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A study of the field equations of the Generalised Field Theory indicates that genuinely
time-dependent spherically symmetric solutions can exist.

PACS numbers: 04.50.+h

1. Introduction

Birkhoff’s theorem, to which I am referring, asserts that there is no genuinely time-
-dependent, spherically symmetric solution of the general relativistic field equations.
A variety of proofs of this theorem is known, differing mainly in the form assumed to
start with for the metric. Indeed, the proof is simple (Ref. [1]) when that form is the
standard one from which the Schwarzschild solution is usually derived.

We come now to the nonsymmetric unified field theories of gravitation and electromag-
netism. The comprehensive field equations are considerably more involved than in the general
relativistic case. Even so, there is little reason to doubt that the theorem is valid for the
Einstein-Straus theory (Ref. [2]). However, this theory has been superceded by what
I call the Generalised Field Theory GFT, a summary account of which will appear shortly
(in Ref. [3], where a list of references to the original articles published over a number of
years, is given). I have called attention frequently to the profound implications which
validity or otherwise of Birkhoff’s thcorem must have for GFT. In particular, the theory
predicts, on the basis of the static, spherically symmetric solution of the field equations,
a unique cosmological model. If therefore the theorem holds, the empirical or observational
validity of this model represents a crucial test of the theory. Of course, if the theorem is
no longer true, it would be more than likely that a hitherto unknown, time-evolving solu-
tion may yicld a more realistic description of the actual, physical universe in which we live.

The present article is a study aiming at, at least, a partial resolution of Birkhoff’s
problem. It will be shown that the theorem appears to be valid in a restricted sense. On

* Address: Department of Applied Mathematics, University of Sydney, Sydney N.S.W., 2006,
Australia.

a7



172

the other hand, a strong argument will be given that it fails in the general case. In fact,
using an approximation method which does not appear to restrict generality (time-depen-
dent perturbations of the Schwarzschild metric exist, e.g. Ref. [4]), we shall construct
a counter example.

2. The qffine connection

It is a fundamental assumption of GFT that the connection between geometry and
physics is given solely by the field equations (I call this the weak principle of geometrisation)
which determine both the nonsymmetric field g, (with sixteen components in a four-di-
mensional theory) and the symmetric metric tensor a,, of a background space-time. The
latter is Riemannian in the usual, relativistic sense (or rather, strictly speaking, pseudo-
-Riemannian. a,, itself is given by the “metric hypothesis”

A -

where the Christoffel brecket is constructed from a,,, and I’ Gy s the symmetric part of
the affine connection fﬁ, determined by the well known equation

gnv,l_f:).gav-f:;vgpa =0 (2)

in terms of the field and its first derivatives. It is shown in Ref. [5] that Eq. (1) is not really
a hypothesis but a consequence of Einstein’s principle of Hermitian symmetry or charge
conjugation.

The initial bifurcation of geometry and physics creates a problem which is an unavoi-
dable difficulty of GFT. The field equations can be solved only under stringent symmetry
restrictions and because these seem to be geometrical in nature one would expect that
they should be imposed a priori on geometry, that is on the metric a,,. But apart from the
“hypothesis” Eq. (1), the field equations are the same as in the Einstein-Straus theory and
do not seem to be resolvable with only the relation (1) restricted in form. In other words,
in order to arrive at a tractable set of equations, we are constrained to impose symmetry
requirements on the ficld g,, and only a posteriori deduce the corresponding symmetry
of the space-time. The above is, of course, only a mathematical difficulty which does not
reflect on the coherence of GFT.

It means nevertheless that in arriving at a suitable form of g,, (so erroneously called
the “nonsymmetric metric”’ in many accounts of the theory), we should follow the intuitive
methods of, for example, Ref. [6], rather than appeal to say Killing equations whose
meaning is purely geometrical.

