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1. INTRODUCTION

1. Preliminary remarks

Many theorists take the point of view that supersymmetry [1], particularly in its
local realization through supergravity, is so elegant that it must be true. The only remaining
questions are how, when and where ? In this paper we review [2] various different approaches
to combining supersymmetry with gauge theories of the strong, weak and electromagnetic
interactions. We emphasize in particular our own approach [3] which seeks to identify
all the known ‘“‘elementary’ particles as composite states, bound on the Planck scale,
of “preons’” which are the elementary quanta of the N = 8 supergravity theory [4]. We
mention in this connection some new ideas we have been pursuing, which may shed some
light on the fate of the N = 8 supergravity composite states which are not apparently
observed at energies much less than the Planck mass. Perhaps these composite fields never
bind to form well-defined particle states? Or perhaps they do, but these states have unobserv-
able hyperweak interactions characterized by inverse powers of the Planck mass? Or
perhaps all these bound states acquire masses of order the Planck mass ? This last possibility
is allowed group-theoretically if the physical spectrum of the theory contains a unitary
representation of the non-compact E,; group underlying the N = 8 supergravity theory.

The outline of this paper is as follows. First we review the framework of the unified
gauge theories [5-7] which one may want to supersymmetrize, high-lighting outstanding
problems which such a supersymmetrization might solve. Then we discuss in sections II
and III various alternatives for the energy scale at which supersymmetry may become
apparent. These include the scale of weak-electromagnetic unification of order 10%to 10° GeV
[8-111, the conjectured grand unification scale of about 10'5 GeV [12, 13], and the Planck
mass of 101° GeV [3, 14-18]. We emphasize in particular recent ideas about the dynamical
breaking of supcrsymmetry on an energy scale of order 1 TeV (the so-called supercolour
or supersymmetric technicolour scenarios [9-11]), and the possibility of constructing
a supersymmetric GUT [12, 13]. We finish in section III with an extended discussion of
attempts to use composite fields from extended supergravity theories, starting from remind-
ers of the work of Cremmer and Julia [4] and of our own [3], continuing through more
recent work by Frampton [16], by Derendinger, Ferrara and Savoy [17] and by Kim and
Song [18], and culminating in our own recent ideas mentioned above. At the end of the
paper we summarize open problems in the pursuit of superunification.

2. Framework in which supersymmetry may be included

In Fig. | we sketch the generally accepted picture of fundamental particle interactions,
ordered by the hierarchy of decreasing distance scales. The first stage of SU(3)x U(1)
for the strong and electromagnetic interactions is uncontroversial, but one may harbour
some lingering doubts whether SU(2) x U(1) is the full group [5] of the electroweak unifica-
tion encountered at energies between 10? and 10° GeV. Then there is the great desert
which may extend to the conjectured scale of grand unification estimated to be around
10*3 GeV. This desert is as yet uncharted, and may contain oases as well as mirages —
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which category fits technicolour [19]? In fact, even the existence of a desert is conjectural,
since we have no experimental evidence for or against any interaction scales between those
of the weak interactions and gravitation. The best evidence for GUTs would be the
detection of proton decay. Even if the principle of grand unification is valid, it could be
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Fig. 1. An impressionistic sketch of fundamental particle interactions, arranged by order of decreasing
distance scales

that its energy scale is rather closcr to that ot gravitation, and less distinct from it than
is the case in simple models such as SU(5) [6]. In this case the proton lifetime could well
be unobservably long, and then a conclusive test of the grand unification idea would be
hard to come by.

Contemplation of Fig. 1 reveals no shortage of problems that supersymmetry may
be called upon to solve, while one should always recall that supersymmetrization may
trail new hazards in its wake, owing to the fact that no supersymmetric partner of any
elementary particle has ever been detected. For example: if one supersymmetrizes QCD,
where are the partners — gluinos and squarks — of the conventional gluons.and quarks?
Among the problems which supersymmetry might be able to solve are the choices of gauge
group at various different energy scales — which may be restricted if one is to be able
to include the gauge theory in an extended supergravity theory [2, 4]. One may also hope
that the choice of fermion representations is also restricted by supersymmetry, and there
is in fact a severe danger that it will be over-restricted. It seems highly desirable, both
phenomenologically and theoretically in the framework of GUTs, that the “‘fundamental”
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fermions lie in a chiral representation of the intermediate energy SU(3) x SU(2) x U(1)
group. This is possible in the context of simple N = 1 supersymmetry, but not in gauge
theories with N > 1. It seems that if extended supersymmetries appear anywhere in physics
they can only appear in the context of an extended supergravity theory ai an energy scale
=~ 10'° GeV. Furthermore this extended supergravity theory must find some way of
acquiring a spectrum of fermions which is complex with respect to the internal symmetry
group: “breaking reality” so as to be left with some fermions at low energies which are
chiral, but not excessively so.

