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THE NON-SYMMETRON
By A. H. KrLorz aAND B. T. McCINNES
Department of Applied Mathematics University of Sydney*
( Received July 8, 1981)

The Generalised Field Theory GFT: (the nonsymmetric unified field theory of gravita-
tion and electromagnetism with the metric hypothesis) is extended by subjecting it to the
action of an U(1) gauge group. It is shown that it then implies a spherically symmetric,
static model of an electron with a shell-like structure held by a magnetic force. It is claimed
that this prediction represents a possible test of the theory which in principle could be carried
out on a laboratory scale.

PACS numbers: 04.50.+h

1. Introduction

The nonsymmetric unified field theory of gravitation and electromagnetism first
proposed by Einstein and Straus (Ref. [1]) has been developed in a series of articles (Refs.
[2-4]; a complete list of relevant articles published to date is given in the review work
Ref, [5]) to a point where it may be claimed that its overall structure and the more immediate
physical implications are well understood. It has seemed hitherto that the possibility of
an empirical verification of the theory to which we shall refer as GFT (generalised field
theory, comprising the weak field equations of Einstein and Strauss together with the me-
tric identification of Ref. [4]), lies exclusively with its cosmological implications (Ref. [6]).
This was rather unfortunate since most of the data concerning distant objects necessitate
interpretation in terms of an assumed theory and are therefore questionable as a means
of testing its validity.

Hence it is the aim of the present article to show that GFT leads also to a classical
model of a particle which we call a “nonsymmetron” relegating to the final conclusions
any speculation as to its precise, physical nature. Construction of the nonsymmetron
solution involves extension of GFT to include other fields than the purely macroscopic
gravitation and electromagnetism. Indeed, it throws further light on the structure of the
latter which is now known to be non-Maxwellian but rather of the nonlinear, Born-Infeld,
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type. The nonsymmetron will be seen to avoid some of the strange predictions of the
Born-Infeld theory but because it has a well determined structure it may be susceptible
to a laboratory investigation thus providing the required test of GFT.

In another article (Ref. [7]) we constructed spinor analysis of the nonsymmetric theory
leading to Dirac equations. Here, the method of inclusion of new fieids will be evolved
in a more formal and precise way.

The formal part of the next section is described in detail, for examlpe in (Ref. [8]).

2. Gauge fields in GFT

Let us denote the space-time of GFT by M. The theory is fully determined through
the field equations (together with the metric hypothesis or identification which is really
another field law) by a sixteen component fundamental tensor g and the metric tensor ¢
of M. Additional fields can be incorporated into its framework by erecting over M as a base
manifold of a fibre structure. We avoid then in a natural way any need for an arbitrary
extension of the original theory while enlarging its own content.

If G is a structural group, which can be freely chosen and P denotes the bundle mani-
fold, a principal fibre bundle can be denoted by (P, M, G) and a projection

TP M 0y

defined if M is isomorphic to P/G. We wish to define the horizontal lift basis (Ref. [8])
in which we shall consider vector fields on P. In tact, it X'is a tangent vector at a point x e M,
there is a unique horizontal vector X at p e n~*(x) which satisfies

m(X(p) = X(x); @

74 denoting as usual the differential of 7. Let us now denote by g the Lie algebra of G,
and let the linear homomorphism from g to the algebra of vector fields on P be o. Then,
if aeg, we have

6:a - a* (3)

say. Also, if &; as a basis set of (vector fields on) g, £, a similar set on any open subspace
of M then equations (2) and (3) define basis vector fields on P

(& &)

which are respectively horizontal and vertical: the horizontal lift basis on P. We shall
retain Greek and Latin indices to refer to this splitting of the product space P. It can be
shown easily that if fjik are the structure constants of ¢

(e &1 = £, 4)
and that there exist coefficients F',, such that (the bracket being vertical)

[Ey: Ev] = -F:Jvéf (5)
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and that
[&f, &1 =0. 6

We can of course define in the usual way a connection and a connection one form (whose
components with respect to the basis £; are w'), and cross-section X (over an open set
U < M) of P as well as a cross-section dependent one form A; on P.

