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A MODEL OF RELATIVISTIC QUANTUM MECHANICS

By A. HERDEGEN
Institute of Physics, Jagellonian University, Cracow*
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A model of relativistically invariant quantum mechanics of spin 0 and spin 1/2 particles
is proposed. An invariant evolution parameter is employed, whereas both physical time
and the mass of the particle become dynamical quantities. The equations of motion of
physical observables are obtained, which correspond to classical formulae.

PACS numbers: 11.10.Qr

1. Introduction

The aim of this article is to present a possible relativistic quantum theory of a particle
(spinless or with spin 1/2) which is acted upon by an external electromagnetic field. It is
often argued, that in relativistic quantum physics any interaction is bound to lead to
pair production and therefore the employment of the quantum field theory cannot be
avoided. However we point out that there do exist certain experimental situations in which
pair production does not take place (or can be neglected) but some relativistic effects are
detectable {e.g. in the hydrogen atom). It should be noted here that the usual relativistic
wave equations (such as the Klein-Gordon or Dirac equation) though acceptable from
the point of view of the relativistic field theory, do not solve the problem of constructing
a relativistically invariant quantum mechanics of systems with a finite number of degrees
of freedom (such as a particle in an external field). This is because there does not exist
a Hilbert space and unitary representation of the Poincare group acting on that space such
that the solutions of the wave equation would be defined in that space and observables
would act within that space. The quantum mechanical averages of observables do not,
in consequence, have proper relativistic transformation properties. This difficulty is re-
moved in the present theory, whereas in other aspects it remains as similar as possible
to the usual theory.

In the present article we assume that the lack of relativistic invariance of the usual
theory is caused by the inclusion of the evolution parameter (the role of which is played
there by physical time) into the transformations of relativity group. Thus following Stue-
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ckelberg [1] and many others we introduce an additional evolution parameter 1. Such an
invariant parameter was used by many authors, but originally for rather technical purposes
[2]. The form of the generator of motion intreduced by Stueckelberg was used by Hor-
witz and Piron [3] to construct their model of the relativistic quantum particle (see also [4]).

Our next assumption is that in the relativistic physics the mass should have dynamical
meaning rather than be a fixed constant. Starting with the classical Lagrange formalism
and using those two ideas we obtain the classical theory in which the Hamiltonian is
the square root of that of Stueckelberg [1] and of Horwitz and Piron [3]. In the
classical case the two Hamiltonians generate the same trajectories (with 7, however, only
in our theory being always the proper time parameter, irrespectively of the initial con-
ditions), but in the quantum case the equations of motion in the two theories are not
equivalent. It seems to us that equations obtained in the present model provide a better
physical interpretation, especially in view of the fact that in the quantum case the mass
is not defined sharply, so that it should appear in equations of motion as an operator
(in [3] and [4] the mass eigenstates are used, but these do not belong to the assumed Hilbert
space). We only mention that our model differs also in some other respects from that
of Horwitz, Piron and Reuse (especially in the spin 1/2 case). See also Note added in proof.

The general structure of the present article is as follows: in Section 1 we show how
furnishing mass with dynamics leads to our Hamiltonian; the canonical quantisation of
the classical formulae is performed in Section 2 and in Section 3 we construct the quantum
theory more explicitly. It is also shown that the theory is invariant under physical time
reflections. In Section 4 the charge conjugation and the free particle solutions are studied.
Some other properties of the proposed model will be included in another publication.