Returning to the recital of problems which supersymmetry may be called upon to solve,
one is the origin of the hierarchies of mass scales in Fig. 1. Why is the weak scale
my =~ 10> GeV < the grand unification scale myx &~ 10'> GeV (perhaps in turn < the
Planck mass & 10'® GeV)? Two aspects of the hierarchy problem [20] should be distin-
guished: one is how to fix my < myx without specifying some bizarre relation between
coupling constants to dozens of decimal places, while the other aspect is how to maintain
this relation despite the depradations of radiative corrections. Dynamical symmetry
breaking [19] may in principle provide answers to both these problems, but the existing
models are cumbersome, unaesthetic, and susceptible to phenomenological difficulties
with flavour-changing neutral currents [21] and the proliferation of light pseudo-Goldstone
bosons [22]. Supersymmetry enables [23] one to maintain a hierarchy if it is imposed at the
tree level [12], but no model exists yet where the imgosition of the hierarchy condition
emerges in an clegant way as a consequence of some higher symmetry [24]. In addition,
one must eventually break supersymmetry, as it is not immediately apparent in the low
encrgy spectrum. If this is done explicitly [12, 13, 25], one is left to wonder why this is done
at a scale much less than the Planck mass, cven though it may be technically “naturally”
small in the sense of not acquiring destructively large radiative corrections. An alternative
to the explicit breaking of supersymmetry is dynamical breaking [9, 10], although it is not
yet clear [11] that this is possible in four-dimensional models of interest.

The problems of naturalness arise when one has scalar bosons in the theory, and one
might question whether there exist any “fundamental” scalars, in the sense of not being
composite on a distance scale much larger than the scale of compositeness of fermions
and gauge bosons. The proliferation of quark and lepton flavours strongly suggests that
they are composite, but the theory of electroweak unification [5] assumes this is not mani-
fest at energies < 100 GeV. Many theorists explore schemes wherein quarks and leptons
are composite on a scale of order 10° GeV or so [26], whereas grand unification [6, 7]
postpones the scale of compositeness beyond 10'® GeV. Supersymmetry may help specify
the scale of compositeness, and we will see for example that it is necessary [14, 15, 3, 27,
28] to assume that the known quarks, leptons and gauge bosons are composite on a scale
of 10'? GeV, if not before, if one is to be able to cmbed them in an extended supergravity
theory.

We abstract from this section’s recital of problems the message that supersymmetry
may be relevant to physics on any of a number of different energy scales, and of course
we also know that it is not an exact symmetry all the way down to zero energy. We are
therefore faced with the basic question: What is the supergap? Subsequent sections of
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this paper comment on the possibility [8] that it is < 102 GeV (the region we now probe
in accelerator experiments), is of order 103 to 10* GeV ( the so-called supercolour or super-
symmetric technicolour scenarios {9, 10]), the possibility that GUTs are supersymmetric
[12, 13], and the idea we favour [3] that supersymmetry plays a rdle in combining particle
physics with gravitation on a scale of order 10'® GeV.

II. UNIFICATION AND SIMPLE SUPERSYMMETRY

1. Supergap $10% GeV?

In this section we discuss the possibility pursued energetically by Fayet [8], frequently
in collaboration with Farrar [29], that simple supersymmetry is spontaneously broken
along with the electroweak SU(2) x U(1) ( x ?) symmetry. Such a theory abounds in unobserv-
ed low mass superpartners of known particles which we denote by wiggles: e.g. g — g,
v — v. For example, it is known [8, 29] that the gluinos g must have a mass 22 or 3 GeV
because of upper limits in beam dump experiments on events of the type p+N — g+X,
followed by g — v+ X decay and a subsequent secondary interaction of the v in a detector.
Gluinos could also show up in heavy quarkonium decays, but the limits from charmonium
decays (e.g. of 3g, — g+(g+g)) are not as stringent as from the beam dump experiments,
and studies of bottomonium decays are not yet sufficiently precise to rule on the gluinos’
existence. Much more stringent limits on sleptons (possible supersymmetric partners of
leptons) come from PETRA: for example one knows from the absence of ete~ — u +u,
L = v+ decays that any smuon p must have a mass 2 15 GeV, while any selectron ¢ must
have a mass = 16 GeV [8].

