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1. Introduction

According to our present understanding of particle physics, the interactions between
the fundamental constituents of matter are described by gauge theories. The experimental
support and the interesting properties, that such theories can have (like charge antiscreening
and dimensional transmutation), make quantum gauge-field theories a very attractive
matter of investigation. Many problems are still open and need more detailed answers,
nevertheless it is remarkable that a locality principle (as specified in the next sections)
seems to be at the origin of particle interactions, so that dynamics is strictly connected
with geometry.

In these notes we discuss the quantization of gauge fields and some of the problems
related with gauge invariance. We follow the basic ideas of canonical quantization, but
we use a non-standard method to solve the problem of the gauge fixing.

The main point will be to derive the effective lagrangian for the physical degrees of
freedom. We shall eliminate the cyclic variables by constructing the Routh’s function.
By this method it is possible to obtain, in a simple way, the effective lagrangian for different
unitary-gauge choices.

* Presented at the VI Autumn School of Theoretical Physics, Szczyrk, Poland, September 21-29,
1981, organized by the Silesian University, Katowice.
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In particular we show, by explicit construction, that, independently of the gauge-
-fixing choice, the form (and the meaning) of the effective lagrangian is unique. Unlike
the usual Faddeev-Popov irick [1], in this formalism the problem of eliminating the pure
gauge degrees of freedom is separated from the problem of the particular choice of the
gauge. Therefore the gauge can directly be chosen according to the particular problem
(or region of configuration space) one wants to consider.

In Sect. 2 we review some general aspects of field quantization, and local gauge in-
variance is introduced in Sect. 3.

In Sect. 4 we develop the formalism of cyclic variables and derive the effective classical
lagrangian for the physical degrees of freedom. The limit of static external charges, which
in the non-abelian case can lead to some troubles with gauge invariance, is clarified.

The quantization of the theory is discussed on Sect. 5. In particular, the gauge 4, = 0
and the Coulomb gauge are considered.

In Sect. 6 the parameter 6 is defined, and in Sect. 7 we discuss the semiclassical limit
of the theory. The physically static stationary points of the euclidean action, which corre-
spond to the multi-monopole solutions in the presence of Higgs fields, are introduced.

2. Field quantization. Preliminaries

Before considering gauge theories, let us review some general aspects of field quanti-
zation [2].

Let us assume that the relevant configurations of the system are described by a classical
real parameter ¢(x). The system is specified by giving the lagrangian density 2Z(¢(x),
¢(x)), and the classical motion is a stationary point of the action.

S = [d*xdt& = §diL. 1)

At the quantum level the system is specified by giving also the basic commutation
relations between the operators associated with the degrees of freedom; that is, we have
to quantize the field. To do this let us consider first the case in which the lagrangian is
of the type:

L = [ dx 3 ($(x)* —p(x)h(x)) 2.2
where h is a differential operator (for instance, h = —V2+m?).

Let {w,(x)} be a complete set of real cigenfunctions of / (it is straightford to generalize
the equations (2.3)~(2.7) to the case in which / has a continuous spectrum):

hypa(x) = Zyypa(x) 2.3)
orthonormalized
§ dPxp () Pm(x) = Oy )
Any configuration can then be written
H(x) = ;qn%(X) 2.5

$(x) = T guypn(x).
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Using Egs (2.3)-(2.5), one gets:
L =733 Gn— Mg (2.6)
The lagrangian of the system describes a set of independent harmonical oscillators

with frequencies w? = 4,, and the quantization can be done in the usual way used in
quantum mechanics. To the operators

4 (P = oL
(qn)op an .pn op T aqn op

(associated with the degrees of freedom) one imposes:

[(pn)opﬁ (qm)op] = —iénm’
[(pn)op: (pm)op] =0= [(qn)op’ (qm)op]' (27)
From Eq. (2.7) one gets:

[n(x)op’ d)(y)op] = - i&s(x - y);

[n(x)op’ 7r()’)op] =0= [¢(x)op’ ¢(y)op]’ (28)
for the field operators:
&(x) and n(x),, = (—j—é—-—) (2.9)
N T \6®) Jop '

The physics of such a system is obviously related to the quantum mechanical oscil-
lator; for instance, the wave function of the vacuum (ground state) is:

A, -
Yolp(x)] = H exp (— %— qf) = exp (— 3 Z @ 7n q..)

n : n

= exp (— L § d*x¢(x) Vh (). (2.10)

It should be noted that Eq. (2.8) defines the field operators and does not depend
on the dynamics of the system, in the same sense that, in quantum mechanics, the com-
mutator [p, g] == —i docs not depend on the form of the hamiltonian. With a quadratic
lagrangian it is casy to derive Eq. (2.8) and Eq. (2.9) (and understand the physics of such
a system), but it is clear that, as for the field quantization itself, we can take Eq. (2.8)
and Eq. (2.9) as the definition’ of the canonical quantization procedure, even for more
complicated systems.