If the components of Ay are 4 ,f, p € P we define the trivial cross-section through p
in terms of the isomorphism

iUy~ UxG )
and the isomorphism y of the fibre over Uto G. If
a = y(p) ®
and Yy e U, 6(y) denotes the (unique) element of n—*(y) such that
Ye0) = a
and we write
Eu = O'*él_,., (10)
then
w(o.€,) = 4., 1n
as well as
&, =& —Aj, (12)
and
F;LV = EuAvr_EvAur +fi',liAuiAvj’ (13)

formulae (12) and (13) being familiar from the gauge theory, with £, being just the partial
derivatives (on an isomorph of at least part of M) and &,, the gauge covariant derivatives.
Moreover, the coefficients F), are now seen to be the nonzero components of (twice)
the curvature two form Dw.

The above shows the usefulness of differential geometric language in formulating the
field theory. We now turn to establishing the geometry of G and P remembering that on
M we have standard generalised field theory (that is the weak field equations)

guv.).'—f:;lgav_f;vguq =0, 9[‘"’], v=0,
E(uv) == 0’ E[nv] = % (Fu,v_rv,u)’ (14)

where the Ricci tensor ﬁ", is constructed with the help of the affine connection [* iv whose
contracted skew part [, = [7,,, vanishes identically:

Ik, =ri+%s4I,, (15)
and in terms of which the symmetric metric a,, ot M is defined by (metric hypothesis):

~a o _—
auv.l“r (ul)aav—r (vl)aya = 0’
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or

A -
{u v}a =y (16)

If V os a Koszul connection on M and X, Y, Z are arbitrary vector fields there, the metric
identification (16) can be written as

(an) (Y: Z)+';— a(SM(X, Y), Z)'*'% a(SM(X1 Z)s Y) = 0’ (17)
where S, is the torision on M, that is, a vector valued two form defined by
Su(X,Y) = VY-V, X-[X, Y] (18)

Before turning to the bundle space P we may note that on & we have a natural Riemannian
geometry with the metric with components

8ij = finfmi (19)

for which in particular f;; = g,/ is totally skew and % ffk is the affine connection while
the corresponding Ricci tensor,

Ry = inj = % 8ij»
so that

R = 1(dim G) is a nonzero constant. (20

3. The field theory on the bundle space

We can now define a metric « on P in terms of a on M and g5 on G. In fact o is fixed
by the construction of P and because of the unique decomposition into horizontal and
vertical parts of any vector on P

X, Y) = n*a(X, Y)+ ga(w(X), w(Y)). (21

It is less clear whether on P we should also have a tundamental field corresponding to g
(or the nonsymmetric g,,) on M. If however

P=MxG

in a physical as well as geometrical sense, and since on G the metric and the fundamental
fields coincide by our Riemannian hypothesis (in any case we want to associate with G,
considered as a manifold, fields other than the GFT ones and there would be little point
in including anything different), a y field distinct from o should exist. We define then a funda-
mental tensor on P analogously to the definition (21) i.e.

YX,Y) =n*g(X,Y), if X, Y are horizontal.

¥X,Y)=0 if one is vertical,
VX, Y) = ggw(X), w(Y)) if X,Y are vertical.
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The torsion Sp on P can be defined similarly for the three cases, i.e. when both X, Y are
horizontal (i), X is horizontal and Y vertical (ii), and both X, Y are vertical. We have:
(i) 7 Sp(X,Y) = Sy(n,X,n,Y), but if p and g belong to the same fibre
7. Sp(P) = 7, Sp(q);
(i)  Sp(X,Y) =0;
(iii) w(Sp(X,Y)) =0. (22)
If for an arbitrary basis ¢, on M
[es €] = Cije. (23)
then
= —Cyu+2l (24

I j-k representing the components wi- with respect to w’ of the one form entering the (Cartan)
structural equations.
We observe also if # is the number of parameters of the gauge groups then

(dim P = 44-n), (25

and
r"‘a l—va 1 S« Sa 26
bc — < be 34+n e ( )

I, I’ and S referring to the bundle space.
From our definitions we see that

aule ) g |0
= r— d Ed
a"zb 0 g an Yab 0 I g (27)
J | &)

and that for the torsion on P

a « i __ 1 i
SP u SM avs Sij =73 SMu Fid
Sp%; and S,,inv are indeterminate,

while Sp%,; and Sp';, vanish identically. We may call these, the torsion conditions or rules.
We shall base our field theory in the bundle space on a Lagrangian

V—detvY"*Ra (28)

