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The BRS and BRS transformations are reviewed and applied to the study of unitarity
and gauge independence in gauge theories. A geometry of the BRS transformations is in-
troduced through the superfield formalism and the relevance of it to the Adler-Bell-Jackiw
anomalies is shown.
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In the last decade non-abelian gauge field theories, while gaining prominence as
a fundamental tool of particle physics, have undergone a deep elaboration also from
a formal point of view. Renormalization, unitarity and geometry of gauge theories have
been the subject of a continuous investigation, which has improved the comprehension and
considerably clarified and simplified the language of those theories.

The present article is a review of research done in this framework. To begin with,
it illustrates the relevance of the Becchi-Rouet-Stora (BRS) and BRS (see Section 2) in-
variance to the unitarity and gauge independence of a renormalized gauge theory. Then
the supersymmetric nature of BRS and BRS transformations is exploited to give a super-
field formulation of a gauge theory. This reveals a new and larger geometric setting for
gauge theories, which shows particularly useful in connection with Adler-Bell-Jackiw
anomalies: they fit naturally in the larger geometric framework.

The article is organized as follows. In Section 1, the necessary notations are introduced.
Section 2 is devoted to the illustration of the BRS and BRS transformations. In Section 3
a simple proof of unitarity and gauge independence for a theory with both BRS and BRS
invariance is given. In the following Section the superfield formalism is introduced. Section 5
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is devoted to some brief mathematical remarks and the final section to onc of the appli-
cations of the superfield formalism, namely to the fact that the cohomology related to

an Adler-Bell-Jackiw (ABJ) anomaly, is contained in the geometry on which this formalism
is based.

1. Notations

The gauge group G is a compact non-abelian Lie group. Its Lie algebra will be denoted
by § and its generators by t* (x = 1, ..., N). In matrix representation they are given by
antihermitian matrices. They define the structure constants f*? by the commutation rela-
tions [1%, ©°]- = f**’1". The gauge potentials A, (x) will appear mostly in the matrix notation
A (x) = A,(x)7" (likewise for any N objects o, transforming according to the adjoint
representation of the group G, let us write ¢ = a*"). Their curl F,, is given by

F,, = 0,4,—0,4,+[4,, 4,]_. (1.1
The form
A = A, (x)dx", (1.2)

defined locally in the space-time manifold M (which is supposed to be four-dimensional,
unless otherwise specified) represents a connection in the principal fiber bundle P(M, &),
whose base space is M and structure group is G. The corresponding curvature form is

F =3 F,(x)dx" A dx". (1.3)

=
A gauge transformation is an automorphism of P(M, G) and, on A, it takes the form
A - A = Ut4U+UdU, (1.4
where U: M — G can be written as:
U = exp {A*(x)"} (1.5)

T

and A%(x) are arbitrary functions. dU means

dx". As a consequence of Eq. (1.4) F

ox*
transforms as

F - F' = UtFU. (1.6)

Now let us denote by ¢® = {¢,, ..., 6} any matter field (either spinor or scalar) trans-
forming according to the representation R of G and let us adopt the notation a® = a*®",
where t®? are the generators of G in the representation R. Gauge transformations on ¢®
operate as follows

¢(R) - d)(R)' — U(R)QS(R)’ (17)

where

U® = exp (A*(x)t™*) = exp i®(x).
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2. BRS and BRS invariance

The classical gauge invariant Lagrangian involving gauge potentials and matter
fields is

1
Linv = + 'Ig‘{ Tr (Fquuv) +Lmatler(¢; Du¢)5 (21)

where ¢ is the generic symbol for all the ¢® involved and
D$® = (9,+ 4P ™. (2.2)

Leauer is the most general Lorentz invariant functional of the fields ¢ and their covariant
derivatives D¢, invariant under global gauge transformations and with canonical dimen-
sion < 4 (renormalizability requirement).