For gauge theories, however, one cannot use the canonical quantization procedure
straightforward, and the reason will become evident in the next section.

3. Local gauge invariance

To introduce gauge invariance [3], [4] under local transformations of a group G,
let us consider first a theory which is symmetric under global transformations of G.
Let us assume that the system is described at the classical level by a parameter ¢(x).
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At every point x, ¢(x) is an element of a vector space M, in which a non-trivial represen-
tation R(G) of the group G is defined.
The action. of G on M will produce a transformation on the field ¢(x):

d(x) = R(g)(x). 3.1)

Since the element g of the group is the same for all points x, the transformation is
called global, and we assume that it leaves the lagrangian density % o(¢, J,¢) invariant.

Now we introduce locality and assume that to every point x is associated a different
space M,. All the spaces M, are equivalent, up to a unitary transformation, to the same
space M.

If the spaces M, were not correlated in some way, the introduction of locality would
not be useful. We could not define the derivative of the field ¢, because ¢(x) and @¢(x +6x)
take values in different spaces.

To define the derivative of the field we specify what element g(x, dx) of the group G
connects M, .5, to M,. To first order in 5x" this element will be:

g(x, 0x) = 1=i) Aux)ox"I*+ ... 3.2
a
where I” are the generators of the group G, and {4,(x)} is a set of real vector fields.

To the vector ¢(x + 5x), which belongs to the space M, .. 5, is associated a (transported)
vector ¢(x+9dx) in M,, given by '

Pr(x+3x) £ Pp(x+3x)—i ¥ A%)Ox"RIVG(x+6x) + ... (3.3

and we can take the (covariant) derivative of the field
D, () = ) limo(¢T(x+ 0x)—P(x)[0x" = 8,Pp(x)~i Y, AZX)RIDH(x). (3.9

It is useful to define a matrix of vector fields 4,(x) by

A (x) =Y AT° 3.5
a
where T are matrices which represent the generators I in the fundamental representation.
The action of G on the spaces M, will now depend on the point x. Let g(x) be the
clement of G which acts on M,:

P(x) - R(g(x))p(x). (3.6)
Then the induced transformation on A,(x) is
4,(%) = U4,V +iU-(x)5,U () 3.7
where
U(x) = exp (iA%(x)T°%) = exp (A(x)) (3.8

represents g(x).
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Under the transformations (3.6) and (3.7), gauge transformations, the lagrangian
density:

30(45’ DA(A)(;b) (39)

is invariant, but we have introduced a new set of variables {A4;(x)}.

Only two functions of Ay, which we can add to the expression (3.9), are gauge in-
variant and represent renormalizable interactions:

1 3 g, v
L= — —4;2— GG 3.10)
£, =KY GG e (3.1
where G}, is defined by
Y G T = 0,4,—06,4,~i[4,, 4,]. 3.12)

#, can be written as a total divergence, therefore it does not change the classical equations
of motion, but it may have physical effects (related with instantons) at the quantum level [51.

Like in electrodynamics, which is a gauge theory with gauge group U(1), local gauge
invariance means that two different field configurations (¢(x), 4,(x)) and (¢'(x), 4,(x)),
which are related by a gauge transformation Eq. (3.6) and (3.7), describe the same physics.

The reason is the following. Let @(x) be some variable reiated to pure gauge degrees
of freedom. Since the lagrangian is invariant under gauge transformations with arbitrary
space-time dependence, it cannot depend on @(x) nor on the derivatives of @(x). There-
fore physics does not depend on 0(x).

A very simple example will clarify the situation. Consider a system described by

a couple of fields ¢;(x) and ¢,(x), and let the lagrangian density .£ be invariant under
the transformations:

$1(x) = ¢(x),
$2(2) = 2(x) + A(x) (3.13)

with arbitrary A(x). It is obvious, then, that .# depends ouly on ¢, £ = L(¢1, I, ¢ 1)
and that two fields configurations (¢;(x), do(x)) and (¢,(x), §.(x)+A(x)) describe the
same physics.