(principle of simplicity) and our aim is to express this quantity in terms of the GFT tensors
8 Qs the torsion and the (Yang-Mills) fields F,. In order to study the nonsymmetron
of course, we shall have to specity the latter, that is the group G. In this sense the theory
still remains arbitrary but we shall be guided by the interpretation of the electromagnetic
field in GFT.
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Meanwhile, we must settle the question of identification of the metric on the bundle
space. A priori this seems to be entirely arbitrary unlike the GFT on M where the identi-
fication was forced by a consistency requirement with Einstein’s principle of charge con-
jugation or of hermitian invariance (Ref. [9]). On the other hand, there is no reason why
the same concept should not operate in P as well, and we accordingly assume that

P

V.Y, Z)+5 «(Sp(X, ), Z)+7 «(Sp(X, Z), Y) = 0. (29)
Antisymmetry of f;; and repeated use of Jacabi identities gives
Y“"ljaa = g"R,,+Rg+3 F 3aF i+ 5 @ (g™ — @"VF g F o+ 5 8N Sh+ SauF i) (30)
The last term causes a difficulty in carrying out the variation because we do not know
whether Gauss’ theorem can be applied to the (pseudo) derivative £, but it can be omitted
by imposing a permissible (though arbitrary) condition on P
Sk, =0. 3D

P
Instead of it we shall add to the Lagrangian a term which will take care automatically of
the metric identification which hitherto has always been imposed after the field equations
have been derived from a variational principle. The result will be (apart from an inclusien

of the Yang-Mills fields) an apparently more comprehensive theory than GFT which
nevertheless is completely equivalent to the latter.

4. U(1) Gauge
The Lagrangian is finally chosen to be
L = =g [g"Ry+Rg—3 FuF" +1 a?(g" = a"F,, FL1+ 5 V.a”  (32)

A5, being Lagrange multipliers, and V,, the covariant derivative with respect to I’ fuv).
Since L can only be derived under the explicit assumption of the standard metric identi-
fication, inclusion of the last term appears necessary. Greek indices are raised and lowered
with the M-metric a,, which, together with g,,, I’ %, and the gauge potentials 4 ,,‘ {equation
(13)) are the natural variational parameters. Defining

Ga‘w = adguv + fgagav + I:;oglw - f:aguv’

VV,”‘B = \/‘_—g (a,uvg(aﬂ) + aaﬂg(uv) _ auvaaﬁ)me 33)
and

5 1 1
r,, = R[uv]+—2' ch[,,v]‘}“g F:ngag[#V]’

the field equations are (on elimination of the multipliers 1%,,).

VGO + G0 = G —aG,7%) = (¥ — ), F ™o =8 » (34
G =0 (F,=0), (35)
R(MV)+% Regpw = _% aaBFruﬂFrav—';' g(,,v)F,.“ﬂF'uB, (36)

Sulyey = 0 @37
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and
AWM+ AWM =0 (38)

and describe the mutual interaction of the gauge and the GFT fields. Ignoring (dim P-4)
and in effect the Yang-Mills potentials, there are now 54 equations for 54 unknowns
(@ 8 T {‘M], I')) so that the system is completely determined (as it must be in view of
its variational derivation), the “unknows’ having been chosen as variational parameters
(and the multipliers A%, having been eliminated. In GFT, the metric hypothesis (16) was
used to select from among the solutions of the field equations (14) those which happen to
be compatible with it. Clearly, the differential equations (16) for the ten components a,,, of
the metric tensor cannot be integrable for an arbitrary set of functions f?,”). This difficulty
is now overcome by including the mo:tric hypothesis into the variational principle from
which the theory is derived. Let us now assume that the gauge group G is the abelian
U(L). In the original formulation of GFT it has been assumed that Rj,,, represented the
electromagnetic intensity field tensor. There were two reasons for this. The first was that
fz[m necessarily appeared as a Maxwell tensor (the curl of a potential) and this was con-
venient for a preliminary and tentative interpretation of the theory. Secondly, and this
was more important, the choice of ﬁ[m allowed the equations of motion of a charged
test particle a quasi-Lorentz force to be derived from the field equations. On the other
hand, it was already clear that the electromagnetism of GFT was most likely not to be
Maxwellian but rather of the nonlinear (““‘Born-Infeld’’) type. The present, more elaborate
structure, enables us to write down explicitcly the proposed field equations of the electro-
magnetic theory. The structure constants f*;, vanish for an abelian gauge group and we
obtain

