with the addi-
tional property g e.# then the potential:

&= (hos)(g(e 2) 13

is a solution of the Ernst equation.

One can prove theorems 2 and 3 by a straightforward calculation. The theorems
imply that the mapping 4 O s~ establishes a one-to-one 1cfationship between the set of
solutions Rg of the Ernst equation and a subset RZ of the set of solutions Rgy of
the Chiral model on G, where R&; = {ge Rey:ge.#}. The subset R% is non-empty
because the condition g €.# is compatible with equation (12). Thus, we have shown that

due to the integrability of Chiral models the Ernst equation is also integrable by means
of the Zakharov-Mikhailov mothod.!

3. A4 basis of generators o,

The purpose of this Section is to determine all possible representations of the system

of generators o,. The T,, will play a fundamental role. For convenience, we shall change
its definition, making use of the conclusion from (10):

1 a=90
deto, = &b,, O, = {_1 a=12 (14)

in definition (9). We obtain:
Top = 0,05 5, (15)

We shall treat the formula (15) as a new definition of 7,,. Then, the conclusion (14) will

be an independent property of the g,. It will be, besides (10), the second condition which
the o, have to satisfy.

The conditions (10) and (14) are invariant under the following set of transformations:

I = {T: T(O',,) = £10,82, 81> £2 € GL(29 C), detgl = detg;l}. (16)

! Other proofs of the integrability for the Ernst equation can be found in papers by Maison (1979)
and Mazur (1983).
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These transformations can change the sign of det 6,. However, the sign is not significant
because G is not connected. It has two connected components:

G =SL(2,C), G:={geGL(2,C):detg = —1}. an

The choice of a sign in (14) is determined by a component (G‘*) or G*™%) which the space
F intersets: #® = G® n #. Transformations changing the sign of det o, map .#® on
a.#'"®, We do not need the whole  for our purposes. It is sufficient, if we confine our-
selves to subsets I, 5, and 3 of I (which are groups):

Ty = {T:T(aa = 0,8, geG}, (18)
g’Z = {T: ‘C(O'a) = g0, g€ G}s (19)
T3 ={r:7(c,) = gog”", geGL(2 O} (20)

Using 77, we shall find the simplest representation of o,. We shall find the generators
o, in two steps. First, we shall find all systems T, satisfying (10) and additional conditions
arising from the special form of T, (15). Next, we shall treat (15) as a definition of o,;
then, using an arbitrary ¢, € G we define o4, 6, as follows:

01:= Tyo00, @1
Ogpi== Tzoo'o. (22)

The formula (15) introduces some relations among the generators (for instance
6, = —T,,0,). These relations will be consistent with definitions (21), (22) if T, satisfies
additional conditions (resulting from (10) and (15)):

Tac = Tabncabs (23)
Tr Tab =Tr Tba = 27]0!» (24)
det Tab = '6“61,. (25)

Now, in order to determine all T, it is sufficient to find two matrices Ty, and T,, with
properties:

T10T20+T20T10 = 0, (26)
TrTlo'—:TrTzo:O, (27)
det T10 = det Tzo = —1. (28)

The remaining T, ’s can be found from (10) and (23). The formulas (26), (27), (28) resuit
from (23), (24) and (25).

Since we can bring any traceless matrix 4 € Mat, » ,(C) with a determinant det 4 = —1
to the form 4 = diag (1, —1) by a transformation from J 5 and then any B € Mat,, ,(C)
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which anticommutes with 4 by a transformation from 7 ; leaving 4 invariant to the form

01
B= (1 O)’ we can put:
1 0 01
Tlﬂ = (0 _1) > TZO = <1 0) - (29)

Furthermore, without loss of generality we can put 6, = 1, because of invariance of (10)
with respect to transformations from ;. In this way we have obtained the simplest rep-

resentation of a,:
10 1 0 01
0'0—(0 1), a‘_(O _1), 02—(1 O)' (30)

Any other representation can be obtained from (30) by a transformation from 74, 7,
or J ;. The space # generated by the basis (30) will be denoted #,. The constraint
My := Fon G is unconnected; it can be easily shown that #, = A5 U #§)
where M5 = {de# ;£ 1TrA > 1}

4. M) as a homogeneous space

The #, is a vector space of real and symmetric 2 x 2 matrices. Let us define an auto-
morphism of #,:

df,‘: Fo3A—-gTdge #,,2€SLQ, R). 1)

The operation d,:= dj | 4(+ acts transitively on .#§". Therefore, (#§®, d,, SL(2, R)) is
a transitive group of transformation of #§%; 4 is an homogeneous space of SL(2, R):
MG = SL(2, R)/SO(2). The SL(2, R) is homomorphic to SU(1, 1). Therefore the transi-
tivity of SL(2, R) on .#{® corresponds to the H symmetry of the Ernst equation. This can
be seen from the following argumentation:

Let g be a matrix connected with a solution ¢ of the Emst equation. Then dg(é) =g
is a solution of the Chiral model since (12) is invariant under the operation d, - g’ e,
and therefore & connected with g’ is a solution of the Ernst equation. ¢’ and ¢ are related
to cach other by a homography, which belongs to the homographic representation of
su(, 1).

