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Spherically symmetric potentials were investigated. It was shown that spherical symmetry
excludes nonabelian solutions of Yang-Mills SU(2) equations when certain hypotheses
about their sources are supposed.
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1. Introduction

The aim of this paper is to study some nonabelian field configurations. The basic
problems which are raised below are the following: “What can be said about solutions of
Yang-Mills equations with spherically symmetric scalar sources j; = d,00°(r)?” In par-
ticular, “‘Are the symmetry properties of a solution in any sense related to its gauge charac-
teristics 7’ (i.e. “Could the spherically symmetric solution be nonabelian?"’). These rather
technical questions will find an interesting use.

We will not discuss the relevance of the classical Yang-Mills theory to physical reality,
but we may hope that if there is some connection, it can be realized in the simplest possible
manner. Because of that higher symmetric configurations seem to be interesting. There
is also another reason for exploring them. As is known, physical processes are often asso-
ciated with the destruction of symmetry of interacting objects. One can ask whether some-
thing of the kind could happen in the nonabelian gauge theory. The answer needs the in-
vestigation of interacting gauge and matter fields, but even the simplified picture including
only self-interacting gauge fields is abounding with curious phenomena. This question is
shortly discussed at the end of my article. Now I want only to stress that its rather sur-
prising solution is based on those technical results which are elaborated in Section 2.

The formulation of the spherical symmetry of gauge fields has a relatively long
history in physical literature (see, e. g., [1] and references therein). There appear some
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difficulties connected with the gauge degrees of freedom. As is well known, a potential
A transforms under gauge rotation as follows
A° =gdg™ +e(Ve)g™, AL =gdog” ' +e(Oo2)g "

Recall that usually the spherical symmetry of geometrical quantities such as scalars or
vectors implies £4, = 0, £4 = 0 where A4,, A are scalars and vectors respectively,
and £ denotes the Lie derivative. But now it can happen that 4,, A and B,, B are related
by a certain gauge transformation and £4, =0, £4 =0, while £B, # 0, £B # 0.
Therefore the usual definition in terms of Lie derivatives demands some modifications.

This is extended in Section 2. It is accomplished by means of Def. 1 and Def. 2. The
second definition includes more general configurations than the first. Our main theorem
(Corollary) states that for sources such as given above and under some additional require-
ments, a spherically symmetric solution of the Yang-Mills SU(2) equations must be abelian
and it is “naively” symmetric (i.e. in the sense of Def. 1). I should note that theorems
1-4 hold for general semisimple compact gauge groups.

2. Main results

At first, we will present two various definitions of spherical symmetry of Yang-Mills
potentials. One of them is a straightforward extension of the usual concept of spherical
symmetry. It may be called “‘naive”, since it does not include certain known field con-
figurations, which are covered by the second (usually used in later literature) definition.
In our notation the upper (isospin) indices change from one to the dimension of a group
algebra G and the lower (space) Latin indices change from 1 to 3, while the lower Greek
space-time indices take on values from O to 3.

Definition “naive” 1. A potential 4}, is said to be spherically symmetric if it is gauge equiv-
alent to the one with
A = (), Al = xiF().

Definition “general™ 2. A potential A3 is said to be spherically symmetric if its space rotation
could be compensated by a gauge transform, i.e., on the Lie algebra level:

£A] = 0" +eof i AL, £AG = Doy +eficdox’

where y € G, f;. — the structure constants of G and £ denotes the Lie derivative [2, 3 and
references therein].

It is a simple exercise to show that “naively” symmetric configurations satisfy the
requirements of the general definition.

We now establish some properties of potentials satisfying these definitions. They
are formulated in the sequence of following theorems.
Theorem 1. Suppose that the potential A, is “naively”’spherically symmetric. Then its
vector part is a pure gauge one, i.e.

A7 = e(0,9)g™" (1)
for some ge G, and its field strength tensor Fj; vanishes.
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Proof: Let B, be a gauge copy of 4; having the form Bi(x) = x,B%(r). One easily finds that
Ff; = 8,B}—0,B! +¢f5.B}B; = 0. 2
But this is the integrability condition for the equation

B, = e(0ig)g™ ! 3)

hence a solution g of (3) exists. The group valued function g of (1) is now given by g = gog,
where g, transforms 4] to B}

Theorem 2. The potential A, with nonzero magnetic components Fj; could not be spher-
ically symmetric in the meaning of Def. 1.

Proof: A potential with F; # 0 cannot be gauged to the form xf{r). This follows directly
from Th. 1.

