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QUASI-CLASSICAL APPROXIMATION BRIDGING THE GAP
BETWEEN THE STRONG- AND WEAK-COUPLING REGIONS
IN A LATTICE GAUGE THEORY MODEL

By K. ZALEWSKI
Institute of Nuclear Physics, Cracow*
{ Received September 8, 1981)

A version of the WKB approximation is recalled, which in a simple model of lattice
gauge theory is valid at and in the vicinity of the transition point.In this approach the phase
transition reflects a singularity in the classical period of the motion considered as a function
of the coupling constant.

PACS numbers: 11.10.Np, 11.10.Jj

In lattice gauge theories the strong coupling range, where confinement is easy to prove,
and the weak coupling range, which is the physically relevant one since it corresponds
to the continuum limit, are often separated by singularities (phase transitions). Therefore,
validity ranges of the strong coupling and of the weak coupling expansions do not overlap,
and other approximations able to bridge the transition region are of interest. Studying
from this point of view the one-plaquette gauge model solved by Wadia [1], we noticed
that a variant of the WKB approximation is applicable in all the range from weak coupling
across the tramsition region to strong coupling. The inconvenience of using only strong
coupling and weak coupling approximations in this problem is clearly seen in Ref. [2],
where all the expansions used fail i the most interesting region.

The relevant WKB formula has been derived long ago [3]. In order to make this paper
self contained, we give a derivation in the appendix. Consider the one-dimensional Schréd-
inger equation

'+ fle—V(D)y = 0, (1.1)
where 2mf = h2, Bc = E and the potential V(x) is twice differentiable and-periodic in x.

This is a classical problem in solid state theory, but now it gained new importance, because
with $ defined in another way it occurs in some models of lattice gauge theory [1], [2]
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Without loss of generality we may assume that the period is 7 and that the maximum and
minimum of V(x) are 0 and 1. We will also assume that there is exactly one maximum and
one minimum per period and that the second derivative of V(x) does not vanish at the maxi-
mum. The special case considered in Ref. |1] is

V(x) = sin® x, (1.2)

but the generalization as made here does not complicate the problem. Motivated by gauge
theory, we limit our discussion to periodic solutions with period =z, but the extension to
many other cases is easy. The range 0 <& < 1 (¢ > 1) is known in gauge theory as weak
(strong) coupling and in solid state theory as strong (weak) coupling. In the following
we use the terminology from gauge theory. At ¢ = 1 the phase transition occurs.

Under rather general conditions (cf. e.g. Appendix) the approximate eigenvalues of
equation (1) in the strong coupling region, in the vicinity of the transition point and some-
times, in particular for large 8, even in all the weak coupling region can be obtained trom
the formula

fo VBEE—V(x) dx = [2n- p(@) (- D] (1.3)

Here for ¢ < 1: x, and xy are the adjacent classical turning points; for & > 1, xy is arbitrary
and xg = xy+n. The parameter

a= \/ =) (1.4)

V, is the absolute value of the second derivative of V(x) at the maximum,
ne(a) = arg T'(3+ia)+a—alnja| (1.5)

and & is the smallest positive root of the equation

sin (18) = (1.6)

\/1+e2ua.

The phase tiansition occurs, when E(f) has a singularity. For ¢ &~ 1 the right hand
side of relation (1.3) reduces to (2n+1)n. Substituting this approximation into (1.3) and
differentiating, one finds

dE +3
dE _E _Q@nxom (1.7
ag B BT

where

I . 1.8)
VE—BV(x) (

is the classical time (in suitable uniis) necessary to go from x; to xg at energy E. This time
becomes logarithmically infinite for ¢ = 1 and thus generates the singularity.
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In Ref. [2] the phase transition has been associated with tunneling. For potential (1.2)
the two criteria are equivalent. For a potential given by formula (1.2) for 4|x| < n and
infinite for 7 < 4|x} < 2x, however, there is no tuaneling, but 7 is singular and there is
a phase transition. Thus the criterion proposed here generalizes that from Ref. [2]. This
is not a purely academic example, because modifications ot Wilson’s formula for the
lattice action, leading in Wadia’s problem to potentials coinciding with (1.2) only in the
vicinity of the minimum, have bzen coasidered [4] and give promissing results (ct. e.g. [5]).