Using then the reflection invariance arguments of Papapetrou (Ref. [6]), we easily
find that the most general, spherically symmetric form of g,, is given in the coordinate
system

x# = x{); xl’ x2> x3 = (ta r, 0, 'P)» (3)
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Y h—w 0 0
h+w —a 0 0
&= o o -p using |’ @
\O 0 —usin0 —fsin® 0)

where o, B, 7, 2, u and w are functions of

X =t and x!=r, (5)
only. A coordinate transformation can easily be found to make
h=0, 6)

but, and this is an important point, it is by no means certain that the same transformation
will (for example) diagonalise the metric tensor a,,,. Whether it does or not must be a conse-
quence of the “metric hypothesis’ alone.

In the sequel, I shall assume that not only / but also w vanish restricting out attention
therefore to the “electric” case of the solution. Denoting by dots, partial derivatives with
respect to £, and by dashes those with respect to r, the algebraic equations (2) give, for
the nonvanishing components of I"s,

- 7 . ’ - a . . ?—u? i
s =21, oy = %’;’ ry, =2 Iy, = 'S, cosec’ 8 =(«ﬁ )+ 2uf

2v(1* + %)
(B*—u*)u—2upp .

IS = - sin 0,
Y )
. o . o . v
Fiv=—=—, Ton==, T ==,
11 2(1 (01) 2& 00 2a
S 2 (B—ud ) +2upu’ L (B—u)u'~2uBp
rzz = r33 cosec 0 = e 3 2 2 N r[23] = 2 3 s 9, (7)
2a(u”+ ) 2a(u”+ %)
- - ui+pp - - uu' + pp. N )
Ty =T, = ——— =, [, =T =——3, I3 = —sinfcosh,
(02) (03) 2("2 +ﬁ2) (12) (13) 2(“2 +ﬁ2) 33
- ~ u—u
r[302] = r€3o] Cosecz 0 = z—f;‘Tj’-—ﬂi') cosec 0,
L . u' —up’ N
[{i2y = Iy cosec? 0 = fw—i——«_’%cosec 0, [y = cot,

where I(,,; denotes the skew symmetric part of the affine connection.
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3. The field equations
In addition to the equations (1) and (2), the field equations of GFT are
Ruy =0, Ry =0, (8)
together with the identities
Q[M],v = Q. ) (9)

Here, ﬁ,w is the Ricci tensor constructed from the nonsymmetric f,‘}v. In the case of the
spherically symmetric affine connection (7), equations (8) reduce to

Iioo = ﬁ(m) = ﬁu = Rzz =0, §[23] =k sin 6, (10)

where k is a dimensionless constant associated with the electric charge. It is convenient
in calculating the components of the Ricci tensor explicitly to use the substitution

Y = eZC, o = eZA’ B - eZR—v, u = eZR—v \/eZv_l (11)

with 4, C, R and v, functions of and r only. Equations (10) become
N D
e | A+ A(A-C)+2R+2R(R~-C)+ n
&’ —

] —ezc[C"+C'(C'——A')+2C'R'] = 0’
(12a)

R'+RR'+

i - ~CR—AR' =0, (12b)
P

2417 4 ir A 3 3 4 2C ’r te vt ' 17 trp? ’ 20’2
e [A+A(A—C)+2RA]—e*| C""+C'(C'— A")+2R" +2R'(R — A") + e Rl
(12¢)

. ] . e?+1 . .
—e?4 [R+ii+2R+0<3R— = 1:3) +(R+1) (A—C)J

2v

3—
2C |:R”+U”+2R12+U' (—R'-f- - € 1) +(RI+U,) (Cr )] [v+2(A+C R)] (12d)
e —_—

and
. U . 3R o* o
ZA[ eZv_l - 820—1 + (e29_1)2 ( R+ 20 >(C A)]
U” ~ U'R, (4620-—3)0'2 'IJ, ']
+ 2C R — ' 2 R _p! A‘l_cl
¢ [ e20_1 +2R""+ eZu_gl a (e2u__1)2 + R+ eZv_l ( )—‘
k +v+2(4+C—R)
ESS e[ v ( ], (12e)
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We must turn our attention next to the conditions imposed on the theory by the “metric