5. 2k +1)-soliton solutions of the Ernst equation

The problem of soliton solutions of equation (12) was investigated in 1978 by Belinsky
and Zakharov (1978). They showed that only 2k-soliton solutions generated from physical
matrices are axisymmetric and stationary gravitational fields. A similar result was obtained
in our paper (Gruczczak 1981). Soliton solutions we have investigated were solutions of the
Chiral model on SL(2, R)/SO(2). They can be interpreted as solutions of the Ernst equation
generated from the Minkowski space time (E = 1, g = 1 in the basis (30)). (2k + 1)-soliton
solutions were not solutions of the Chiral model at all. In the present paragraph we shall
show that a (2k+ 1)-soliton solutions of (12) (from g, = 1) can also be interpreted as
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solutions of the Ernst equation. For example consider the one-soliton solution found by
Belinsky and Zakharov (1978):

2 2 2 2
+us +u
1- ¢ zﬂ sinu, — @ 2" sin u cos u
u
g0, 2) = 2 2 2. 2 , (32)
" +u” . + 2

- s—sinucosu, 11— 7— COs“u

14

p=v—z4+ew—27+0%, & =+,
where u, v are complex parameters. The matrix § has a negative determinant and therefore

is unphysical (Belinsky and Zakharov 1978). By means of (32) we can obtain a scolution
of (12) which belongs to G'7):

gle,2) = (~detg)™"%g, detg = —¢%u*. (33)
This means that in order to obtain a solution of the Ernst equation from (33) it is necessary
to find a proper basis g/, associated with a cut of G‘™). This can be done, for instance,

by the transfromation of the basis (30) o, —» o, = g, ((1) _—(1))

/ 1 0 , (10 , (0 -1
00 - (0 _1)’ 0'1 - (0 )’ 62 - (1 0) . (34)
Now, we restrict u, v in such a way that (33) is decomposable in the basis (34). One-
soliton solution of the Ernst equation can be found by means of (13):

I+1
é=ctg(—§—-% ——()/2), 1=15 o¢=Rsinf, 2z = Rcosb. (35

This solution is a non asymptotically flat Weyl’s solution. Other transformations from
T, or  , changing .#, on .47 also give Weyl’s solutions and their H generalizations.
(2k + 1)-soliton solutions of the Ernst equation can be found in a similar way. We find
a (2k+1)-soliton solution g,; 4, of (12). Next, we transform the basis (30) by a transfor-
mation transforming 4, on .47 and confine parameters in g4, in such a way that
the matrix g,;+, is decomposable in the “new” basis. Finally, we find ¢, ., by means
of the mapping (13). The one-soliton solutions (33) of equation (12) satisfy the restriction
g = g". The full set of one-soliton solutions can be found when one investigates the soliton
solutions without this restriction.

Let g(ay, ..., a,; 0, 2) be a solution of equation (12). Suppose that we have found
a system of parameters o, ..., a, g€ N that g(a}, ..., of; @, 2) is decomposable in the
“new” basis o, = 0,8, (or o, = g,0,), 8, € G:

g(d?, veey 052; Q, Z) = o_;wa. (36)

Since equation (12) is invariant with respect to right (or left) translations (g — gg
(or g—g8), g€G, 3,8 = 8,8 = 0) the matrix g': g'(«), ..., ap; 0,2) = g(3, ..., 03
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0,2)g7t (or g, ..., a0; 0,2) = g1 'g(@3, ..., a9 @, 2)) is a solution of this equation.
Matrix g’ is decomposable in the basis (30); components of g’ in this basis are the same
as components of g in the “new” basis. This means that the Ernst potential which we
determine from g by the ““new” basis is the same as the Emst potential from g’ by means
of the “old” basis (30).

Let us assume that g can be obtained from a solution g, of (12) by the Zakharov-
-Mikhailov inverse method. It is easy to show that the solution g’ = gg(g’ = gg) can be
generated from gy = gog(go = £80)- Therefore, the solution g’ associated with (36) is
generated from g5 = gogi ‘(80 = &1 '8o)-

In the case of (2k+1)-soliton solutions generated from g, = 1: g, = g7 . Since det
g1 = —1, the (2+ k1)-soliton solutions of the Ernst equation are generated from unphysical
solutions of (12) (go = g1 ' ¢.#,). This result is compatible with the conclusions of Be-
linsky and Zakharov (1978).

I am very grateful to Dr L. Sokotowski for helpful comments and remarks.
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