As it stands the Lagrangian (2.1) is not quantizable, since the free propagator for
the gauge fields is not defined. Indeed the free equations of motion are given by:

OpP,A4" =0 (2.3)

0 . .
where (] = 0,0" and P,; = g,,— —”EA'. One casily sees that P,P; = P,,, so P,, is

not invertible. In the Feynman path-integral language this can be ascribed to the fact that
we sum over the same physical configuration an infinite number of times, as we sum over
all copies of 4, obtained through a gauge transformation. We need a prescription,
or gauge choice, to avoid this multiple counting. If we want to preserve manifest Lorentz
covariance, this can be achieved by adding to L;,, a gauge fixing term Lgg. In turn, this
requires the introduction of the FP ghost fields ¢* and & (¢« = 1, ..., N), according to the
Faddeev-Popov recipe. The ghost fields, which transform according to the adjoint repre-
sentation of G, are scalar anticommuting fields (wrong statistics). Therefore, they intro-
duce ncgative norm states into the theory. A way of phrasing it is to say that the covariant
quantization induces an indefinite metric on the Fock space of the theory and the ghost
fields are introduced to restore unitarity (see next section).
Therefore, the complete Lagrangian for a quantized gauge theory is:

L = L, +Lgr+Lgp 2.4)

where Lyp takes into account the contribution from the ghost fields. To be definite let
us stick to the standard gauge. Then

Ly =Tt <+ A,0"B— ; BB), (2.5)

where B, are auxiliary fields and ¢ is a gauge parameter. Consequently, the ghost term is
given by:

Lyp = Tr (+0,eD"¢), (2.6)
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where D, = 8,+[A4,, }.. The hermiticity convention for the ghost fields is:
ct=c, = - @7
Therefore, the complete Lagrangian in the standard gauge is:
L=Tr (+ -:éz— FF*+A,0"B— -g-BB+ 6,‘ED“C> +Lyateer + 2.8
Now the theory can be quantized by defining the conjugate momenta and imposing the
canonical commutation relations. We find three conserved charges, Qg, Op and Q,:
Qg = [ d3x Tr (Bdoc—0oBc—% doélc, clv)
0p = [ d3x Tr (—BDyc+ 0oBc+% dqc[C, €14)
Q. = [ d3x Tr (0,8c—EDyc), 29

where
B+B+][c, ¢l = 0. 2.10)
iQ, is the ghost number operator. Indeed,
Qs cl-=¢, [iQ,¢l = —¢
[iQ., 4,)- = [iQ., Bl- = [iQ., ™]- = 0. (2.11)
QOp and Qp are nilpotent charges and, together with iQ,, form the following algebra
0 =08=0, [Qs Q=0
Q. Osl- = Os, [iQ., QB]— = _QB' (2.12)

As we see, Qg carries ghost number +1 and Q carries ghost number — 1. iQp is the gener-
ator of the BRS transformations [1]:

[iQg, 4,}- = D,c

[iQs . = —%le el

[i QB’ 5]2 =B

[iQs,Bl. =0

[iQs, ¢©) = —c®g®. (2.13)

iQy is the generator of the BRS transformations [2]:
[’QB’ A,,L = D,;é
[iQB» 5]4- = "% [5: cl+
[iQs, c}+ B
[iQB7 B]— =0
i@y, ¢®L = —c®p®, 2.14)
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It is extremely important that, though the gauge invariance was destroyed by adding L,
the Lagrangian (2.8) is invariant under the BRS transformations. This invariance, not only
allows a much simpler proof of renormalization [1], but because of the nilpotency of Qg,
it also guarantees the unitarity of the physical S-matrix. Following Kugo and Ojima’s
scheme [3], we can define the physical space ¥",, of the theory as the subspace formed
by the vectors |p) such that Qgly)> = 0. Using the nilpotency of Qp, they were able to
show that ¥",, has positive semidefinite norm, and so we can define a Hilbert space
# 5 and a unitary S-matrix in it.

As the BRS invariance is exact at every order of the loop expansion (and the corre-
sponding charge is nilpotent), we conclude that the S-matrix is unitary at every order of
the loop expansion. As we see, the BRS invariance is the key for the success of the Faddeev-
-Popov recipe.