hypothesis’ (1), or the equivalent equation
apv,).“f zui.)aav_f on9us = 0.
It is easy to see that the solution (7) implies that
doz = do3 = dy = Q13 = Q33 = 0,
which incidentally guarantees the usual condition of spherical symmetry
dy, = 33 cosec? 6.
The remaining equations (13) then become
dgo—2Cage—2¢*€"4C’ay, = 0,
aho—2C"agy—24ag;, = 0,
d,1—2C'ag,—24a,, =0,
aj —24'a;; —2e* 4" 94a,, =0,
doy—(C+ A)ag, — C'ago—e* ™ 9C'ayy =0,

doy—(A'+CNag,—e** Odayy—Ada,, =0,
together with
dzz = -k,
and

R—ago(R+0)e " 2 a0, (R +0)e™" 24 = 0,
R'—a (R +v)e "2 — gy (R+d)e " "%¢ = 0.

(13)

(149

(15)

(16a)
(16b)
(16¢)
(16d)
(16¢)
(16f)

{amn

(18a)
(18b)

It is now interesting to observe (as is shown by a straightforward calculation) that the

equations (16) are integrable under the single condition
A+ A(A-O)]-E[C"+C(C'-A)] = 0.
Equations (12a), (12b) and (12c) therefore reduce to

L s Codrrnre
R+R(R—'C)+ —27——1 —e C'R =-'0,
L.

G o’ R
R'+RR"+ T-I‘“CR-AR =0,
e —

12

R"+R'(R'—-C)+ —e*" 4R =0.

e?—1

(19)

(20a)

(20b)

(200

Equations (19) and (20) now suggest a wave like solution with all dependent variables

functions of
t—r
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and
A=C. #3))
Equations (20) then collapse into a single equation

’2
v
R"+R?+ v 2R =0 (22)

which, together with the equations (12d) and (12e) determines R as a function of v through
a first order equation

2x* 4 x?—2kx—2
(1= xX(1+ XUV +x(1 + 33U +(1 + 2kx — x2)UP 4 % T2

x(1+x2)?
! 0 (23)
(L+x3 7
where we have put
dR ——
U= —, x==\/e2"—-1.
dx

On the other hand, equations (16) now imply a constant (Minkowski) a,, (which is possible
for a nontrivial field, Ref. [7]) but equations (18) are incompatible with (23). Hence Birk-
hoff’s theorem holds if a,, # 0.

In the next section however, I shall show that we can nevertheless obtain a time-
-dependent, approximate solution of the field equations.

4. An approximation
An alternative procedure to the above is to put
an = 0 (24)

when the equations (16) become directly integrable (with no condition implied) and give
without loss of generality

aOO = ezC, a‘1 = "‘eZA‘ (25)

Also, equation (18) now yield

R' =

so that

e R = (26)
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where X is a constant. This result leaves us with just the field equations (12) which become
after some rearranging

2v,C 20 2602

zAI olo 00 o l
Ago+Ax(A;—Cp)— —

¢ 00 oo ) e’—1 e—1 -1

2 201C
—e | C 1 +C(Ci—4)+ 1= 0, (27a)
24 vl 2c e“v?
e”" | voo— P —vo(Ao+Co) | +e™ " vy~ 5 Pl —v,(4,+Cy) (27b)
e’v,v,
Civo+A4ov; = vy0— IR (27¢)
—2e?43e"+8 3e”v2e2"
2 21)11+ —"T"_" v%+2vl(cl 1) il 9
e 1 —1
e’ +1
= HA+C-RY o q) (k \/e"— 1 + 1) , (27d)
2e2”+3e Se’v2e?€
4] 200+ —55—— 3 +204(Ao—Co) | + 30
e?'—1 e’—1
2(A+C R) + 1
—-1) 1 . (27¢)
ov dv . . . .
where now vy = w0 vy = m etc. (the dot/dash notation was used in the previous section

to avoid possible confusion with tensor indices). Equations (27b), (27d) can be solved
immediately for 4y, 4, Co and C, whose integrability conditions