2. Classical particle
The classical action of a charged particle placed in an external electromagnetic field
Fy =0,4,~06,4,
is usually taken to be! [5]:

S= - J(mc J2 + -ZA(z)~ 2) dx. @2.1)

Here m, e, z* denote the mass, charge, and position of the particle respectively, ¢ stands
for the velocity of light, T is an evolution parameter and the dot represents differentiation
with respect to t. This form of action is a homogeneous functional of 2* of degree +1,
which ensures the invariance of the equations of motion with respect to the change of
parametrization. However, if we introduce the canonical momentum fourvector
3S Z,
Py = — —5 = mC

Sz* J22

! We use the metric tensor g,y with signature (+1, —1, —1, —1) and denote gua*b® =a:b,
guvata® = a

e
+ - A“(Z),
c
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its components turn out not to be independent, satisfying the mass-shell relation:
2
€ 2.2
(p—- ZA(Z)) = m“c”, (2.2)

This constraint prevents the covariant Poisson bracket relations from being applicable
on that level. On the other hand m is here a constant parameter rather than a dynamical
quantity, as we would prefer it to be. We shall now show, that the constraint on p, can
be removed if we give the mass dynamical status. For this end let us observe that, with m
still being a constant, the proper equations of motion can be obtained with use of the
Lagrangian:

Pm, 2, 3) = L m(zP— )+ S A(2) - 2, 2.3)
c

if after evaluation of the Lagrange equations the additional condition
= ¢? 24

is imposed, giving the parameter 1 the intérpretation of proper time. If we now let m be
an additional generalised coordinate, then the condition (2.4) becomes the Lagrange-Euler
equation with respect to this coordinate. The remaining Lagrange-Euler equations read:

m = 0,
e .
m#* = - F"Z, (2.5)

where (2.4) and the antisymmetry of F*" have been used. Lagrangian (2.3) can be now,

e
with help of the additional variables p, = = mz,+ — A,(2), reduced to a first order
¢

oz*
Lagrangian with one solvable constraint (see e.g. [6]):

L, z,z,p) = prz—p- 2z, p, M)+.L(m, z, (2, p, m))
b, .
==p'z—-—2—(n +mc’) = p-z—H(z, p, M), (2.6)
m

. o ¢ . .
where ' is the Hamiltonian and n, = p,— — A4, is the mechanical momentum of the
¢

particle. The equations of motion are:

py=———= -c—auA‘, -, 2.7
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and

o L, T«
O=En-—=-2— C—W‘ (2.8)

is a primary constraint equation. It is a consequence of the equations (2.7) that =2 is a con-
stant of motion, on which (2.8) imposes the condition:

7% > 0. 2.9
The constraint equation (2.8) can be solved for m, and inserting m(z, p) in # leads to:
Mz, p) = H(z,p, m(z,p)) = c*m(z, p) = C\/;r_is 2.10)

where +1 overall sign has been chosen. The equations of motion obtained with c2#
as a Hamiltonian are again (2.7) [6), and can be given the final form:

7 = mz",

e ..
mzt = ;F’”zv, 2.11)

1 . s
where m = — \/n% = constant of motion. The condition (2.9) can be reexpressed as:
c

M2 >0, (2.12)

Note that (2.4) is obtained as a consequence, so that 7 is the proper time parameter. In
view of (2.10) and (2.11) the generator of the evolution .# takés on any trajectory the
value of the mass of the particle moving along this trajectory.

The Lagrangian .Z; ensures that the Poisson bracket relations together with the
equations of motion have the form:

{Zﬂ, Pv} = 55’ {Z"’ Zv} = {Pua Pv} =0,
g =c*g, M}, (q=1z2"p), (2.13)

which aliows the canonical quantization procedure to be applied, if only .# can be given
quantum meaning.

3. Canonical quantization

In the quantum case z*, p, are replaced by selfadjoint operators acting in some Hilbert
space and it does not present any difficulty to define a selfadjoint, at least on the formal lev-

e 2 , . .
el, operator ¢24?% = (p —_— A(z)) , in correspondence with the classical case. As explained
c

in the Introduction, it seems to us preferable to use the generator obtained in Section I,
so that the square root of .42 should be taken. This cannot, however, be accomplished
without performing some modifications of the quantum mechanical rules (.#2 is not posi-
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tive definite, so that using the spectral theorem [7] to this end would lead to a non-self-
adjoint operator). Having agreed to any such modifications we prefer to proceed differ-
ently.