Such limits conflict with general sum rules in SU(2) x U(1) weak gauge theories for
the masses of scalar partners f of known fermions f.

mi—m} = aQ}+BOF 1)

where Qf and Qf are the electric and weak charges of the fermion in question and the
o and f§ are model-dependent constants of proportionality. To avoid this conflict, it has
been proposed [30] that the electroweak gauge group be extended to SU(2) x U(1) x U(1)
by the inclusion of a new neutral gauge boson with axial vector couplings to quarks and
leptons. In doing so, care must be taken to avoid anomalies involving the new U(1) current.
In the simplest versions of such a theory one has the general bounds

+ 1/2
("ifz—m‘> < Lmy. ~ 40 GeV )

for the two scalar partners of a light fermion f, which is uncomfortable but cannot be
excluded by experiments before the next generation of e*e~ storage rings. Furthermore,
the bound (2) can be relaxed if need be, by extending the Higgs structure of the theory.

There are strong experimental constraints on the form of neutral currents which prevent
the existence of a new neutral gauge boson with large axial vector couplings and a mass
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O(my). A possible way [9, 30] to realize the SU(2) x U(1) x U(1) model is to make the new
gauge boson U very light and with a very small gauge coupling constant g':

my ~ g'[gmy 3

if there is no extra SU(2) 1 Higgs field. If the U boson is very light then its gauge interactions
are small compared with its residual pseudoscalar interaction through the divergence
of the axial current, and its phenomenology is similar to that of a traditional axion. The
beam dump experiments then restrict its mass to

my < 1 MeV or between (7,300) MeV 4

and future searches in K, J/p, T and toponium decays are indicated [9, 30, 31].

While the existence either of light supersymmetric partners of known fermions or of
a very light gauge boson cannot be rigorously excluded on the basis of present experi-
ments, the class of supersymmetric theories discussed in this section looks rather unhealthy,
even if it is not dead yet.

2. Supergap ~10% or 10* GeV

In this section we discuss various attempts [9-11] that have been made to introduce
supersymmetry on a scale < 1to 10TeV as a solution to the “naturalness’ problems associat-
ed with elementary scalar fields. Putting aside the question whether some higher symmetry
exists, elementary scalars such as those in the Weinberg-Salam model in general acquire
quadratically divergent contributions to their masses from radiative corrections:

sm? ~ A2, ®)

where the cut-off A could range up to mp ~ 10*® GeV. The radiative correction (5) would
be larger than the physical m?Z, and hence “unnatural”, if 4 > O(1) TeV.

An empirical approach to this problem has been taken by Veltman [32], who has
examined explicitly the one-loop quadratic divergences in dm% and my for the Weinberg-
-Salam model [5]. He finds that these two quadratic divergences are cancelled if a simple
sum rule is obeyed:

m? 3 mé

3 3
=34 +3 0
m% % 2cos20y  md

(©)

fermions f

He makes the point that the quadratic divergences in higher loop diagrams also involve
possible superheavy (m ~ myx? mp ?) particles so that it is not obviously crazy to use (6)
to solve the one-loop problem and leave the superheavies to sort out the higher loops.
If one assumes that there are only 3 generations of fermions and that my; < my, one finds
from (6) that

m, = (69 to 78) GeV. @)
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This prediction is sufficiently precise to be testable, though it would require LEP to see
such a heavy top quark. Veltman [32] feels that the relation (7) would be “suggestive of
supersymmetry if true’.

The problem of cancelling the quadratic divergences (5) has been studied systemati-
cally in several recent papers [9, 11, 33]. Quadratic divergences are not automatically
avoided even in supersymmetric theories. If one has a U(1) gauge group factor with an
associated gauge supermultiplet V = (A, %, D), then one can encounter a quadratic
divergence in the coefficient of the D term in the Lagrangian if its dimension 4 terms do
not exhibit a parity invariance: V< — V. [9]. Of course one could avoid this problem by
constructing a theory with no U(1) factor at an energy scale 4 ~ 1 TeV. No-one has
constructed a particularly satisfactory weak interaction model where the low energy
SU(2), x U(1) group is absorbed into a simple group at such a low energy scale, and such
a theory would contain monopoles of mass < 10 TeV which might prove to be cosmologi-
cally embarrassing. An alternative is to specify the conventional Weinberg-Salam U(1)
hypercharges of light particles so as to make the theory “safe’” from quadratic divergences.
An obvious way to do this is by introducing right-handed fermion doublets to “mirror’>
the known fermions, but this makes it difficult to understand the fermion matrix, since
the left- and right-handed fermions could combine into an SU(2) x U(1) invariant mass
term. Actually, such “mirroring” is not necessary: Dimopoulos and Raby [9] noticed
that the conventional fermions with their usual U(1) hypercharge assignments did not
give a quadratically divergent D term in low orders of perturbation theory, and Witten [11]
observed that this was true to all orders if the fermions were “grand unifiable”, i.e. could
be embedded in representations of a simple group. Even this requirement is not necessary:
it turns out [33] that all one needs to eliminate the divergent D term is the sum rule