Aoy = Ao and  Cy; = Cyo, (28)

give two equations in e*># and 2. A third equation in the latter is then obtainable from Eq.
(27a) by eliminating the derivatives of 4 and C. Hence e*4 and €*¢ can be in principle
eliminated between these three equations yielding a third order partial differential equation
in v alone. Thus, again in principle, there should exist a time dependent solution of the
field equations.

To derive a more explicit expression for v, A and C however, we must resort to an
asymptotic method. Let us first change the first variable again, writing

1
z:\/ev“L (29)
e’'—1

- = or  uz=p+vVp+ul.

equivalent to putting
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Equations (27) become

| 4zzC 4 3z2 41 I
24 o 2
Ann+Ax(Ag—Co)+ ———— + ———| — + ——

00 o( 0 o) 1 22 1( 22Z¢ 241 Zo>

2l 4zz,C, :
—e |'C11+C1(C1 A - =0, (30a)
22 +1 ‘
3z2+1 3z22+1
€2A [ZOO_‘ ZZ——H‘ Zg—ZZO(Ao'i'CQ)il +e2C [zzll - ;T:f Z%_Zzl(Al'*—Cl):I =0
(30b)
3z2+1
z220Ci+22,Aq = 2219~ il Z(Zg, (30c)

i 3z2—-1 K?
3z2e** +e*¢| 222, -5 (Lz;;) z§+2zz,(c1—A1)] = -3 (2% 4+1)® (kz+1)e2“4*9,
z

(30d)

i 722 +3 K?

52262 —e*4 | 22290 — ZZ—H z3+2zzo(Ao—co)] =5 (2 +1)3 (kz—1)e*4*9.  (30e)
zZ

L.

It is interesting to note that the apparent singularity v = 0 (corresponding to z = c0)
has disappeared. Let us consider what happens when

z=14n n* <. (D)
To the first order in #n, the equations become
e**[Ago+ Ao(Ao — Co)]—€*[C1; +Cy(C1—4)] = 0, (32a)

(our old integrability condition of the equations (16)),

e*[Moo—No(Ao+ Co)] +€*[11, —11(4; +C1)] = 0, (32b)
10C1+1140 = N10s (32¢)
KZ
N11+m(Ci—4y) = — '2—(k+1)eu, (32d)
KZ
Moo +Mo(Ao—Co) = — D3 (k—1)e*C, (32¢)

indicating that K2 must be considered as small for a solution to be possible. A general
solution of equations (32) is still too complicated but as far as Birkhoff’s theorem is con-
cerned, it is sufficient to demonstrate the existence of a particular solution which appears
to be physically meaningful. Thus, let us put

n = &(t—r), (33)



where

& ¢

is a constant. Then equations (32b), (32¢) are integrable providing

Putting finally

k#1,

1-k
24 _ e2C — qzezc’ say.

T 1+k

x = 2C,,. y=2C,

we find that x (and y) satisfy a (quasi) wave equation

— a2
X11 = 4 X005
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(34

(35)

whence a solution (which will necessarily depend explicitly on time) can be written down.

It follows that in this case Birkoff’s theorem is no longer valid.

5. Conclusions

We have now demonstrated the assertions made in the introduction. Existence of
explicit (time-dependent), approximate solution for any given solution of the wave equa-
tion (35) suggest that the general equation for v obtainable in the non-linearised case will
also have a non-static solution. Hence we must conclude that Birkhoff’s theorem cannot
be valid in the Generalised Field Theory. In view of its connection with the problem of

empirical validity of GFT, search for such a solution becomes particularly urgent.
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