The Lagrangian (2.8) is invariant also under the BRS transformations (2.14) [2, 4.
In the next Section this further invariance will be exploited to give a simple proof of the
unitarity and gauge independence of the S-matrix. It must be stressed that, although the
BRS invariance is not strictly indispensable in this context, as unitarity and gauge indepen-
dence can be proven even in theories where only BRS invariance is present, nonetheless,
it simplifies the proof considerably.

3. Unitarity and gauge independence

In this section we will consider a theory invariant under both BRS and BRS transfor-
mations. The Lagrangian (2.8) is an example of it, but the explicit form of the Lagrangian
will not be important here.

Unitarity. It is well known, since the electromagnetic field was quantized, that the
Fock space of a covariantly quantized gauge theory contains negative and zero norm
states. Therefore, among the postulates of QFT we have to give up the requirement that
the Fock space of our theory is a Hilbert space. We simply require it to be a vector space
¥ endowed with an inmer product {|>. We only add (without loss of generality) the
condition that ¥ be non-degenerate [3]: for every vector |y) e ¥, there exists at least
one vector |¢>. such that (yl¢) s 0. Now, slightly changing Kugo and Ojima’s defini-
tion [3], let us define ¥, as the subspace of ¥~ annihilated by both Qg and Op:

You={9>e¥:  Qplyd = Qply) = 0}. (3.1)

The two auxiliary conditions in Eq. (3.1) are quite plausible: only the states invariant
under gauge transformations may be connected with physics. In the case of an abelian
theory Qgly) = 0 reduces to the well known auxiliary condition 6"Aft+’]1p> = 0.

Now we intend to show that, starting from ¥#7, it is possible to define a Hilbert space
H# pn and an S-matrix operator in it, which is unitary. To this end let us consider the
following theorem [3]:
Theorem 3.1. Let us suppose that in ¥” an operator S is defined, such that:

(i) S§+ = §*+§ = 1 (pseudo-unitarity),

(i) 8¥ on C ¥ pn and S=19",, C ¥ o
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Moreover, let us suppose that

(iiiy ¥, is positive semi-definite.

Then we can define a physical Hilbert space # , and an operator S, in it such that SphS}X1
= 818, = 1.

The proof is simple. Let us call ¥7, the subset of O norm states in ¥,
¥o={x:2€¥om {xlx> = 0} as ¥, is positive semidefinite (i.c., no state has negative
norm) the Schwartz inequality holds in it. So we can easily show that ¥7, is a subspace
of ¥ Let us set Ay = ¥ pu/¥ o, that is Hp, = (P19 = 4+, ye ¥ ). It is easy
to define a scalar product in #, by: <1Z>]q§> = {y|¢). That this is a good definition

N
is ensured again by the Schwartz inequality. Now let us define Sy;|9) = Siy)>. Then
AN AN R )
(PIShSenlPD = ((PISH) (S19D) = <PIS*S|p) = (Ply) = <P|p), and the theorem is

proven.

Going back to our theory, we see that condition (/) of theorem 3.1 is satisfied as a con-
sequence of the (formal or pseudo-) hermiticity of the Lagrangian. (See (2.8) and the pre-
scription (2.7).) Condition (ii) is satisfied because Qp and Qg are conserved charges. There-
fore, in order to prove the unitarity of the theory we have to show that ¥7,, defined by
Eq. (3.1) is positive semi-definite.

First of all, let us classify the states according to the eigenvalues of iQ,:

1Qclo, ky =k a, k) (3.2

where « represents all the other quantum numbers. As Q, is (pseudo-) hermitian (@) = Q.),
{a, klo, k> = 0 for k 5 0. Since ¥~ is non-degenerate there must exist a state |a, —k)
such that {a', —kl|x, k> # 0. This state will be called a conjugate state of |«, k>. It can
be considered unique under the normalization condition

o, —=kla, k> = 1. (3.3)

The proof of the positive semi-definiteness of ¥, is based on the classification [6] of the
representations of the algebra (2.12). There are only three different kinds of representations:

[k+1>
Qe _ Qs
k> lky'
Qg Qs
tk-1>
Fig. 1

1. Singlet representations (k = 0). They are formed by the states |«, 0), such that
Oplx, 0> = Ogla, 0> = 0 and there exists no state ) ((9'>) such that Qglyd = |o, 0D
@sly’> = |2,0)).

