VERY NEUTRON-DEFICIENT ISOTOPES OF SAMARIUM AND EUROPIUM

By M. Nowicki

Institute of Experimental Physics, University of Warsaw* and JINR, Dubna

D. D. BOGDANOV, A. A. DEMYANOV

Joint Institute for Nuclear Research, Dubna

AND Z. STACHURA

Institute of Nuclear Physics, Cracow** and JINR, Dubna

(Received October 18, 1980; final version received June 1, 1982)

Neutron-deficient isotopes of samarium and europium were produced in the 112 Sn + 32 S (190 MeV) reaction. They were on-line mass separated and studied with the use of Ge X-ray detectors. Three isotopes: 136 Sm, 137 Eu and 138 Eu (with half-lives 40 ± 5 s, 11 ± 2 s and 12 ± 2 s, respectively) were observed for the first time.

PACS numbers: 21.20.-k

In continuation of our previous studies [1, 2] on very neutron-deficient isotopes of light rare-earth elements, we have identified new isotopes ¹³⁵Sm, ¹³⁷Eu and ¹³⁸Eu. Additionally, we have obtained some information on γ -radiation for a few heavier isotopes of samarium and europium.

The europium and samarium isotopes were produced in the 112 Sn + 32 S reaction. The tin target was enriched in 112 Sn to more than 90%. The beam of 190 MeV 32 S+ 5 ions with intensity of the order 10^{12} particles per second was provided by the U-300 cyclotron at the Laboratory for Nuclear Reactions in Dubna.

The reaction products were separated according to their masses using the on-line

^{*} Permanent address: Instytut Fizyki Doświadczalnej UW, Hoża 69, 00-681 Warszawa, Poland.

^{**} Permanent address: Instytut Fizyki Jądrowej, Radzikowskiego 152, 31-342 Kraków, Poland.

BEMS-2 mass-separator [3]. The surface ionization ion source [4] was kept at the temperature of about 2700 K. The average delay time between a reaction event and the release of a rare-earth product from this ion source was 5 to 10 s [4]. Mass-separated activities were collected on a disk which, rotating periodically, transported them to the counting position [5]. The time of transport was less than 0.3 s.

The measurements were carried out with the use of high-resolution intrinsic germanium X-ray detectors. The spectra were recorded in a multispectrum mode (8 groups \times 512 channels). Energies of X-rays were measured with the accuracy of 0.1 keV which was sufficient for unambiguous identification of atomic number Z. For individual members of an isobaric chain, half-lives were deduced from the X-ray decay curves. An observation of activities with known half-lives made the mass assignment unambiguous. Additionally, the energies and intensities of γ -rays have been measured. The experimental results are presented in Table I.

TABLE I Experimental data for the neutron-deficient samarium and europium isotopes

Nuclide	T _{1/2} literature	<i>T</i> _{1/2} (this work)	γ-ray energies (keV) and intensities (this work)
¹³⁶ Sm	unknown	40±5 s	
¹³⁷ Eu	unknown	11 ± 2 s	
138Eu	35 ± 6 s [1]; 1.5 ± 0.4 s [1]	12 ± 2 s	
¹³⁸ Sm	3.0±0.3 m [12]	a)	53.5 (1.7±0.1), 74.7 (2.6±0.2), 145.4 (2.8±0.3), 150.6 (1.8±0.3), 173.7 (2.0±0.3), KX (\equiv 100)
139Eu	22±3 s [12]	21.4±0.5 s	
¹³⁹ Sm	2.6±0.3 m [12];		
	9.5±1.0 s [13]	b)	
¹⁴⁰ Eu	$1.3 \pm 0.2 \text{ s}$ [12]; 20 s [9]	a), c)	530 (410 \pm 60), KX (= 100)
¹⁴⁰ Sm	15.0±0.3 m [12]	a)	85.3 (4.9 ± 1.0) , 121.6 (11 ± 2) , 140.9 (25 ± 5) , 226.0 (35 ± 7) , KX $(\equiv 100)$

The energies of γ-lines were determined with an uncertainty of less than 1 keV.