In a similar way, in gauge theories the physics is described by gauge invariant
degrees of freedom. Unlike the case in v hich the group G is abelian, it is not casy Lo
explicitly separate pure gauge degrees of freedomn from physical ones. However this is
precisely what we have to do, in order to understand the physics of gauge theories.

1t is also clear that the difficulties one finds, in using canonical quantization procedure

[6] (45 have no canonical conjugate momenta), are just a consequence of local gauge
invariance.
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4. The gauge A, = 0 and cyclic variables

Let us consider a gauge theory at the classical level. In the absence of matter fields
the lagrangian density is given by the expression (3.10).

We are interested in eliminating the degrees of freedom related to gauge transforma-
tions, Eq. (3.7); i.e., we want to fix the gauge. First we take advantage of the arbitrary
space-time dependence of gauge transformation for setting:

A, =0. @1

The lagrangian density then becomes:

i
L = 2Tr{ - GZ(A(x))} (,j=1,2,3) 4.2
where Gu(A(x)) =V; A}(x) -V Ag(x) t[A (x)9 g(x)}
The T%s satisfy: Tc (T "T") = 16 so that 2 Tr (A7) just means Y AiA], ete.
Condition (4.1) does not fix the gauge completely. The lagrangian density (4.2) is
invariant under residual time-independent (but space-dependent) gauge transformations:

Ai(x) = U (@) Ax)Ux) + iU (x)V,U(x) (4.3)
where
U(x) = exp (iA%(x)T") = exp (A(x)). 4.4
To first order in the parameters A(x), transformations (4.3) are
A(x) = A(x)—D(A)A(x) 4.5
where
DA A(x) = V;A(x)—i[4(x), A(x)]. (4.6)

From the invariance of the lagrangian under transformations (4.3), it follows that
the quantities:

~—1; D(A)A(x) = o(x) (4.7
g

are constants of the motion. Eq. {(4.7) is the Gauss Law and o(x) represents the external
charge density.

To eliminate the residual gauge freedom, Eq. (4.3), and to find the form of the lagran-
gian for the physical variables, we use the method of Routh’s function [7].

Suppose we have a system specified by a lagrangian L(g, ¢; «, «). If L does not depend
on the vanable «

0L/0o = 0
then « is called a cyclic variable. It is useful to consider the Routh’s function [8]:

R(g,q;m) = na—L, (4.8)
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where n = O0L/dx is the momentum canonically conjugate to the cyclic variable «, and
therefore it is a constant of the motion. In this way, for every fixed value n’ of the mo-
mentum =,

Ln’(q’ é) = —R(qa é; TC’) (49)

is the effective lagrangian of the remaining variables g.

The idea is to proceed in a similar way in a gauge theory: cyclic variables will refer
to gauge freedom, whereas non-cyclic variables will describe the gauge invariant content
of the theory.

To do this, we change variables [9] and write:

A(x) = S”T1(x)B(x)S(x)+iS™(x)V,S(x). (4.10)

S(x) takes values on the gauge group G, whereas B(x) selects only one configuration for
every orbit of the gauge group. In this way, by changing S and B;, we obtain all the pos-
sible 4; configurations.

We are interested in the field 4; which are of pure gauge outside some finite region
of the space, therefore we can choose B; (in Eq. (4.10)) to be zero outside that region
(actually, we can allow B; to vanish sufficiently fast when |x| — 00). This restriction does
not fix B; uniquely; two different possible configuration B; and B; of the same orbit can
differ by a gauge transformation (4.3) with parameters Q%x) (in Eq. (4.4)) which vanish
sufficiently fast as |x| — co. Otherwise the set of values, that B; can assume, can be chosen
in an arbitrary way, for the moment we assume that some choice has been made.

Gauge transformation (4.3) are now given by

By(x) > B{(x)
S(x) = S(X)U(x). “4.11)

Therefore By(x) describe gauge invariant degrees of freedom, whereas S(x) describe pure
gauge degrees of freedom. We have

Ax) = §7(x) (BL(x)+iD(B) (S(x)S™ 1(x)))S(x) 4.12)

and the lagrangian density (4.2) can be written
2 . .
&L = — Tr {3 (B{x)+iD(B) (S(x)S™(x)))*— % Gi(B)}. (4.13)
g

In the lagrangian formalism we take S(x) and S(x)S—!(x) as independent variables,
so that the equation

0L
oS(x)

(4.14)

which says that S(x) is the cyclic variable, just means that & is invariant under transfor-
mation (4.11).
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The Lagrange equation (related to gauge freedom) is