2. Quadruplet representations. A quadruplet represcntation is given graphically in
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Fig. 1, where for the sake of simplicity the labels @ have been dropped. The arrows point-
ing upward represent the action of Qg: Qglk)> = |k+1), Oglk—1> = {k)' and the
arrows pointing downward represent the action of Qy: Qglk+1> = k), Oglk) = |k—1D.
Due to the nilpotency of Qg and Jp there exists no other state (apart from the trivial
one) connected with the four states of the diagram through the action of @y and Q.
To describe completely this representation we should add the conjugate states of each
of the four states of the diagram (they are not represented in figure 1).

3. Chain representations. An example is given in Fig. 2 with the same conventions
as for quadruplet representations. The chains can be finite or infinite. We should add that
finite chains are ruled out by a remarkable theorem of Nakanishi [7].

AY

~N
N
lk+2>
lk+1>
[k>
k=1
lk-2>
/’
//
Fig. 2

Now, as far as quandruplet representations are concerned, we observe that the only
states belonging to ¥7,, are the right most ones. They can be written as QpQylk) for
some |k). Therefore, they are zero norm states and the relative conjugate states do not
belong to ¥, (otherwise they would contradict condition (3.3)). This remark is very
important because, if both |a, k) and its conjugate |o’, k) belonged to ¥, then ‘Vph
would contain negative norm states. Indeed, for instance, the combination |«, k> — |o’, —kD
has norm — 2 due to Eq. (3.3). As for chain representations, we remark that only the
states on the right belong to ¥, and we can repeat the same argument as for quadruplet
representations.

Apart from the states belonging to the singlet representations, we have shown that
all the states in ¥",, have non-negative norm. If we can draw the same conclusion for
singlet representations, unitarity is proven. The positivity of the singlet sector can be
proven for one particle states, but it must be assumed in general. One should add that
this assumption must be made in any QFT, not only in the present case. Gauge theories
are in the same conditions as any other QFT from this point of view.

Gauge independence [8]. Any gauge-fixing term invariant under both BRS and BRS
transformations can be written as:

L_Linv = Z éi[QB’ L(—i)1]+ (34)
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and
L'_Linv = z Ei[éﬂ’ Lg)ll-h (35)

where ¢, are gauge parameters and LY, (L9,) are local operators with ghost number —1
(+1). For example the Lagrangian (4.17) below can be rewritten as

1 v
L = Tl' {-!- '?4;2— F”VF" —'%‘ [Q: [QB& AuAp]—L-
“'fz[éns [QB’ Cé]~]++—;'- (‘52—'51) [Q’ Ec]—l‘}'{'Lmatter" (36)
The physical S-matrix elements are defined by:
Saﬁ = <aln'ﬁout>9 lain>9 iﬁoul) € Vph' (3-7)
From the Schwinger action principle we get
oS,
5fﬂ = jd4x<“inl[QB’ L(-i-)l(x)]-i—lﬁout) =0,
i
0S4y 73 Q)
32 d*x{aal[@p, LY ()] 4 1Bow> = 0, (3.8)
i

because Qg and 0, annihilate ¥7,,,. Therefore, the physical S-matrix elements are indepen-
dent of the gauge parameters.

4. The superfield formalism

Due to the anticommutativity of the ghost fields the BRS transformations (2.13)
and BRS transformations (2.14) have a supersymmetric naiure which can be used to
give a superficld formulation of gauge theories [5]. (See Ref. [9] for previous attempts in
this sense.) To this end let us introduce a superspace X whose local coordinates are
{x,, 0, 8} where {x,} are the usual space-time coordinates and 0 and 0 arc anticommuting
coordinates:

02 = 0% = 00+00 = 0. “.1)
Let us consider a I{orm ¢ in 2. It can be written locally in the following way:
¢ = A, (x,0,0)dx"+n(x, 0, D)dd+(x, 0, )do. 4.2)

Let us denote by y(x, 0, 8) any of the superfields 4,. #, 7. Then ¥ can be expanded in the
following way:

P(x, 0, 8) = yo(x)+ 0y, (x)+0y(x) + 005 (x). 4.3)
Now let us interpret ¢ as a connection form in X and define its curvature

R=do+1le 0] 4.4)
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u i 0 c . 0 0
where d = ey dx*+ 0 do+ 7;% d0 is the exterior differential in X, and >’ 50 are
left derivatives.