- a) Half-lives from the literature have been approximately confirmed.
- b) The existence of the 9.5 s isomer reported in Ref. [13] has not been confirmed in our KX_{Sm} decay experiment.
 - c) Only the short-lived component has been measured.

The determination of the ¹³⁸Eu half-life was reported in our previous paper [1]. The experiment was based only on the measurement of the total β -activity decay of the isobaric chain. Two components of this curve corresponding to the half-lives of 35 ± 6 s and 1.5 ± 0.4 s were reported and assigned to the ¹³⁸Eu decay. To check these results, we have measured X-ray decay curves of samarium with 1.6 s, 4.8 s and 16.8 s collection time per

group. In contrast to Ref. [1], in all these measurements we have observed (Fig. 1) only one component of the decay curve, corresponding to a half-life of 12+2 s.

For a half-life determination, the studies of X-rays are more reliable than the non-selective measurements of β -rays. We tend, therefore, to ascribe to ¹³⁸Eu the half-life of 12 ± 2 s and to consider this isotope as a new one.

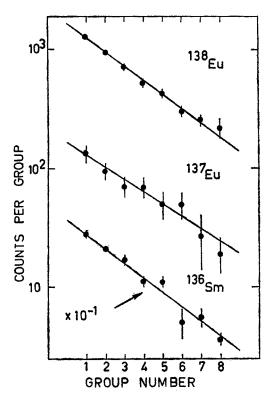


Fig. 1. The KX-ray decay curves for the new isotopes. The time per group was 4.8s, 3.6s and 16.8s for ¹³⁸Eu, ¹³⁷Eu and ¹³⁶Sm, respectively

The half-life data may be analyzed with reference to the average β -strength function [6]:

$$\bar{S}_{\beta} = [T_{1/2} \int_{C}^{Q} f(Z, Q - E) dE]^{-1}.$$

In this formula f(Z, Q-E) is the statistical rate function for the allowed $\beta^+ + EC$ decay, Q is the electron capture decay energy, E is the excitation energy of the daughter nucleus and C is the cut-off energy. For odd-odd daughters, C = 0. For even-even and odd-A daughters, C is understood as the lowest energy of 4- and 3-quasi-particle states, respectively (in the concept of average β -strength function it is assumed that the half-life is predominantly determined by β -transitions to such states).

In our calculations we used Q values from the Janecke and Eynon mass formula [7]. The parameter C was chosen equal to $12 A^{-1/2}$ and $24 A^{-1/2}$ for odd-A and even-even daughters [8]. The half-life data have been taken from Ref. [9] and the present work.

The \bar{S}_{β} values for the neutron-deficient isotopes of europium (only cases with (Q-C) > 1.5 MeV) are plotted in Fig. 2. For even mass numbers the data fall into two groups. Analogous groups have been reported for iodine isotopes in Ref. [10]. We believe that higher \bar{S}_{β} values correspond to 1⁺ states, with a $(d_{5/2})_p$ $(d_{3/2})_n$ configuration, which

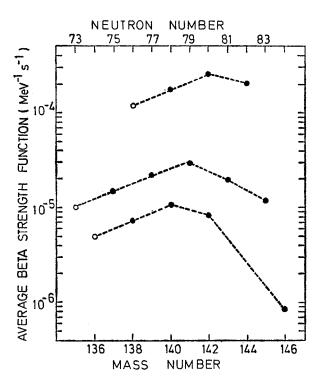


Fig. 2. The systematics of average beta strength function values for the light isotopes of europium (black circles — experiment, open circles — extrapolation)

decay predominantly to the ground and first excited states of samarium isotopes. In the case of slower decays, we deal probably with higher-spin and negative parity initial states with a $(d_{5/2})_p$ $(h_{11/2})_n$ configuration, which populate only higher-energy levels of samarium daughters. The ¹³⁸Eu half-life observed in this work corresponds to the low \bar{S}_{β} value which fits in the second group.