6[1[“‘\,] = 0, (39)
oW =0 40)
with W* = — W"* being given in terms of the “second” electromagnetic field tensor

F,, by the second of the equations (33). Equation (39), of course, ensures that I',, is the
curl of a “potential” just as in Maxwell’s or the original GFT theory. Also, because equa-
tion (39) reduces to

auR[uvn =0
in the limiting case
R; -0, F,, =0,

the basic results about the equations of motion are not disturbed. Just as in the nonlinear,
Born-Infeld electrodynamics (eg. Ref. [10]) we can also define the elcctromagnetic charge-
-current vector J* by

Jh = —1_: 0/ —a F*) (41)

J—a
the corresponding vector density
g =J=as (42)
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being conserved in the usual sense
3,8" = 0, 43)

because of the skew symmetry of F**, This definition appears to be much more natural
then eifer the corresponding Born-Infeld one, or the definition originally employed by
Einstein (eg. Ref. [10}).

Having now derived a complete description of the “nonsymmetric’’ or GFT electro-
dynamics we can proceed to the main objective of this article which is the construction
of the model of a charged particle.

5. Structure of the GFT charge

We encounter a difficulty in attempting to obtain even a primitive, spherically symme-
tric static solution of the field equations (34)-(38). Indeed, the corresponding solution
of GFT was only found by assuming the relevant symmetry of the field g,, which then
forced the symmetry of space-time. In the current version of the theory a similar assumption
is insufficient to reduce the system of the field equations to a manageable form. We know
however that the GFT solutions (without gauge fields) remain as partxcular solutions
of the new set of the (P, or bundle space) field equations.

Hence, we can take the exact GFT solutions as a fixed background and consider an
exterior (that is gauge) field approximation, the result being a solution valid when the
gauge fields are weak. '

Let us consider first the electric GFT solution found by one of us (Ref. [4]) as the
“background” field:

8oo = 0, 811 = —, £22 = §33C08¢c? f = —P, g,3 = —g3, = fsin0, 44)

, 2\ -1 2 -1 2\ -1 .
(1~r—) <1+c\/f§~1> , o= (1-'-) a7l =R (45)
ro r ro

¢, W, ro constant (and where we can always put w = 1). Also, the diagonal metric tensor
components are

with

dop =0, di; = —0, dyp = dz3C08eC? 0 = —r2,

In this spherically symmaz:tric case, the only nonzero component of F,, is Fy; and from the

{second of) cquations (33)
2 o2
_|.
= — \/ﬁ f Fo, sin 6,
oo

so that, from equation (40)
Eo/r*
Vi—r2’

where E, is a constant and we have put E, = Fy;.

E = (46)
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For a real field we must have
r<rg 47
which reinforces the cosmological (Ref. [6]) interpretation of ry, and for
r <€ro

E, behaves like an inverse square Coulomb field which is singular at the origin. However,
that is precisely where the weak-field approximation breaks down. On the other hand,
from the definition (41) the charge density

— d
J—alJ°® =c—l;(\/—aF1°)=0 (48)

in the present case which is what we would expect from a point particle solution. On the
cosmological scale, the fall off of E, is slower than for a Coulomb charge and in fact (for
E, > 0), the field begins to increase beyond

r=VEr, (49)

It may be therefore that this value should be interpreted as the radius of the universe.
Alternatively, we could say that the weak field approximation fails also for

rNro

on the grounds of a Mach-like hypothesis (Ref. [4]) that globally charge manifests itself
as mass and that “distant’ masses are locally significant. The electric solution, however,
does not tell us anything about the internal structure of the charge. Nevertheless, the non-
linear electrodynamics we now have enables us to obtain information about the latter
if the background field is assumed to correspond to the alternative magnetic solution
&3 =0, go1 = —&10 = W)

In GFT this solution is identical with Papapetrou’s (Ref. [12]) solution of the strong
field equations (ﬁ[uv] = () and is rejected because it implies absence of the electromagnetic
field (and of a Lorentz force on a charged test particle). It is nevertheless, a solution of the
GFT field equations (with the metric hypothesis) and therefore also a solution of the
modified field equations (34)-(38). Since there is now no reason for excluding any of the
solutions and we are dealing in any case with a perturbation of a background field, we
can assert that an electric charge still arises even if it is apparently excluded from the back-
ground. This indeed proves to be the case.