In local coordinates,
R=Y R, dx" Adx+ y (R,odx" AdO+ R zdx" A dD)
n<v u
+ Rogdt) A dO+ Ryad0 A O+ Ryzd® A dD. 4.5)

First we make the following ansatz: we require the connection ¢ to be flat in the 8 and 8
directions. In other words, R,, is unconstrained, while

These conditions determine all but four of the coefficients in the expansion (4.3) for the
superfields 4, 1, 7.

Now we go back to gauge theories, identifying these four free coefficients with fields
relevant to gauge field theories:

A, 0,0) = A(0)+ ...
ni(x, 8,0y = c(x)+ ...
ii(x, 0, 0) = &(x)+0B(x)+ ... 4.7
With these identifications we get:
A(x,0,0) = A,+0D,c+0D,c+00(D,B+[D,c, ¢1+)
n(x, 0,0) = c+0B--0% [c, ], +00[B, c]_

ix, 0,8) = e—01 [, ¢l. +0B+60[c, B]., (4.8)
and
B+B+1¢,8l, =0
as in Eq. (2.10).
Similarly, starting with the superfield ¢®(x, 0, 0), identifying the first coefficient of
the 0—0 expansion with the matter field ¢(x) and requiring the form D¢® = Jop®
+0®¢® to vanish in the anticommuting directions, we get the expansion:

<§(R)(x, 0, g} — (ﬁ(k)—()é(m(f)m)—GC(R’(f)(R)—gg(B(R)+6(R)0(R))¢(R’. 4.9)
If we denote by w(x, 6, 8) any of the supertields (4, n, ij, ) and if we write
w(x, 0, 8) = e85y, +0sypo+ 00s5y,, 4.9)

then, comparing (4.8) and (4.9) with Eqgs. (2.13) and (2.14) we see that s and § represen
the transformations induced by Qy and Qp respectively. In other words, BRS and BRS
transformations are represented by translations in 0 and & respectively. Speaking in term
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of the form g we could say that the BRS (BRS) transformations are represented by the Lic
d [0
derivative in the direction ¥l (—50—) respectively.
There is another (equivalent) way to arrive at the superfields (4.8) and (4.9). Let
us start from the form A given by Eq. (1.2) and consider the supergauge transformation
(that is, a gauge transformation in the superspace X)

4-g 'dg+g ' dg, (4.10)
where g is given by

g(x,0,0) = exp {0c+0c+00(B+ L [c, 1)} = 14+0¢+8c+00(B+ ci). 4.11)

The supergauge transformed of A4 is exactly the form ¢ with coefficients given by Egs.
(4.8). As a consequence of Eq. (4.10) the curvature R is given by

R=g" ng, 4.12)
Similarly for matter fields
PR = gP-14® 4.13)

where as € same €X ression as g apart irom € replacement o1 1 VT N
here g® has th P part from the repl t of 1* by 1®*

Egs. (4.12) and (4.13) account for the identities:
Tr (R,,R*) = Tr (F,,F*")
Lmattcr(éss D p&) = Lmatter(‘;b’ D ﬂ¢) 4.149)

as a consequence L;,,, Eq. (2.1), is invariant under superlocal gauge transformations.

