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Relativistic effects of the order of v?/c? are considered in the wave functions of kaons
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treated as bound qg-states. The ratio § = 7?;— is calculated for dynamical models
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with the direct interaction. As is shown, in contrast to results by Greenberg, Nussinov
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and Sucher, corrections to the nonrelativistic &ng = Py 5 may be positive both
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in the classical and quantum models of qg-systems.

PACS numbers: 14.40.Fw, 12.40.~y

1. Introduction

A nonrelativistic quark model with SU(3)-symmetry breaking by s-quark “weighting”
predicts a number of relations between hadron electromagnetic characteristics independent
of the qq (qq)-interaction dynamics. In particular, the ratio of the electromagnetic radii
<I' 3m>!("

<re2m>K*’
determined in this model by the ratio of masses of s- and u-quarks:

of neutral and charged K-mesons ¢ = , first calculated by Gerasimov {1}, is

mZ—m?
Snr = 2m52+m§ ' )
Equality (1) is obtained for a nonrelativistic treatment of the motion of particles with
charges (2/3, £1/3) in the rest frame of a two-particle bound state.

The problem of corrections to (1) due to relativistic effects has been discussed in
papers [2-4]. Using the classical theory and analysing the triangle graph in the Bethe—Salpe-
ter formalism with a constant Kqg-vertex, Greenberg, Nussinov and Sucher [2] have
concluded that the ratio ¢ decreases in relativistic models. Calculation of the triangle
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graph in papers [3, 4] with the assumptions from paper [2] support the hypothesis & < Eng-
It should be noted that Nowak and Sucher [4] pointed out a possible breaking of this
inequality for certain modifications of the Kqqg-vertex, which are artificial within the “relativ-
istic effective-range approximation” proposed in [4].

In this note the problem of relativistic corrections to {yg is considered in the frame-
work of the relativistic Hamiltonian formalism [5-7] which is equally valid both for kine-
matical and dynamical effects of the order of v?/c? in two-particle bound states. The
consideration is carried out for classical and quantum theories. The formalism used includes,
in particular, models of the interaction of a pointlike particles via scalar and vector
fields and allows one to reproduce the results [2-4] of calculation of the triangle graph
(with accuracy ~v?/c?). It is shown that the sign of the relativistic corrections of the order
of v?/c? to &ng is model-dependent and defined by qg-interaction dynamics both in the
lowest and the subsequent orders of v?/c?. For a wide class of models the inequality & > &g
holds in contrast to the onc proposed in [2].

2. Classical treatment

The relativistic effects in a gqg-system within the classical relativistic theory are
described in paper [2] with the use of the c.m.s. relation

40~+§% E) = \ 20 it @

dx; . . . .
where i = {s, u}, v; = @ are velocities of particles and + p(r) their momenta. Relation
(2) gives rise to the * relativistic dilution” of the mass asymmetry given by the inequality

> KED

o ~ e 12 ({...> means averaging over the period of relative motion). As
u

<> (x> . :
= 5— —1 )1 2—>== +1}, from (2) the inequality ¢ << {\g follows. Note that the
x> x>

relation (2), valid for free relativistic particles, fails, in general, to describe the motion
in the bound state (e.g., in classical electrodynamics). In the relativistic (up to the terms
~v?/c?) theory of interacting particles described by the Hamiltonian [5]

H o P )+V() ! Vi —pir— 175, ) +( = 2)
B 2m 8n1?c2, r 4m m;c PiVP2=pir r drrpz

i=1,2

(r =X —x5 1 =[] (3)

.- .l
relation (2) is certainly invalid for ¥(r) # 0. In the cms. (p;+p, =0), R= z

-2 =2

- - x +x,)V(r

x [m, (H- 2’"’;‘8 ) Xy +nm, (l+ _pzz.;> X, + G ! 2622) ()] (E is the total energy)
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is an integral of motion. Choosing the origin of coordinates so as to fulfil the condition
R = 0, we obtain

-~ -~

- rm, - rm,
Xy = w N Xy = — = ~
m;+m, my+m,
where
rp* vnlr - . -
mp=n+ | — + —— |3} = = -
i i I_zmi 2 |2 P =D P2

Within the same accuracy ~rv%/c?* we have

<:\.’f> mg [ m;—m, < 2 (52 )-J> mym;
e o= — | L ————= (| — 4+ V(r , H= . 4)
x> mi mym,(rtye? p " my+m, (

Settingm; = m, and m, = m, it can be seen that the relativistic correction to {xg is opposite

in sign to the quantity
2 2.2
<f2 (B_ +V(r))> = €<72>+ <r p > (5)
u 2

{where ¢ is the binding energy). For the motion in the region of V(r) < 0, [(r2V(r))!
{rp?)
>
It
of Ref. [2].

Equality (4) holds for the interaction of particles via scalar, vector, and tensor fields
in the limit of weak coupling. For the general relativistic invariant (within ~ v?/c? accuracy)
Hamiltonian theory [6] the expression for the centrc-of-mass coordinate contains an
arbitrary function Q“)(r; m;, m,) antisymmetric relative to the transposition | = 2:

the sign of the classical correction to &yg is positive, in contrast to the result

&

P - U T p3
R=—Imx +myx,+ —rln —p-;- - —27 —QW(r;m,my) )|, m=m+m,.
m 2c my n;

In the c.m.s.