When comparing the two groups of states in even-A europium isotopes one should realize that the \bar{S}_{β} values for presumably 1⁺ states are artificially shifted upward because the half-lives are likely to be determined mainly by transitions to the levels below the cut-off energy C which are not of four-quasiparticle nature. According to the concept of the average β -strength function such transitions should be eliminated from considera-

tions. For higher spin initial states the elimination is (at least partly) ensured by forbiddenness of appropriate β -decays.

The relative position of supposed 1⁺ and higher spin β -decaying states in question could not be deduced from the experiment. Model calculations also cannot help here because the $h_{11/2}$ and $d_{3/2}$ neutron orbitals are predicted to be almost of the same energy [11].

The \bar{S}_{β} value calculated for ¹³⁷Eu fits to the systematics for heavier odd-A europium isotopes, as shown in Fig. 2. The same may be said about ¹³⁶Sm and heavier isotopes of samarium (see Ref. [2]).

An extrapolation of \bar{S}_{β} values toward lower A by one mass unit allows to estimate the half-lives of unknown activities: $10 \, \text{s}$ for ^{135}Eu , $17 \, \text{s}$ for the long component of ^{136}Eu and $0.7 \, \text{s}$ for the short component of ^{138}Eu . A non-observation in this work of the decay of the presumably short-lived 1^+ state in ^{138}Eu may be due to the relatively long hold-up time in the ion source.

The γ -ray data are not complete enough for an interpretation. They are given here because they may facilitate further experiments.

REFERENCES

- [1] D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, L. A. Petrov, A. Płochocki, V. G. Subbotin, J. Voboril, Nucl. Phys. A275, 229 (1977).
- [2] D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, M. Nowicki, L. A. Petrov, J. Voboril, A. Płochocki, Nucl. Phys. A307, 421 (1978).
- [3] V. A. Karnaukhov, D. D. Bogdanov, A. V. Demyanov, G. I. Koval, L. A. Petrov, Nucl. Instrum. Methods 120, 69 (1974).
- [4] D. D. Bogdanov, J. Voboril, A. V. Demyanov, V. A. Karnaukhov, L. A. Petrov, Nucl. Instrum. Methods 136, 433 (1976).
- [5] T. Batsch, J. Żylicz, P. Klepacki, M. Nowicki, A. Płochocki, J. Szczepankowski, JINR Report P13-11248, Dubna 1978.
- [6] P. G. Hansen, Adv. Nucl. Phys. 7, 159 (1973).
- [7] J. Janecke, B. P. Eynon, At. Data and Nucl. Data Tables 17, 467 (1976).
- [8] A. Bohr, B. R. Mottelson, Nuclear Structure, vol. 1, W. A. Benjamin, Inc., New York, Amsterdam 1969.
- [9] C. M. Lederer, V. A. Shirley, Table of Isotopes, 1978, seventh edition.
- [10] R. Kirchner, O. Klepper, G. Nyman, W. Reisdorf, E. Roeckl, D. Schardt, N. Kaffrell, P. Peuser, K. Schneeweiss, Phys. Lett. 70B, 150 (1977).
- [11] D. A. Arseniev, A. Sobiczewski, V. G. Soloviev, Nucl. Phys. A126, 15 (1969).
- [12] L. Westgaard, P. G. Hansen, B. Jonson, H. L. Ravan, S. Sundell, Proc. Internat. Conf. on Nucl. Phys., Munich 1973, vol. 1, p. 696.
- [13] J. van Klinken, S. Goring, D. Habs, M. von Harttroff, H. Klewe-Nebenius, R. Lohken, H. Rebel, G. Schatz, Z. Phys. 246, 369 (1971).