Theorem 3 (An algebraic criterion for “naive” nonsphericality). A continuous potential
A} satisfying x;47 = 0 is not “naively” spherically symmetric for compact semisimple
gauge groups.

Proof: Suppose the contrary, i.e. let there exist a once differentiable g such that

gAig™ ~e(0:8)g™" = x:f(r). G
Multiplying (4) by x one gets

—r (g- g) g™t = r¥(r). )
r

The general solution of (5) has the form g = g,(r)go(v, @), but the continuity of gat r = 0
demands g,(v, @) = const. Hence g is independent of angles. But if it is so, then multiplying
(4) vectorially by x one obtains

gxxAgt=0 ©6)

which contradicts our assumption.
Let us now recall the static version of the Yang-Mills equations with sources jj:

0;F o +e[4; Fio] = Jjo

0iFx+e[ Ao, Firol = i ™

where Fjy = 0,45+ ef &AL AS.

We prove the following, assuming that the gauge group is semisimple.
Theorem 4. Suppose that the sources are purely scalar, ji = 8,0j°(r), continuous and
nonvanishing everywhere (except for isolated points). Then the Yang-Mills twice differen-
tiable static potentials with a nonabelian holonomy group cannot be spherically symmetric
in the sense of Def. 1.
Note. The algebra of a holonomy group of a solution is spanned by its strength field
tensor F,, together with the covariant derivatives of F,, of all orders [1].

A potential is said to be abelian if all commutators of above objects vanish, i.e.,
the holonomy group is abelian; otherwise it is called nonabelian. A solution of the type



846

A, = 6,,06‘,1A(5E) is abelian in this sense, of course. It should be remarked that such a de-
termination is gauge invariant.

Proof: We show at first that for statics a nonabelian solution must have nonzero vector
components (modulo gauge transformations) with Fj, # 0. Indeed, if we suppose the con-
trary, then the following may be established. From the continuity current equation

dufutefuAljn =0 (8)
one concludes that
frAgjs =0 )

(recall that ji = 0). This apparently implies that 4,,j, must be parallel (or belong to
the Cartan subalgebra of G), because j§ # 0. Furthermore, their isospin direction must
be constant (or lie within the same Cartan subalgebra) throughout all space. (Although
Egs. (9) allow for Ay, j, parallel and with isospin directions different at neighbouring
points, the regularity assumptions suppress that.) Hence a solution is abelian for vanishing
vector components. But on the other hand, we know from Th. 2 that a potential with
Fy, # 0 could not be spherically symmetric. Thus we see that spherical symmetry (in the
“naive” sense) excludes nonabelian field configurations, and that ends our proof.

We show now that this fact holds also for “generally” symmetric gauge fields. Let
the gauge group henceforth be SU(2). Then the “generaily’” symmetric potentials, satis-
fying in addition the gauge x;4; = 0 (we see from Th. 3 that such fields are not included
in those covered by Def. 1) are [3]

Af = e,V (r, )+, S(r, ) +xx,T(r, t)
S+r’T =0
Af = x,U(r, 1) (10)

(this is proven by Gu and Hu [3] to be the most general spherical form, but similar ansatzes
were used earlier).

Theorem 5. Suppose that the vector part of the sources vanishes, while their time com-
ponent is j§(X) = j°(r), and vanishes nowhere (except at isolated points). Let the gauge
group be SU(2). Then there are no static (“generally’’) spherically symmetric solutions.
Proof: After inserting (10) into (8) (where f}. = &4, the Levi-Civita antisymmetric
tensor) one gets

8abcxbU(r)jc(r) = 0. (11)

Hence U = 0, which contradicts our assumption, since then from (7) follows j°(r) = 0.
As a direct consequence of Th. 4 and Th. 5 we obtain

Corollary. Under the hypotheses as in Th. 5, Egs. (7) (with suitable boundary

conditions) can possess only “naively” spherically symmetric solutions, which are

abelian; the nonabelian solution, if occurs, must have a lower symmetry.
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3. Application

It has been found previously that for sufficiently strong sources (or for sufficiently
large values of the coupling constant €) from an abelian solution bifurcates another nona-
belian [4]. Suppose that the original abelian potential is spherically symmetric (our Corol-
lary asserts that under suitable hypotheses it is “naively” symmetric). Hence we can conclude
that bifurcation is always related with symmetry breaking, because:

i) a bifurcating solution must be nonabelian
ii) a nonabelian potential cannot be spherically symmetric, in view of the Corollary.

The author is indebted to Dr. H. Arodz for critical reading of the first version of the
manuscript.
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