With z* p, retaining for the moment their classical character, we shall linearize
/7% in the two simplest ways by adding variables which will, after quantization, represent
the charge degree of freedom in one case, and the charge and spin in the other. Namely
we put

1
ey = Q—com2+ecﬁ, oty = y'm, (.1

and demand
EM: =1 (s=0,1/2). (3.2)

The two values of the subscript s are those of the particle’s spin in the two respective cases,
as will be seen below?. All matrices are dimensionless and ¢ is’an arbitrary mass scale
needed in the “0” case. The condition (3.2) will be fulfilled if the matrices satisfy:

o = p2 =0, [, Ble =1, (3.3
071 =281 (3.4)

Thus y’s form the algebra of the Dirac matrices, and the linearization method of the *1/2”
case is that of Dirac. We choose for 9’s, as usual, 4 x 4 unitary matrices, so that 0 is her-
mitian and %' (i = 1, 2, 3) are antihermitian:

P = %0 (3.5)

The method of linearization in the “0 case parallels that of Feshbach and Villars [8]
used for reducing the Klein-Gordon equation to the Schrodinger form. Algebra (3.3)
can be transformed to another form. Namely, if we define

*=a+p, I’=—ia—p), I'= —;[1‘3, r# = [, «] (3.6)

then I'’s satisfy
rre = 8*+ig®r',  (i,k1=1,2,3), (3.7
the rules of the Pauli matrices algebra. We choose I'’s as 2x 2 hermitian matrices:
r=r. (3.8)
In terms of «,f (3.8) reads:

B = o (3.8)

2 The subscript 5 will also appear with other symbols, but whenever it is omitted it will always mean
that the given formula holds for both spin cases.
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On now applying the heuristic rules of canonical quantization to (2.13), the following
formal commutator relations and Heisenberg picture equations of motion are obtained:

[pw 2} = ikd,, [z 2] =[p"p] =0,

[zu’ Fi] = [p“’ Fi] =0, [Zu’ ,yv] = [pu’ yv] =0, (39)
. 2
. ic
= =0 ’ M ’
q =l 1]

. iy i
where g is any of the observables in the Heisenberg picture (here the substitution {,} — W L]

has been performed). The equations of motion are formally soived by:
ic? ic2
- = M + — Mt
gy =e * q0e * 7, (3.10)
so that in the Schrodinger picture we have the following equations for trajectories in Hilbert
space:
ih 0
- = — ®(1) = MD(). (3.11)
c“ ot

(The analog of the condition (2.12) we leave for later consideration — see next section.)
However, in the Hilbert spaces defined in the next section (see (4.5)) neither of .#,
is selfadjoint, which compels us to introduce the so called “indefinite metric” [9].

4. Quantum rules, Poincaré invariance and dynamics

We shall now construct the quantum theory in the Schrodinger picture more explicitly.
z* will now be the operators of multiplication by x* in L*R*, d*x). In this Hilbert space
acts the unitary representation of the proper Poincaré group 2, defined by

[UP)D)(x) = d(A Y (x—a)), (P =(4,d)eP). @.n

The selfadjoint generators of this representation will be denoted by P#*, L** and the con-
ventions concerning signs and factors are fixed by:

i i
'i a,Pr— 2‘,} euv LBy

U, a) =¢ 4.2)
for infinitesimal Poincar¢ transformation, where A", = 8y +¢%,,¢,, = —¢,,. These gener-
ators act on differentiable functions from L? according to:

P* = iho*, I = zFP"—2Z'P" 4.3)

For the canonical momentum p, we set p, = P,, in agreement with (3.9). The transforma-
tion properties of z*, p" are:

U™ Y4, a)z"U(4, a) = A*,2" +a",
U4, a)p"U(4, a) = A*,p". 4.4)
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For the physical Hilbert spaces we now take:
H, = C*® [XR% d*x), Hy, = C*® L[}R* d*x). (4.5
In the Schrodinger picture all operators I, 9* are matrix operators acting in C2 and C*
respectively® and satisfying (3.3)-(3.8").
Our definition of the observable and of quantum mechanical average will be implicated
by the properties of the representations of the proper Poincaré group which act in H,

and by a specific form of generators .4, thus we turn now to these questions. In H, we
represent the proper Poincaré group by:

Vo(P) = 1QU(P),
V12P) = S(A)Q@U(P), 4.6)

where S(A) is the bispinor representation of the proper Lorentz group. With the definition
of generators:

ih i
S = 'i' _y[ﬂyv] = _4___ D,u, ,y‘)]’ (4.7)
there is
S(A) = & (4.8)

for an infinitesimal transformation as in (4.2). S(A) has the following well-known prop-
erties:

STHAW"S(4) = A", 4.9)
S(A)y0 = 1981 A). (4.10)

(The dagger denotes the matrix conjugation. For conjugation with respect to the scalar
product in Hilbert space we reserve the sign*.) The representations ¥, will be interpreted
in a passive way: if @, € H describes some physical state as viewed from the inertial frame
X, then

Gpoiy = V(P)Dy (4.11)

describes the same state as viewed from the inertial frame P-'X. Dynamics is introduced

by the Schrodinger-type equations (3.11) which admit the following continuity equations:
s=0:

3 i
-a‘i(qﬂﬂq:) = — — o [dlatan'd + (P )tatad], (4.12)
E 0
5= 1/2:
%(@*}»0@ = —cd (BHD). (4.13)

3 We shall not differentiate in notation between operators 4 and 1®4, and between B and B®1,
whenever it does not lead to confusion.
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These equations, after integration over x" variables, yield:
d
dt

where 7, = I'?, 51,2 =7° (.,.) denotes the scalar product in H. The operators 7, have
two important properties:

=n*=9n =1 (4.15)
On introducing a sesquilinear form
(P|¥) = (2,1¥) 4.16)

we can state our quantum mechanical

Postulates (cf. [9, 8]).
I. Physical states are described by rays in the Hilbert spaces H, such that [{@|{®>]| = 1
(though not all such rays are physically realizable — see IVth postulate below).
II. An observable is any operator ¢ in the Hilbert space H, such that %q is selfadjoint.
I1I. The quantum mechanical average of the observable ¢ in the state @ is defined by:

(@lg)
{D|P)
The following important consequences can be easily verified:

1. {®|¥) is invariant under both the t-evolution and the proper Poincaré transfor-
mations.

(@0 = (4.17)

2. 2% p", L, »*, S** are observables, whose quantum mechanical averages transform
under the proper Poincaré group as their classical analogues (for ¢*, S* read: as vector
and tensor). These transformations leave «, of unchanged.

3. Exactly as in the classical case an external field is not just one function (or 4 func-
tions for vector field) but a set of functions transforming under a relativity group into
each other in the prescribed manner, so that in the quantum case it is a set of operators
with the transformation law:

<¢P-12|A$—1E(DP-12> = Auv<¢‘\:lA;‘@£>, (4.18)

so that if 4% is the operator of multiplication by 4§(x), then A5-.; is the operator of mul-
tiplication by:
Ap-3(x) = A" AYA™ (x—a)). 4.19)

4. Transformation law of .4, = .4/ (Ay) which is an observable, is:
VAP M p-isV(P) = My (4.20)

We conclude these remarks by stating the invariance of the theory under proper Poincaré
transformations.

The specification of the physical states will be completed by the addition of the
following
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Postulate 1V (dynamical). Physically realizable Schrodinger states are such solutions
of (3.11) that @(r) € H for all finite 7 and that ¢(7, x) is a regular distribution on C* x S(R?)
(n=24).