0% _d4 o2 . 14 51 .
a8~ dt &SSY aS8s™H’ @19

and, using Eq. (4.14), one gets
oF

~ -1
@5y @ = SWK@S T (4.16)
where K(x) is a constant of motion. Using Eq. (4.7), Eq. (4.16) reads
D*(B) ($(x)S™'(x))—iD{(B)B(x) = —ig*S(x)e(x)S™*(x) (4.17)
where
D*(B) = D{(B)D(B). (4.18)

Constructing the Routh’s function, we obtain as effective lagrangian for the variable B;:

L)

Dy(B)

.?eBi,Ba:ZTr{

2
-2Tr (SQS‘ D‘(B)B) +2Tr (‘g? SoS™l—nuo SQS“) (4.19)

1
"D*(B)
where

. 1 .
(B); = ( —D(B) ——— 7)) j(B)) B;. (4.20)

The projector J;;— Dy(B) ——- D;(B) selects the part of B; which is orthogonal to the

D*(B)
gaug: orbit in the point B; (sze Sect. 5). As for the operator D*(B), it can be inverted be-
cause B; vanish sufficiently fast as [x! — co.

If the gauge group G is U(1), Eq. (4.19) becomes

. | B 1 s l . g I
LB, B) = Eg—z_ (B)i— _‘E’? (ViB;—V;B)*—0 V2 V.B;+ 5 0 v ¢ (421
and Eq. (4.20) says that (By), is the transverse part of B;
. I .
(B, = (5ij"Vi Ve Vj) B;. (4.22)

1 . o .
The term ¢ vz V;B; is a total time-derivative and can be neglected. On the other hand, since

in this case gauge transformations (4.3) are just a translation of the longitudinal part
of A;, we can choose as B; the transverse part of 4;. The expression (4.21) is then the
usual lagrangian density of the electromagnetic field in the Coulomb gauge with an
external change distribution g(x).
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In the non-abelian case, if ¢ # 0 the expression (4.19) also depends on the variable S,
and there is no decoupling between the motion of the gauge invariant degrees of freedom
(described by B;) and pure gauge variables. Gauge invariance is broken.

The reason is that if we set ¢ # 0 in Eq. (4.7), we destroy gauge invariance, since
D{A)4; is not gauge invariant.

Unlike the abelian case, only the value ¢ = 0 is compatible with gauge invariance,
and the case in which we set ¢ # 0 cannot represent any physical situation obtained
from a gauge invariant theory. In particular, we cannot identify ¢(x) with the static charge
distribution of massive charged particles. In this case, indeed, o(x) should be considered
a dynamical variable and it would transform under gauge transformations (4.3) according
to:

o(x) = U™ (x)e(x)U(x).

When fermions are present, the effective lagrangian in the limit of static massive
quarks can be obtained from Eq. (4.27) (discussed below), where gauge invariance is not
broken, as it has to be.

It is also clear that the high wave number screening effect, pointed out in Ref. [10],
has no physical relevance. The reason why the energy can be arbitrarily lowered, even
if o(x) # 0, is the explicit breaking of gauge invariance. However, if we take the correct
gauge invariant lagrangian (4.27), this effect is not present.

Setting ¢ = 0, the expression (4.19) can also be written:

. 2 . 2 . 1 .
— 2_ 12 . 1 ——

The effect of eliminating the pure gauge degrees of freedom has been the introduction
of the last term in the lagrangian density (4.23). This term brings new interactions, and
we may ask if some choice for the variable B; exists in such a way that this term auto-
matically vanishes (like in the abelian case). Unfortunately the constraint

D{(B)oB; = 0 4.24)
which has to be satisfied, cannot be easily solved because of its non linear nature, and the
solution is not known.

In the next section we shall see how to choose the variable B; when we consider
a small-fluctuation perturbative expansion.

We conclude by deriving the effective lagrangian for the physical variables when
fermions are present [11]. In this case, to the lagrangian density (4.2) we must add

Lry = Y, Poliy°0,500 + iy (3,50 =1 Y, AUT),5) = Ssm) . (4.25)
aff a

The fermions transform according to the fundamental representation of G.
In changing the variables, together with Eq. (4.10), we set:

p(x) = STH(X)po(x),
PB(x) = Po(x)S(x). (4.26)
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As before, we construct the Routh’s function (with ¢ = 0), and the effective lagrangian
density for physical variables B; and y, becomes:

2= % Tr (§ B} - § Gi(B)+ —5; Tr {% (D(B)B;+£%o) Dz;(m @ ,-(B)Ii,~+g2jo)}
+ g,,; Poaliy °8.p00 + iy (8,50;— i Za: BY(T*)up) — Supmm)Pogs 4.27)
where
Jo(x) = ;jS(x)T“ (4.28)
and
Jo(x) = %17)01(X)7°(T“)aﬂ%p(x} (4.29)

5. Quantum gauge fields

In this section we consider a quantum gauge theory. First we discuss the quantization
in the gauge 4, = 0, then we show how to quantize directly the physical degrees of freedom
by using the effective lagrangian derived in the previous section.