Therefore, L;,, is not quantizable (as we already saw in Section 2). We must break the
superlocal gauge invariance, and we must comply with the requirements of unitarity (pres-
ence of a conserved nilpotent charge) and renormalizability. So the most general Lagran-
gian L will be built in such a way that L—L,,,:

(i) breaks completely the superlocal gauge imvariance,

(if) is invariant under BRS and BRS transformations,

(iii) has zero ghost number (the ghost number is conserved),

(iv) has canonical dimensions <4 (renormalizability requirement),

(v) is hermitian.
If we want to recover the standard gauge breaking term, we have to add a further require-
ment, that L—L,,, be invariant under gauge transformations of the first kind. The most
general Lagrangian satisfying these conditions is:
0

1 v ¢ . . o 0f on On
L=Tl'<+ @R“ R, — ;;79 0 4,4+ 3 & 3= —

o0
+Lonauer@®, D, ™). (4.15)
In order to satisfy condition (v) above we have introduced the hermiticity convention

0+=06, §r= -b. (4.16)
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In terms of the component fields the Lagrangian (4.15) reduces to
1
L="Tr <+ Zg-z— F, F*+A4,0"B+0,éD"c~ % £, BB+ & ézﬁﬁ)
+Lnaued @, D,$™). .17

This is the same as Eq. (2.8) apart from the term —% BB. When ¢, = 0 the Lagrangian

is invariant under the transformation ¢ — ¢+ ¢ where ¢ is constant. This invariance allows
us to put ¢, = 0 consistently from the beginning, since renormalization cannot generate
such a counterterm. If we want to recover the 't Hooft gauge we have to use the gauge
breaking term:

2 . » o7 o
I N 1 e -f 7
ao55 AN HE Zoog @D+ 2 C oy s

L—Li =% 4.18)
where ¢, = {0|¢,10> and (,) represents the scalar product in the representation space.
In component fields it reduces to

L-L,, = —A,0"B—-3,cD"c+ (¢, B®e)+ (e, c®c®p)+ %Bz. (4.19)

The background gauge can be dealt with in an analogous way. Other gauge choices, such
as quadratic gauges and axial gauges, have only BRS invariance [6].

5. A few mathematical remarks

In the superfield formalism of Section 4 there are some mathematical points that
deserve to be clarified. The supergauge transformation, Eq. (4.10), (4.11), works from
an operational point of view, but it is quite unclear from a mathematical point of view.
First of all, we should show that A4 is a connection form in X, therefore with reference to
some principal bundle whose base space is X. Moreover, a difficulty arises when we try
to figure out what is the gauge group implied in this super gauge transformation, g:2 — ?
This group cannot be G itself because, from the explicit form (4.11), we see that 6¢, fc,
etc. are never real (complex) matrices. It is apparent that we must look for some sort of
enlargement of the field of the real (complex) numbers in such a way as to allow a natural
interpretation of such numbers as 0c%(x), -etc.

The clue for solving this difficulty is provided by the theory of supermanifolds develop-
ed in the last few years. All the details are explained in Ref. [10] and [11] and will not
be repeated here. The main idea is to enlarge every geometrical structure by, roughly
speaking, replacing commuting (anticommuting) variables with variables taking on their
values in the even (odd) part of an infinite dimensional Grassmann algebra. In this way
the superspace X is replaced by a corresponding supermanifold Mg, the group G by the
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corresponding Grassmann (enlarged) Lie group, etc. Moreover, Egs. (4.10), (4.12) should
be replaced rigorously by

o = glj*Ag+gldg, R = glj*Fg, (5.1)

where j* means the pull-back through the projection map j: Mg — M. However, the resuit-
ing structures work operationally in the same way as the rough picture given in the pre-
vious section does.

This is the reason why, once we have clarified this point, we forget about heavy mathe-
matical details, following the naive attitude of the previous section (apart from keeping
Eq. (5.1)). A rigorous procedure would give the same results.

6. Superfields and ABJ anomalies

Among the various applications of the superfield formalism, for example, to anti-
symmetric gauge tensors [12] or to gravitation theory [13}, let us show here the connection
between the geometry underlying the superfield formalism and the Adler-Bell-Jackiw
(ABJ) anomalies in gauge field theories [14].

ABJ anomalies were discovered years ago [15] while studying the renormalizability
properties of gauge theories. It was shown that renormalizability is destroyed by the
presence of an anomaly. Precisely speaking, ABJ anomalies prevent the generalized WT
identities from reproducing themselves recursively at orders higher than the zeroth in the
loop expansion [1]; thus the renormalization procedure breaks down at the lowest pertur-
bative order.