The first part of this postulate is needed in view of the fact that 4 are not selfadjoint.
The second part plays the role of the condition (2.12) in the quantum case. This is justified
by the following considerations. In the quantum theory the classical formula ¢2#2 = n?
is replaced by:

e
cuy=n*, A, =n*~-S"F,, 4.21)
c

thus not only are .42 not positive definite, but.#7, is also not (though .#3 happens to be)
selfadjoint. Moreover, there are no solutions in Hilbert spaces H, to the equations

MD = mD. 4.22)

It can be demanded, nevertheless, that physically realizable states be some super-
positions of functions from another space satisfying (4.22). Heuristically, if ¢ H

ic2 ic?
then ¥, = [e % ¢ # * ®dr is such a solution, if any meaning can be given to this
ic2?
expression. The latter, however, means that there exists the Fourier transform of ¢ # e P
which in turn is identified as a solution of (3.11). Under these conditions &(z) is the Fourier
transform, hence a superposition, of ¥,,. Thus the meaning-of the IVth postulate is clarified.
The quantum theory can be (at least formaliy) cast into the Heisenberg picture form
(3.9) with help of the transformation (3.10). Quantum variables in that picture satisfy
the following equations*:

in both spin cases:

" = Sym (A, 2"),

e
it = Z Sym (F*, z2,),

e
Sym (.#, ) = - Sym (F*, 2,), (4.23)
c
in the case s = 0
2# = — anh,
Y
e
Sym (#, #*) = - Sym (F*', m,), (4.24)
c
1
4 The operation of symmetrization Sym is defined by: Sym (4, ..., 4y) = T Ay ... A4i,
permutations

(B1y vuss in)
hence Sym (4, B) = 1 [4, Bl..
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in the case s = 1/2

le = c,yll’
[4 e
Sym (A, 1) = = Sym (F™, 1) + > S¥0F,.
C C

Suv € w Qv v QA
Sym (., $*) = - (F*,8* — F*,$™). (4.25)
c

These equations of motion confirm the interpretation of .# as the mass operator (in agree-
ment with the classical case). They correspond, moreover, to the classical equations of
motion and together with the transformation properties of states justify the interpretation
of the subscript s as the spin value. In these equations 7 is not, of course, the physical
time, but a nonobservable parameter which in the classical limit will become the proper

1
time of the particle. Physical time itself is an observable. If we denote — <z (7) = f{1)
¢

then the physical time dependence of quantum mechanical averages will be given by®
g (F1(6))-

We end this section with the discussion of the space and time reflections. Represen-
tation (4.1) can be extended to include the reflections (Rs — space reflection and Ry —
time reflection) also. In H,,, reflections are represented by:

Vip(Rs) = 81,2 ® U(Rg), Vy,2(R) = Ty ® U(Ry) (4.26)

where S,,, Ty, are determined up to a factor® b = +1, +i[10]and S,,, = bs)® satisfies
(4.9), (4.10), whereas T,,, = bpy%° satisfies (4.9) and

TJ1-,’27]1/2 = “771/2T1721- (4.27)

In H, reflections are represented by Vo(Rs,p) = 1@ U(R;, p). Discussion of space reflec-
tions does not introduce anything new, but in order to perform realistic physical time
reflection it is necessary to employ the antilinear operators V(R;)K, where K are the
operators of charge conjugation (see next section). These operators induce the transforma-
f1ons:

(VI/ZKI/Z)_ltuI/ZKI/Z = Riv?va
(VoKo)_l“VoKo = —d,

(VK) 'p"VK = —R%4,p", (4.28)

5 Having stated this, we do not need to assume any specific interpretation of extending the usual
space L*(R3, d%x) to LYR?, d*x).

® The requirement that the charge conjugation (see next Section) should not change the transforma-
tion properties of states leaves only two possible values of this factor: b = %1.
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and if we define A4;":
(VK) '4;"VK = —R4, 4", (4.29)

then
(VKY LH(ADVK = —MH(A). (4.30)
If @ is a solution of equation (3.11), then @, = VK@ satisfies:
ih ¢
-2 (1) = M(Ar)P1(7). 4.31)

The transformation properties of physical averages are

G ADYor = <(n(APs,  (HADDo, = ~<{T(A)o (4.32)

and
(0r = =K% (ZDor = (Der
(M (Ar)>ay = —A(A)Do. (4.33)

The formulas (4.33) are equivalent to:

d d . d .
(Zr = 742%0 =< 2Do; = — = Do

(=) dt d(~1)
(=M A or = (M (Ao, (4.39)

so that the simultaneous change of signs of 7 and.#(A7) (which does not alter the evolution
equation (4.31)) leads to the proper transformation properties.