We shall consider a theory with gauge group SU(2). In the gauge 4, = 0 one can
use the canonical quantization procedure. To the operators Ef(x) and A?(y) (a,b=1,2,3),
associated with the degrees of freedom, one imposes:

[Ef(x), 43()] = —i0,;5"5%(x—y)
[E{(x), Ej(0)] = 0 = [4{(x), A;(»)]- (.1

E} are the momenta canonically conjugate to the A9s and, using the expression (4.2),
one gets

1 .
El(x) = ? AN(x). 5.2)
The hamiltonian density is:
1
H(x) = 5 & (Ei(x)*+ e (Gi(A(x)))? (5.3)

H#(x) is invariant under time-independent gauge transformations (4.3). If the param-
eters Q%x) of the transformation vanish sufficiently fast when {x] — co, then these
transformations are unitarily implemented' and the generators are

G(Q) = | d3xX(x)G"(x), (5.4

1 If 2%(x) do not vanish when [x| — 0, transformations (4.3) may no longer be implemented by
a unitary operator. We could have a spontaneous symmetry breaking or, in any case, we have to take into
account the effects of non-vanishing surface terms.
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where
G°(x) = V.E(x)+e™ A} (x)Ef (). (5.5

Since the G°(x)’s are generators of transformations which are invariances of the
system, they are constants of motion and can be simultaneously diagonalized with the
Hamiltonian.

The state vectors |y), on which:

G(Q) ly> = 0, (5.6)

correspond to physical states. The space H of physical states is invariant under tem-
poral evolution. In H, G*(x) = 0, or

ViE{(x) = e E}(x)4; (x) .7

which is the Gauss Law, since ¢ Ef4{ is the charge density operator.

Note that physical states are not normalizable because their wave functions are
constants on all the configurations related by a gauge transformation generated by G(Q).
This non-normalizability is related to the residual gauge freedom (4.3), and factorizes
out of physical amplitudes, which depend in a non-trivial way only on the variables which
describe gauge invariant degrees of freedom [12].

Therefore in the gauge 4, = 0 the physical content of the theory is not explicitly
produced, and to quantize directly the physical degrees of freedom, we can use the effective
lagrangian (4.23).

The choice of the variable B; is suggested by the form of the lagrangian density (4.23)
and depends on the point of the configuration space around which one considers the
(small-fluctuations) perturbative expansion.

Let By(x) be a configuration around which we consider the small fluctuations

'Bi == §1+Bg- (5'8)

Any fluctuation Bf can be decomposed with respect to the orthogonal and tangent planes
to the gauge orbit (obtained with time-independent gauge transformations) at the point B;.

B = (B) L+ Ba: (59
Using Eq. (4.5), one gets

B, = (6,,-—0;(3)1)—2@-)-13,-@)) B, (5.10)
- 1 ~
(8w = DAB) - DABIBS (5.11)

and from Eq. (4.19) and Eq. (4.20) one finds that the lagrangian density (to lowest orders
in the fluctuations) depends only on (BY),.

Therefore, we can define B;, Eq. (5.8), by imposing, on its possible configurations
B+ BY, the constraint:

D(B)Bf = 0. (5.12)
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In particular, let us consider the case in which B; = 0. Eq. (5.12) then becomes:

and, from (5.8), we obtain that B, is a transverse field (Coulomb gauge). In quantizing
the field we set

[{(x), B}'(y)] = —is® (51',' -V; {,1; Vj) *(x~y)

[n{(x), 73] = 0 = [Bi(x), Bi(»)], (5.13)
where n} are the momenta conjugate to Bf. Using the lagrangian density (4.23), one gets
ora 1 . 1 1 1 .

a
and the hamiltonian density is?:

2

g > L,
H = 2Tr (—5— T + Zg_z ij(B)>

2
1
27t (£ DB, D(B)r,\. (5.15)
D(BY, o5 V,D(B)

Since n; is transverse, one has
(D(B)ny)* = e™Bin§ (5.16)

and the last term in Eq. (5.15) is the analog of the instantaneous Coulomb interaction of
the abelian case. When fermions are present, Eq. (4.27), the hamiltonian density is

1 .
# =2Tr <—§—g2ni2+ W G,?,(B)) + E Poa ( —iy’ (50,,,6,--1‘ E B‘}(T")aﬂ> +m5,,,) Yog
/3 a

a;

Dy o VeD.