L=t us finally note that performing the classical limit in lattice theori8s requires some
care. For instance, in the lattice version of ths harmonic oscillator problem [6] our param-
eter f is

hz
4x = ;1](_(12 y (19)

where & is a constant and 4 dznotes th= latiic: spacing. Hzre the continuum limit d - 0
and thz usual classical limit i — 0 cannot be taken simultaneously without further assump-
tions. The correct continuum limit can be obtainzd only if the parameter (1.9) tends to
infinity. Reliability of the WKB solution may then be secured by choosing for analysis
levels with sufiiciently high ».

APPENDIX
In the vicinity of each maximum we can approximate the Schridinger equation
(1.1) by
Y'+G 2P —a)y =0, (A1)
where
z = V2BV, (x—x,), (A2)
X, is th2 coordinate of th: maximum nzarest to x, and @ is d:zfinzd by formula (1.4). Equa-
tion (Al) is standard. Its gzneral solution [7] is
y(x, a) = Ci(a)E(z, )+ C())E*(z, a), (A3)

where E is the parabolic cylindzr functioa and E* its com»lex conjugate. The cozfficients
C,, C, donotdzpznd on x,, bzcauss of the assum:d periodicityof pin x. Forx, < x < xp
at a safe distancs from x; and xz we use th: WKB approximation

XR

5 -1/4
y(x, a) = ( 2—?7 (e— V(x))> [C+(a) exp {i j JBle—V(x) dx}‘
+C_(a) exp {—-i J VBle=V(x)) dx}] . (Ad)

Again the independence of C, and C_ on x_ follows from periodicity of .
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Let us assume that the validity regions of the quadratic approximation (A3) and the
WKB approximation (A4) overlap. This is certainly true, when x; and x, are sutficiently
close to the maxima of V{(x), i.e. for ¢ sufficiently large. If the quadratic approximation
holds for |z| < z,, the condition is

a <tz (A5)

We show later that tor large f this constraint may be removed. For x in the overlap region,
expression (A35 may be simplified by using the asymptotic forms of the parabolic cylinder
functions, and expression (A4) by using the quadratic approximation for the potential
in the region between x and the nearest turning point (x or xg).

To the right of x_ the two expressions are

Y(x, a) = l% [Ci(a)e? " + Cy(a)e™ V=], (A6)
P, 0) = || [CL @+ (@)e™ 0, )
where
V4 n
f(z, a) = g(z, a)+ > p(a)+ 7 (A)
g(z,a) =%tz’—alnz+talnla|-La. (A9)

The corresponding formulae to the lett of xy are
T . / 2ra na —if(z,a)
w(x, a) = B i[{V1+4+e ™ Ci(a)+€™Cy(a)}e V™
z

—(VI1+e2™ Cya) +e™Cy(a)}e! =], (A10)

2 . .
w(x, a) = o [C.(a)eC® 7D+ C_(a)e” @97, (A11)

where g is given by (A9) and S denotes the integral on the lett hand side of formula (1.3).
Identifying (A6) with (A7) and (A10) with (All), we find a non-zero solution only if
condition (1.3) is satisfied.

Since for a — oo 1ormula (1.3) yields the correct limit (the Bohr-Sommerfeld formula),
constraint (AS) may be dropped, if @ becomes sufficiently large in the validity range of
(AS5). The quadratic approximation (A1) is valid in some range ot x depending on the shape
of V(x). Consequently, for given V(x):z3 ~ V’E and constraint (A5) may be skipped for
B sufficiently large.
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