5. Free particle

We shall now apply the formalism of the preceding Sections to a free quantum par-
ticle. In this case physical solutions of equation (3.11) are easily found. Using postulate
IV we can write symbolically:

ic? i
e

1 x -k .
@(T, x) = WJ‘E . # I'[¢] (ln, k)dmd4k

1

= G J ¢ T B, k. (5.1)

(The precise meaning of these expressions is given by the theory of distributions [11].)

. ih o\? .
Applying (— = 7 ) to &(z, x) and using (3.11) we obtain:
¢

(m?c? —k2)F[®](m, k) = 0. (5.2)
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1t follows that 6(—k2)F[®](m, k) = 0, which together with (5.1) yields:
0(—k»)d(, k) = 0.
5(1, k) should satisfy the equation:
ih 0

- &(z, k) = M ()B(z, k)

k2
(here e (k) = — a+ ocat, e, 2(k) = y“k,,), which is readily solved by:
oc

L4

~ E ER - ic- vz T ~
B, k)= (e Q.te F QB0 k)
= G(z, k)®(0, k),

where

. cH(k)
Qs —T(li \/F)'

We note the following properties of operators Q. :
0:0:=Qs, 0,0.=0Q.Q, =0
Q.+0- =1, (Q)* =n0Q,,
VHPIQLV(P) = Qs

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

where P is any orthochronous Poincaré transformation. In order to check the first part

of postulate IV we display G(z, k)fé(r, k) in a somewhat evaluated form:

3 N K
Go(r, k)1 Go(r, k) = & (1 + oo a*a)

2¢c .
1~—cos —h—\/k2 T

k? 2¢ c)?
+3 (1— oz*oc) cos — NUZEES (92) ot E
2¢ ,_
sin =~ Jk3t

LQc 4 LS o 2c
+z3(a ‘”“)'_\'/Tk‘z—— +i ?;(a—a)s1nﬁxfk2 T,
~ e 2¢ 5
Gllz('r, k) GI/Z(T’ k) = 1 COSZ\/k T

2¢c . 2c
1—-cos~hf\/k21 sinf\/kZT

+koy%k, " +iky

K* Jk?

(5.8)
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Corollary. Physically realizable free particle Heisenberg states are those vectors ¢ € H
(with nonvanishing form {@|®}) which lie in the range of operators p, and in “momentum
representation’ have their support within the light cone (we denote this physical subspace
by HY). For these states equation (5.5) gives the evolution in the Schrodinger picture.

We now introduce operators E, = 0(+ ko) and observe, that E. satisfy (5.7) and
[E, Q] = 0. With the use of the analog of Pryce-Foldy-Wouthuysen transformation
[12] (see Appendix) it is evident, that in each of the four subspaces QEH” the forms
{D|DD, {D|po®), {P|2°P), {P|.# D) are definite (positive or negative) and the following
table of signs holds:

Type P+ A+ A_ P
subspace Q.E.HT Q-E_HS Q.E_HS Q_E.HS
(5.9
{Po> + - - +
{Zo» + + - -
M + - + -
M + + -+ +

Before turning to the interpretation of these results let us take into consideration
the charge conjugation. It is represented by antilinear operators K, = B,C, where C is
the operator of the complex conjugation in “configuration representation’ and B, are
unitary matrices (unique up to a phase factor) such that y& = B}‘/Zy“B1 25 0 = —BlaB,.
The operators K, induce the following transformations:

K{,i)}"K”Z =7, Ko'aKo = —a,
K'pK=-p, K '4,K=4,
KM@K = —t(~e), KUK = —i, (5.10)
thus if ¢ satisfies (3.11), then @, = K@ is a solution of the equation:
ih 0
e D(7) = MH(—e)D(7). (5.11)
For a free particle we have:
Poc = —Pwo Voc = {Ze»
(llyop = — -l Yo, (5.12)
and
K '0.,K=Q., K'ELK=E_. (5.13)

Therefore type 4. physical states are charge conjugated states of type P,. This enables
us to interpret the positive energy states (type P, and P_) as those of a particle (with
charge +¢), whereas the negative energy states (type A4, and A4.) as charge conjugations
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of antiparticle positive energy states. The two types P,, P_ (and similarly 4., 4_) are
physical time reflections of each other.