—2Tr 42 8*(D(B)=; +Jo) Dy(B)m;+jo)( - (.17

2 Really, in constructing the hamiltonian, we have to take some care in the ordering of the canonically
conjugate variables, This may produce a non-trivial effect on the kinetic term ={/2. The hamiltonian (5.15),
obtained with the naive rules from the effective lagrangian (4.23) is correct up to terms of order higher than
two in the coupling constant. This is enough for our purposes, but for more details on this point see Ref. [13].
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-1
Expanding (D‘(B)Vi V,D,(B)) in powers of B; one finds

1 B | 2i 1
Dy B)V; vz ViDi(B)) = vz + vz B, V‘V?

3 1 1
- [B,, Viez [B,, V,Vz—]] Fo (5.18)

Lo 1 . .
Together with the Coulomb potential v between charges, one gets other interaction

terms. Because of these terms, one easily finds that non-abelian charges are not screened
by the quantum fluctuations, but there is antiscreening [14]. Indeed let us consider the
limit of massive static fermions, in which only the charge variables of fermions are taken
into account. In this case j, acts as an external classical charge distribution in the hamil-
tonian (5.17), and the potential between the external charges is given (to lowest orders) By:

1 1 1
-g Tr (fo 'V‘;jo) +4g* z Tr (jo vz <0|Di”i[”>) Eo’En (Tr ((nID ;10> vz Jo))

+3g*Tr ( Jo =5 €0} [B‘, V;; [B V; V12 _10]] IO)) +... (5.19)

The second term, being a second order correction to the ground state energy, has always
the effect to lower the potential energy between the external charges. This just corresponds
to the well known screening effect of the vacuum polarization.

The last term, however, has the opposite sign and it is dominant with respect to the
usual screening term, so that summing all the terms one gets for the Fourier transform of
the potential

g, 5.20)
T ke OB ©.

vy = 22
where gZ is a renormalized coupling constant defined at k2 = p2.

6. The parameter 6

Let us consider the theory in the gauge 4, = 0, where physical states are characterized
by the condition (5.6). This equation means that the wave functions of physical states
are constant on all the configurations A4; related by a gauge transformation (4.3) with
parameters which go to zero when |x| — <.

We may ask how the wave functions change when we pass from a configuration
A; to another one 4, obtained from 4; with a gauge transformation (4.3) with parameters
A%(x) which do not vanish when |x| - o0.

The question is meaningful if the transition amplitude

<Afle™ ™14, 6.1)
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(computed with the constraint (5.6)), is different from zero. Otherwise 4; and A4;' do not
belong to the same representation and, in this case, no correlation can exist between
|4;> and |4{).

If the amplitude (6.1) is different from zero, then both A4; and 47 contribute to the
structure of the theory, and gauge invariance requires that when we pass from the con-
figuration 4; to 4] the wave functions of physical states can at most be multiplied by a phase
factor.

The fact that the amplitude (Ajle”#7|4,) is different from zero is a transitive
property of field configurations. Therefore, we can choose in Eq. (6.1) two configurations
A; and A? gauge equivalent to zero; for instance 4; = 0, and

Af(x) = U™ AV, U(A(x)) 62

and compute the amplitude (6.1) in the large T limit.
To lowest order in the coupling constant g, the amplitude (6.1) is given by [15]:

exp (—Sgl4]) (6.3)

where
- 1 s ~
SelA} = —g—z— Jd‘x 2Tr G (4)*+ % G,?j(A)) 6.4

and the path A(x, t) satisfies the euclidean equations of motion

SSg[A)/8A(x) = 0 (6.5)
and the boundary conditions
~ 0

together with the Gauss Law constraint
D(A)A(x,1) = 0. ©7)
To this approximation the amplitude is different from zero if Sg[A] is finite. In tumn
this implies
U(A(x)) —— +1. 6.8)

|x|=~ow0 —

Th: szt of U, which satisfy Eq. (6.8), can be decomposed in equivalence classes, each
onz characterized by an integsr ind:x n e Z (topological number [16]),

n

=iz _[ d3xep Te (UT'WVU - UT'V,U - UTI,D). (6.9)

All the elements of the same class can be obtained by multiplication by U(Q(x)),
(QAx) I—;F?O).
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It can be shown that for any n the euclidean action Sg, Eq. (6.4), is indeed finite [16]

and it is given by
8n2

We can then introduce for physical states an angle 0, by the requirement that when we pass
from a configuration 4; to A4, obtained with a gauge transformation which has topo-
logical number n = 1, the wave functions are multiplied by a phase factor ¢~ ™.