<;c2) m? m,—m 2 m
~:13- = -é 1+ w—-‘————zz—i r? L + —— QY my, my) . 6)
{(x3 mj mym,{r-yc g my—m,

m,

m —
At 00 = L V(r), expression (6) turns into (4).
m

So, the classical theory reveals a strong dependence of the relativistic corrections
to {xa, In sign and magnitude, on the interaction dynamics both in the lowest (nonrelativ-
istic) and in the subsequent orders in v?/c2.
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3. Quantum models

Following [1-4], we shall calculate ¢ in quantum theory by expressing (rZ,)> through
the electromagnetic form factor

OF (q)
an q2= 0,

(remy = 6

where ¢ is the 4-dimensional vector of the transferred momentum. We shall consider
(cf. [2]) the bound states of spinless particles. In the model with Hamiltonian (3) the wave
functions of states with a definite total momentum P = P1+ P2 can be obtained in x-repre-
sentation through the standard procedure [7]:

Y5(X1, X2) = exp (iPRo) exp (i2(P)) [@o(P) + ¢, ()], (7
where
2(P) = 1:(B)+2:(P) (8)
A > 1 - > e
11(P) = 4m_2c_i (Pr - Pp+Pp- Pr) (8a)
A 2 my—m e - el
12(F) = — =% [PV () +3 BB + (FN5?)]
mymyc
Ry = m™Y(m %, +ma%x,), (8b)

p is an operator canonically conjugate to r (x;, p; obey the conventional commutation
relations). The internal wave function ¢(r) = @o(r)+ ¢.(7) is a solution of the Schrodinger
equation for the internal motion

(Ho+Hy)p = &9,

-

2
where H, = —5— + V(r) is the nonrelativistic Hamiltonian,
u

s U funl dVoae o .
Hy = — 5 P pm?+1/md)+ pr— —=rp=pVp ||, ©)
2l 8 2mym, rodr

and @o(r) is an eigenfunction of H,. The ~v?/c? corrections to the electromagnetic form
factor of states described by the wave functions (7) are of three kinds:

) Corrections due to the difference of the internal wave function from @o(F);

i) Kinematic effects of the “Lorentz contraction” of the wave function [8] described
by operator y, quadraticin b. Up to the term of the order v?/c? these effects imply the change

232

Fan(d?) = Fue (q2+ ‘ffnz)cz ):

iif) Corrections due to the operator y, linear in P; they exist only for particle systems
withm, # m,.
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By simple, though lengthy, calculations we obtain the following expression for the
form factor of a two-particle system with charges e;, e, (within the terms ~ ¢2, v?/c?):

2 2 2
q mse; +mie
Fon(d) = e+ ex+ g[<r2> —

as -
- = 3 7:’_22 (exmy —eymy) < (V(r)+ %) +7 L ;>] . (10)

m-c

The first term in brackets is averaged with the wave function ¢ = @,+ ¢, (that
results in the correction of class (i)); the second term with 1/¢> is averaged with the non-
relativistic wave function @o(7). Note that the corrections of class (ii) are of higher order
in g2 and do not contribute to the root-mean-square (rms) charge radius of a bound state.

2

rem . . .
Calculating the ratio <—2—;—ﬂ by formula (10) we find that the relativistic correction

Fem/K+

to £xg 1S Opposite in sign to the quantity
>2 =2
2 p - P =
=(r{Vim+ —j+r—r 11
§ < ( ” 2#) 2 > (4

i.e. the quantum result coincides with the classical one up to the ordering of operators r, p*.

The Hamiltonian of the general relativistic-invariant (up to v?/c?) theory contains,
besides V(r), 4 arbitrary functions of the variable r = |¥, —X,| [6]. Three of them enter
into the Hamiltonian of internal motion generalising (9). This arbitrariness only changes
{r?) in (10) and does not influence the ratio of the mean square charge radii £. The fourth
function, nonzero for nonidentical particles only, enters into the operator 12(P) (8b).
It can be shown that, like in classical theory, the general expression for the form factor

(10) and 5 (11) can be obtained by the change ¥V — S Q(r; m,, my), and all char-
ml—nlz

acteristics of the bound state in the c.m.s. (binding energy, {r?>, ...) are independent of
Q(r; my, my).
Consider some examples within models of the type (3) For s-states specified by the

. const
potential V(r) = —

3
the result of the caleulation of n = 2e{r?>+ > —{r2V> is
)

# ~ 1—n? (n is the principal quantum number); in the ground state (n = 1) there is
no relativistic correction of the order v2/c? to &yg. A more difficult task is the calculation
of n for the ground state in the square well potential

)= Ve T <rg
Ve = { 0, > 1. (12)

From the calculation it follows that the sign of 5 is determined by the parameter

2
o = 1y QuVy) "2 (O <a <—>:
A

. . . 2
sign 1 = —sign (§—&we) = sign (2—00). oo = (13)
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For a < a4 the sign of the relativistic correction is positive. Note that the potential ot zero
range torces, for which the wave function of the ground state is defined by the constant
Kqg-vertex of the triangle graph (in the nonrelativistic limit), can be derived from (12)

2
as rq — 0, « » —. By formula (13) in this case & < &yg in conformity with the result of
s

papers [2-4].

So, in quantum models the sign of the correction to &y also depends both on the form
of the lowest order potential and on the qg-interaction dynamics in higher order in v?/c2.
The consideration performed reveals the possibility of positive or extremely small (¢ — &gg).
in this connection it is interesting to note that the recent experimental data on {r2,>g- xo
[9] give the value & = 0.19+0.1 in agrecment with the nonrelativistic estimate & ~ 0.2
[1, 3].

The author is very grateful to S.B. Gerasimov and A.B. Govorkov for useful
discussions.
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