Let us consider a gauge field theory invariant under BRS transformations (for the sake
of simplicity we will not consider BRS symmatry in this section; see, however, Ref. [14]).
Let us call s the BRS transformation operator acting on the integrated or non-integrated
polynomials of thz fields involved. Then the Ward-Takahashi (WT) identity corresponding
to the BRS symmatry breaks down at the first order if there exists a term 4 = [ A(x)d*x,
where 4(x) is a polynomial of the ficlds with canonical dimension 5 and ghost number 1,

such that
4D =0 (6.1)
and there exists no 4‘®) such that

s4® = 4D, (6.2)

Let us call 4Y anomalous term. The aim of this section is to show that Egs. (6.1), (6.2)
fit naturally into the geometric structure of the principal fiber bundle whose base space
is the superspace Z. As we consider a theory invariant under BRS transformations only,
the superficld formalism can be simplified. The superspace X = ({x,}, 0) is obtained by
adding to the usual space-time coordinates only one anticommuting coordinate 8. Therefore,
the connections flat in the 6-direction have the form:

0 = A,(x, O)dx*+n(x, 0)do 6.3
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where
A (x,0) = A4,+6D,c
n(x, ) = c— % 0fc, cli. (6.4)

¢ can be obtained by means of a supergauge transformation g: £ — G; starting from the
1-form A4:

0 =glj*Ag+g'dg, R =gj*Fg, (6.5
and
g(x, 8) = exp Oc = 140c, (6.6)

A d b7
= — dx*+ — df.
where d p + )

Now we need a few definitions. Let us introduce the set of symmetric multilinear
mappings /: §x ... Xx§ — R, invariant under the adjoint action of the group G on §,
that is

k
,;‘f(Xl, e [Xp YD, o X) =0 )

for any X, ..., X, Ye@. If % is a basis in §,
f(’t“, vees ‘ta") = %1k (68)

is a completely symmetric tensor, and if wy, ..., w, are §-valued forms of order 7, ..., i
respectively, we can construct the real-valued i, +...+i, -form

F(@y, .., ) = Y, d*™ ™o A ... \ o (6.9)

[- O M)
Let ¢, and g4 be any two connection forms in 2. Then g, = g¢+#(0; — @o) is also a connec-
tion for ¢ real, 0 <7 << 1. Let us call R, the curvature corresponding to g,.
The following theorem is the main mathematical result we need:

Theorem: Let f be a k-linear symmetric invariant function as defined above and let us
define

1
Q = k J f(Ql—QO: Ru erey Rt)dt, (6°10)
then
dQ = F(R,, ..., R)—F(R,, ..., Ry). 6.11)

For classical manifolds, this theorem is the one on which the Weyl homomorphism is
based. In the proof, an essential role is played by the geometric structure of the principal
fiber bundle built over the base space [16]. In the case of the supermanifold M, (corre-
sponding to the superspace X)the proof is exactly parallel, provided that we take into
account what was said in Section 5.

If the principal fiber bundle over ¥ is trivial (this happens, for instance, when the space-
-time M = R%), the 1-form equal to zero everywhere is a connection form in X, Therefore,
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in this case, we can choose g, == 0. Then let us simplify the notations putting ¢, = g,
5o that

g = 10
- 12
R, =tdo+ 5 [o, o]
R, = R=do+%]e. el (6.12)
In this case, the above theorem says
d0 =f(R, ..., R, (6.13)
where
1
0=k | flo,R,y ..., R)dL (6.14)
0
From Eq. (6.5), Eq. (6.13) beccmes
d0 = j*f(F, ..., F), (6.15)

due to the invariance property of f.
Let us take the particular case k& = 3, then

d0 =0 (6.16)
where

1
Q =3 6[ f(g, R, R)dr. 6.17)

Eq. (6.16) follows from the fact that f(F, F, F) is a 6-form in a four-dimensional space.
Eq. (6.16) is the fundamental equation for the cohomology of the ABJ anomaly.
Indeed let us decompose @ in the following way:

5
0=3% Q- (doy, (6.18)

where (d6)' = d A ... A\ df. Moreover, we decompose Q5_; in the following way
. i times
05 = Q5_;i+0sQ5; (6.19)
whare s is the BRS transformation operator as before, i is the ghost number and 5—i

is th: order of the form in the variabl:s {x,}. Eq. (6.16) implies a set of equations for the
coefficients of Eq. (6.19) (remember that, trivially, Q3 = 0):

doi =0

dQ3+s5Q, =0
dQ;—s03 =0
dQt+s503 =0
dQy—sQ1 =0

505 = 0. (6.20)
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We see that Q} plays the role of 4, introduced before Eq. (6.1). Indeed from Egs. (6.20)

sfoi=0. (6.21)
Moreover, if there existed a 4 such that | Qf = s [ 4%, then Q; = sA]+d4; for some

4%, then from the second of Egs. (6.20), there would exist a 43 such that s43+ Q% = d43,
etc. Eventually, there would exist a 43 such that

sAt = - Q3. (6.22)

But from the explicit expression of Qj, calculated by substituting Egs. (6.3), (6.12) into
Eq. (6.17) and given by

035 = 25 f(c, [e, ¢l [e, c)), (6.23)

we see that there is no A4} satisfying Eq. (6.22). Therefore, | O} is an anomalous term.
The explicit form of Q) is given by:

Qi = flc, d4, dA)+5f (¢, d4, [4, AN~ f(c, A, [4, A). (6.24)

We observe once more that the explicit form of Q} and the fact that it is an anomalous
term are based on the information contained in the previously quoted theorem, and related
to the geometry of the principal fiber bundle whose base space and structure group are,
roughly speaking, the superspace X and the gauge group G. More information about the
explicit form of the multilinear function f is not given by the geometry of the principal
fiber bundle, but by the cohomology of the gauge group G.

The problem of the existence of the trilinear (and, in general, k-linear) invariant
functions f was solved long ago by Chevalley and Borel [17, 18}. For completeness we
quote their results. If we restrict ourselves to simple Lie groups, non-trivial k-linear
invariant functions f (symmetric invariant tensors of k-th rank) exist only in the following
cases:

Lic Algebra k
Ay 2,3, ..., N+1
By, Cy 2,4,..,2N
Dy Z, 4,...,2N—-2, N
G, 2, 6
F, 2, 6,8, 12
E, 2,5 6,8 9, 12
E, 2, 6, 8, 10, 12, 14, 18
Eg 2, 8, 12, 14, 18, 20, 24, 30

As we see from this table, only SU(N) with N > 3 has a non-trivial third order invariant
symmetric tensor, d**7, unique up to a constant factor. The anomalous term Q} may be
cast into the form

Qi = c“(X)q"(x)d*x (6.25)
where ¢°(x) is proportional to the familiar expression
GX) ~ £,2, 0" [ A0 AGAL+ L5 (AP0 7 + A0 * 4 A™Of OP7) AL AL AS).
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The constant of proportionality can be determined only on the basis of the explicit form
of the Lagrangian. If in the Lagrangian there are only fermion fields belonging to real
representations of G, or for every fermion field belonging to a nonreal representation
there is also the counterpart belonging to the conjugate representation, then the constant
is zero and the anomaly does not appear.

Summarizing, the possibility for anomalies to exist and their general form is contained
in the geometry of the principal bundle over the superspace. Their detailed form is deter-
mined by the cohomology of the gauge group. Whether they appear or not, is based on the
Lagrangian of the particular model considered. To conclude, we remark that the method
illustrated in this section allows us to find the ABJ anomalies in any number d of dimensions.
We must look for terms of the form Q} in the various Q’s which can be obtained with
different values of k. It is easy to realize that it must be d = 2k — 2. Therefore, the present
scheme can accomodate ABJ anomalies for even d only. For example, in two dimensions
the anomalous term is @} = f(c, d4), where f in this case is given by the Killing form of 3.

These lectures are based on work done in collaboration with P. Cotta-Ramunino,
P. Pasti and M. Tonin, whose observations and advices have been essential in preparing
them. It is a pleasure to thank the organizers of the School on Theoretical Physics at
Katowice for the hospitality and for giving me the opportunity to lecture.
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