Instead of imposing different conditions on the behaviour of the wave functions,
we can take into account the effects of having different values of 0, by adding another
term %, to the lagrangian density (4.2). To find &, let us see how the transition amplitude
(6.1), between A4; and A depends on 6. One has

At T4 = (A le™ T4 1€, (6.11)

where n is the topological number (6.9) of the transformation U(A(x)). Therefore, £, must
satisfy

(Aftlexp (i  d*xZg)|A:) = {Af|4)e™. (6.12)

That is, £, has no effect on the classical equations of motion, since it depends only on the
initial and final configurations. This last property suggests that %, can be written as a total
time derivative. Let us now verify that

0 d
0= Torz 7, bk Tr G+ §id;40)] (6.13)

is the wanted term. If we insert (6.13) in the expression (6.12) we get

<Aﬂ €Xp (1_[ d*xZLe)|A;>

0
= (A} 4> exp < 1;7'52 .[ d3xe; Tr [A1G (AN + 2 iAf A AL
—AGu(A)— % id4 ,.Ak]> , 6.149)
where
Af = U N DAUA)+iU AV, U(A). (6.15)

Using the identities
§ d®xe Tr (47 G(A4%) = § d3xe; 5 Tr [4,G;(4) +iV,UU " 1G(A)], (6.16)
§ d3xe; Tr (AfAJAY) = [ dPxey Tr [4,4;4,
—iUT'WVU-UTWU- U™V U= 3V,U - U™'G(A)], 6.17
one easily finds that Eq. (6.12) is satisfied.
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In order to obtain a manifestly Lorentz-invariant form for %, we add a surface
term to the expression (6.13) and write

6
Ly = Tez 8 J" = 162 & Tr G, (4)G,(A) (6.18)
where
J* = "2 Tr [A(G(A) + 2 id,A,)]. (6.19)

The introduction of the parameter 0, which is not present in the theory at the classical
level, is similar to the use of the pseudo-momentum in quantum mechanics for periodic
potentials. Different values of 0 label physically superselected sectors because physical
variables are gauge invariant.

One of the most important consequences of the existence of the # parameter in non-
-abelian gauge theories is the solution of the problem of the mass splitting between the
flavour-singlet and the flavour-non-singlet mesons in QCD [5], [17].

7. Static stationary points

Since 1/g* multiplies the whole lagrangian, *the expansion in the coupling constant
g2 is like the f-expansion, and the structure of the theory in the small g2 limit just corres-
ponds to the semiclassical approximation.

Consider the hamiltonian density in the gauge 4, = 0, Eq. (5.3). If we set

E{(x) = gE{(x)
1
A(x) = — 4i(x) @.n
g
(a canonical transformation on the variables) the hamiltonian can be written
1
4"

and it is easy to see what happens when g2 goes to zero. Eq. (7.2) describes a system with
a potential energy:

H= fd x [% (Ef (x))*+ (G?}(gA'(x))’] (72

|
V4 = ? Vigd’) 1.3

where
V(4) = § § d*x(Gi(4'(x))) 749

is non-negative. From Eq. (7.3) one finds that when g* decreases the minima of ¥, tend
to separate and the potential barrier between them tends to increase. The quadratic part of
V, around the minima is left unchanged, whereas terms of higher degree go to zero. There-
fore, as g? goes to zero, one obtains an ensemble of infinitely far separated “free” theories,
each one defined by the quadratic part of the g? expansion around the minima of V.
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In this limit, the vacaum wave function will be approximated in each region of the
configuration space by the ground state wave function of the free theory constructed
around the stationary points. For this reason we are interested in the static stationary points
of the theory, i.e. time-independent field configurations which are minima of the energy
(cuclidean lagrangian). Actually, one easily realizes that physically static configurations
are not necessarily described by time-independent fields. Any time-dependent field, in
which a time translation can be reabsorbed by a gauge transformation, represents a physi-
cally static situation. This possibility gives origin to new interesting non-trivial solutions.