With Fy; = E,, we now have (in the notation of Ref. [4])

K K>
Wi = =20 (yo <1+ T‘*) +l+y0> E,sin 6, (50)

where K, k and Y, are constants, and therefore

Eo/r?
1 +q/r4 ’

(51)

r
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where g = yok?/1+2y, > 0. Unlike the Born-Infeld field which is non-zero at the origin,
E, vanishes as r — 0 and in fact increases to a maximum (E, > 0) Eo/2 \/q when r = ¢g'/*
and for r > ¢'/* behaves with increasing r more and more like a Coulomb field.

The charge density can be defined from equation (41) to be

e=J% = N—/E_—-_a. ;—r(\/‘:a a®®a''E,)
2
We may observe also that if we require that
a,, = symmetric limit (g = 0) of g, (53)
then necessarily
yo=1 k*=3q. (549

If we also assume that to the order to which the approximate solution of the field equations
(34)-(38) is valid, the 3-space (r, 0, y) is Euclidean, we can define the charge of our par-
ticle to be

n

2r =
e= [ [ | er?sin6@drdfdy = —aK’E, (55)
0 0

so that we can eliminate E, from equation (51):

Ot g

—er?

B KX r*+q)° 0

r

If g = O (that is, if the “magnetic” charge vanishes) the particle collapses to a Coulomb
charge but otherwise the field is nonsingular. We may observe also, that K—? appears
to be proportional to the standard, Coulomb constant.

6. Mass and spin of the GFT particle

Let us next calculate the contribution to the total energy of the GFT particle dueto
the U(1) field. When

-, ] N .
we easily find that
Ry = Km"%fsﬁas‘v’e’

where K, is the Ricci tensor constructed from the Christoffel brackets. Hence equation
(36) may be written as

K#v = % SftaS:()—% (FHaFav—% FQGngg(#V))_}E RGg(HV)’ (563)
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and therefore
K*—% S K = 1 52,55, — 4 5,675, S~ (F*F o= § FouF a0
+3 0,1 -% aaﬂgx/})FQaFao -3 Rs(alug(uv) -3 éfa“ﬂg(,,ﬁ)), (57)

where

K = a”K,.
In GFT, the tensor

K —158%K.

defines energy-momentum and satisfies identically the conservation law

V).(Kvl—% 5vAK) = 0’

and, a fortiori, so does the tensor on the right-hand side of equation (57). Its first two
terms evidently refer to the GFT fields, but as we know, the constant R; cannot vanish
in general. Let us consider the tensor

TVA = 'alug(p.v)—% 5vlaapg(aﬁ)‘
If I*2, is given in terms of 8, and its first derivatives (GFT) by

guv,l-r:).gav_f;vgno’ = 0,
we can show easily that

Vit) = 3 a”[S%.grop+ Sh8tann] (58)
Then, for the magnetic solution (Ref. [3]), we find that
6,11'3 = eﬂg = ‘~7ﬂ§ =0, 6;1’} = 0005(1)18[01]~ (58a)

However, we are interested only in the first of these equations, that is in the energy density.
1t now follows that for the energy component, the Rg term in (57) can be absorbed in the
left-hand side so that we finally define the energy density of the U(1) field to be (with
Fy, = E, as the only component of the field)

W = % (FanaO '_% PwanUQaQOgOO)—%‘(I _—:—» aapgaﬂ)l‘ﬂgaFoq

=1 0a%a""(a*goo—% a2, E}
K? 3q

=—[1— == ) E2 59
1 ( 2r"'> d 9

‘ , K .. K? 3q
for the magnetic solution &®° = Ve o, @' = g", goo = ¢ and + oo = 14 — )

We notice that unless ¢ = 0 (Coulomb case, giving here go;; = 0 so that there is

no nonsymmetric field; this indicentally reconfirms the result discussed in (Ref. [11]),
although from a different point of view, that we get “remnants’ of electromagnetism when
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partial symmetry is imposed on the theory), energy density becomes negative when

r<viJg=vir (60)
say, then increases to a maximum at

r=2r,
and then decreases approaching rapidly the classical, r—*, rate as r increases. For example,
atr = 4r, (twice the radius of the particle) the energy is already some 98.64 9 of its classical
value and at r = 10r,, 99.97%.
The total energy of our particle is (again assuming a flat 3-space)

e’ j‘xz(x‘*-%)dx _9y2¢

4nK%r, ] (1+x**  128K%r,’
0

(61)

Thus it is finite and positive as required. Of course, it is very questionable whether this
can be regarded as the mass of the particle since we have omitted all gravitational and
electromagnetic (in the sense of GFT) contributions to the energy.