We note that as long as there is no interference between the different types of states,
the simultaneous change of signs of 7 and .# can be performed, so as to have all {.#) posi-
tive. We see then that, for the particle’s states, the physical time ¢ increases with 7, whereas
for antiparticle states it decreases. This result is in agreement with the interpretation of
an antiparticle as a particle moving backwards in proper time [1, 13].

We end this section by solving the equation of motion for z*. The equation

2= MNE (M, LA, 2] = % + 2202 z*
1.C. . . \
%(z"‘— f’/) = —52“’:" (z'”-— %) (5.14)
is easily solved (both .# and p" are constant):
2y = Lo 2 = (z“‘(O)— ’i“) +2%0). (5.15)
M 2Me M

} Mc Mc P . o
As Q.90 = +5 0. —\/—.—kT-, gl and —\/7_2—,2 - = 0 it is clear, that if @ is
+ [ B

any pure type state (Py, A,) then
pll
(e = <—> (5.16)
® A [

and Zitterbewegung is absent.
Summing up, the given theory is relativistically invariant, while it shares many other
properties with the usual one (cf. [8]).

I would like to thank Prof. E. Kapuscik for constant interest and encouragement
and Prof. A. Staruszkiewicz for some remarks on the manuscript.

APPENDIX
The Pryce-Foldv-Wouthuysen transformation [12]

We shall show here that there exist transformations acting in subspaces HY, which
are translation invariant

[W,P*] =0 (A.1)

(hence in “momentum representation” W, are k"-dependent matrices), and offer strict
analogues to the Pryce-Foldy-Wouthuysen transformation in the sense that they conserve
the forms (@|¥), i.e.

Winw =1 (A2)
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and diagonalize .# (k) in the representations in which #, are diagonal, namely:
k? —
Wyt (— a+gca*> Wo = Jk2 (a+af) (A.3)
oc

W;_/; VR, Win = sgnk - V k2 4°. (A.4)

As we do not nced the most general form of such transformations, we can make the
following

Ansatz
o = au+bat, W, = aq" (A.5)

Note, that g, cannot be a vector quantity, as then the Lh.s. of (A.4) would be a scalar
operator, while the r.hs. is not. Afier transtforming (A.3,4) with help of (A.2) into
the more convenient form:

2
— oot + geata = Jk2 WoW{,
gc

9%k, = sgn ko - k2 Wy, Wi, (A.6)

it 1s a matler of simple algebra to show that:

Tk2\'/? oc \'?
Wy = [ ¥Y— at | —= o,
oc Jk?

Wi = [20k2 (VK2 + ko] 712 (sgn ko + /K2 % 4k, (A7)

where arbitrary phase factors have been fixed.
The defining properties (A.3, 4) can be stated in another way:

Wo—1Q0¢Wn = 3 (1£ 1),
W20, 2 Wi = 0(ke) 5 (114 ,2)+0(— ko) 5 (1 £4,5). (A.8)
Finally we note some additional properties of operators chosen in the specific form (A.7):
[Wor L] =0, [Wy0, Ly+S,] =0,
[W, V(Rs,)]) = 0, [W.K], =0,
W?=1. (A.9)

Note added in proof. Only after the present article had been accepted for publication
did I come upon the works by Johnson [14] which contain many of our results. Our
construction is, however, more explicit and sticks consequently to the Hilbert space
formalism. There is no general analogue of our postulate IV to be found in [14]. There
are also some differences in the interpretation of the results. On the other hand the
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reference [14] includes more detailed discussion of the algebraic propertics and their
representations.

The classical equations of motion generated by the Hamiltonian \/ﬁ can be found
in [15].
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