Indeed, let us consider the field

Af(x) = " @B (x)e | jo Ny Lb)E (1.5
One has
Ai(x) = ™~ D(B)(x))e ™. (7.6)

The field defined in (7.5) is not static, because it depends explicitly on time, however
the time dependence is just of gauge type, and therefore it represents a physically static
situation, For this field the euclidean lagrangian is

Ly = ;i— Tr _[ d*x(5 (D(B)$)* + % Gi(B)) (7.7

and the stationarity conditions are:
DX(B)d(x) = 0 (7.8)
i[D{(B)$, $] = D/(B)G;{B). (7.9)

Eq. (7.8) represents the Gauss Law
D(A)A; =0 (7.10)
and Eq. (7.9) corresponds to the euclidean equation of motion

for the field A; given in Eq. (7.5).
Note that Eq. (7.11) differs from the true (or minkowskian) equations of motion by
a minus sign. This means that a field (7.5) with non-zero ¢(x), which satisfies the equations
(7.8) and (7.9), does not represent a solution of the minkowskian equations of motion3.
If we require Ly, Eq. (7.7), to be finite, the behaviour of ¢(x) when |x| — o is limited by
¢(x) ———> kn(0, @) (7.12)

jx] o

3 The reason is that the stationary points of the action are not in general stationary points of the
cuclidean action. On the other hand, if we areinterested on the vacuum structure, the relevant configurations
are those which minimize the euclidean action, as one can also see, by considering the expression

KAi 17T | 4i> > e BTH [P A1].
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where k is some dimensional constant and #°(6, ¢) is a unit vector which can depend on
the angular variables 6 and ¢. Then, we can define an integer number m e Z [18], [19]:

1
m = s d3xe;;, Tr [D(B)Gp(B)] (7.13)

which represents the number of times the unit vector #°(0, ) covers the unit sphere in the
space of internal numbers a when we moove on the sphere at |x| = 0. The expression
(1.7) can be written:

1 1
Lg = e j-d3x Tr (D(B)$F 7 e:inGi(B)Y e stxsijk Tr (D(B)$G(B)) (7.13)
and, since Ly is positive, we derive, for fixed k and m, a lower bound for Lg [19]:

4z
Lg = —é—z—klml. (7.14)

If G = SU(2), a solution with m = 1 is [19]:

. X; kix|
Bi() = ey 5 (1_ sh klxl)

a

X

$(x) =

5 (1 —klx| coth k|x|)
x
and it is called a monopole solution, since it corresponds also to a time independent
solution of the minkowskian equations of the motion of a non-abelian gauge theory with
a triplet of scalar fields [18].

The physical consequences of the existence of these non-trivial stationary points
(and of approximate stationary points corresponding to far separated monopole solutions)
are not completely known. We mention the works of S. L. Adler [20] on the possible effects
of these solutions in the computation of the static potential between non-abelian charges.

8. Concluding remarks

The formalism, that we have used to quantize the gauge fields, is not manifestly
Lorentz-covariant. In order to produce explicitly the physical content of gauge theories,
we have eliminated the superfluous degrees of freedom.

It may be useful to see why it is not possible to give a covariant description of physical
states. Let us consider an abelian gauge theory. The one-particle states, which we can
describe with a vector field 4, are characterized by the momentum value k, and by a polar-
ization vector &,

For massless particles we have

kjg* =0 @®.1



833

and of the four possible polarization states only two correspond to physical states. It is
possible to find two invariant subspaces G, and G, of the space G of state veciors. G,
is characterized by

5, o k, (8.2)

(longitudinal polarizations), and G, by

k& =0 (8.3)

(longitudinal and transverse polarizations). From Eq. (8.1) one gets that G, C G,, and
physical polarization states belong to G,, but they have no components in G,.

However the representation, even if reducible, is not decomposable. With a Lorentz
transformation we can transform a transverse polarization state in a linear combination
of a transverse and a longitudinal polarizations. Therefore physical states cannot be
selected in a covariant way.

Actually, we can use a manifestly covariant formalism, but then we must introduce
a non-definite metric in the space of state vectors.

In covariant gauges (described by L. Bonora in his fectures at this School) one can
also prove the renormalizability of the theory, whereas in a physical gauge the renormal-
izability is not manifest.

I wish to thank the Organizing Committee of the VI-th School on Theoretical Physics
of Silesian University and all the people, who has contributed to make this School possible,
for the kind hospitality.
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