Finally, let us inquire whether the present theory can throw any light on the spin
of the “non-symmetron’. Since spin is a strictly quantum mechanical concept it can only
be introduced into an essentially macroscopic theory by hypothesis and our considera-
tions must be, at best, very tentative. The difficulty is compounded by us not having an
exact solution of the generalised field equations (34)-(38) but only one obtained by assum-
ing a GFT background.

We shall work by analogy with the Einstein-Cartan theory whose field equations are

1
R,,—%a,a®R,; = hZ,,

S,y +58%,8,-0°S, = 2hty, (62)

with Z,, representing a generalised (nonsymmetric) energy momentum tensor and t,,

the spin density tensor. Conservation of angular momentum is expressed by
Vot = Ly (63)
The spin angular momentum tensor is then defined as
Jy = [15,dS, = [ 9,dS, (64)
by the use of space-like hypersurfaces.
Since in GFT the tensor
Ry = —7 Vaggv’ (65)
is identified with electromagnetic field tensor, we cannot use the “twiddled” connection
to generate both electromagnetism and spin (if we do, the formula (64) gives zero J,, in
any case) but we can use in this way the connection
ri, =ri-2sr,

albeit that it is not well determined.
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In the spherically symmetric, static case of GFT, the solution for I' L s
(0, 1(r), 8(6), 3¢ cos 6)

where f and g are in general arbitrary functions of 6. It scems reasonable however to take
the solution
(0, 0, 3¢ sin 0, 3¢ cos 0) (66)

in our case. Then
2n

1 2.2 1
Joz = — 3¢ sin” Odbdy = &
6h
0 0

7!26

— 67

; (67)
. n?c

all other components of J,, vanish. If the constant —h—ls disregarded, the above result

at least does not exclude the possibility of interpreting the non-symmetron as an electron.
The GFT field equations also imply that

~ 5 .
Vz'r#v = "'% Zlu"] (= - 2:'—: R[uV]) (68)
(the sign being due purely to the definition of the Ricci tensor employed here:
Ruv = —FZv,a+rZa,v+rZoF§V—FZvr§Q)'

7. Discussion

We have obtained above the macrophysical model of a relativistic particle tentatively
identified as an electron. It consists essentially of a spherical shell with part of the interior
being a region of negative energy. It is held together by a magnetic field, its own field being
almost exactly Coulomb already at reasonably short (radial) distances from its surface,
or rather from what we have interpreted as its surface. The field itself vanishes at the centre
of the particle.

The model was derived from an ammended form of the field equations in which the
electromagnetic induction is obtained from superimposing onto GFT of a U(l) gauge
field, as well as in which the metric hypothesis of GFT is included in the variational prin-
ciple. The resulting field equations (fewer in number than in GFT) are almost impossible
to solve directly. The reason is that we do not know a priori on what to impose symmetry
restrictions. Itis clearly insufficient for mathematical tractability to impose these restriction
only on the metric of space-time (as one presumably should). In GFT also, the static,
spherically symmetric solution is obtained by assuming symmetry of the field and then
deriving that of space-time (rather than the other way round). In the present case, the solu-
tion is found by an approximate procedure in which the GFT solution is taken as a fixed
background.

It may be argued that because of this, the model proposed represents only a tentative
prediction of the theory (and therefore also a test of GFT on a laboratory scale). This,
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however, is not the case. We have already pointed out that the present extension of GFT
is a more comprehensive theory although we may have to rely on the former 10r concrete
solutions. The reason why our electron model is a definite prediction is that all solutions
of GFT (unified field theory with the metric hypothesis) are also solutions of its generalised
version and we have inquired here only as to what may be the possible consequences of
adjoining to it a gauge group.

Perhaps the main theoretical result of this was resolution of the problem of electro-
dynamics whose structure will be explored further in a subsequent article.
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