;Yf=0 ®)

a condition of which the above examples are special cases.

In a realistic model supersymmetry must be broken, and the scale should not be much
larger than 1 TeV if the scalars in the theory are to be protected from acquiring naturally
large masses. Two scenarios for supersymmetry breaking have recently been investigated:
one is dynamical and the other is explicit.

In the former case one supposes [9, 10] that there is a new set of asymptotically free
exact gauge interactions which become strong on a scale A, of order 1 to 10 TeV. These
are supposed to form vacuum condensates of vector, spinor and scalar fields:

COIF,,,F™|0> = O(A%),  <Olyyl0y = O(43),  <Olssl0y = O(A2), ®

which violate supersymmetry. It is not necessary, and may even be desirable, that these
condensates do not break the weak interaction SU(2), x U(1) symmetry. This can be done
by still another set of technicolour interactions which are strong on a scale of order 1 TeV.
An obvious question is why not economize by abolishing one of these two new sets of
strong interactions or telescoping them into the same scale. If one brings supercolour
interactions down to the technicolour scale one runs a more serious risk that particles
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with masses O(4,.) will mediate flavour-changing interactions at an unacceptably high
level [10], and one tends to get an axion with characteristics similar to those of the original
Peccei-Quinn-Weinberg-Wilczek [34] axion which seems to be experimentally excluded.
On the other hand, it is claimed [10] that a theory without a lower energy technicolour
scale, i.e. so that SU(2); x U(1) breaking comes about through Higgs vacuum expectation
values, runs into problems with unwanted extra U(1)’s, real Goldstone bosons and axions.

In the explicit model of Dine, Fischler and Srednicki [10], the elementary scalar fields
are protected from acquiring masses or vacuum expectation values until supersymmetry
is broken by the supercolour interactions. One then has

COH|0) =~ gy A% /mi, (10)
where gy, is a Yukawa coupling and
m} = 0(«) (my, mg), (11)

and the W and B are supersymmetric partners of the SU2),, x U(1) gauge fields, with
masses

M5 ~ 0(g3)Ase- (12)
The Higgs vacuum expectation values (10) give masses to the ordinary fermions;
m; & gy COH|0) = gy gy, As/mi, 13)

but do not give all the masses of the W* and Z2:
g
my = " [F3+<0[H|0Y*], 14

where Fy &~ 250 GeV is the conventional [19] technipion decay constant. Putting in plausible
numbers: gy, X gy, & e = 0.3, and m, ~ 30 GeV, one finds from (13) that {O/H|0)
=~ 100 GeV and hence from (10, 11 and 12) that

A, ~ 10 to 100 TeV, (15)

with my and mg each a few TeV and my a few hundred GeV. However, since one cannot
do reliable numerical calculations in the strong coupling regime, and the Yukawa couplings
gy, and gy, are largely undetermined, the absolute scale of A is difficult to estimate
precisely.

There are some interesting superpartners in this theory which are expected to have
relatively low masses. For example, it is expected [10] that the mass of the gluino g is
of order:

mg ~ 0(5) GeV, (16)
while the mass of the fermionic partner of the Higgs H is expected to be:

my & 0(30) GeV. a7n
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The gluino lifetime is expected to be O(10-1°) seconds, so it should be quite detectable
at present accelerators.

Many questions about these super/technicolour models remain unanswered. For
example: is dynamical breaking of supersymmetry possible at all? (Witten [11] has raised
questions about this). Is it really necessary to have technicolour interactions on a separate
scale from supercolour? What is the scale of supercolour? Can one avoid the appearance
of unacceptable axions? (Axions with masses much less than the original Paccei-Quinn-
-Weinberg-Wilczek [34] variant are excluded by astrophysical arguments [35].) However,
at least these models meet all criteria ot naturalness for scalar fields, while probably avoiding
the worst of the flavour-changing neutral current problems that plagued [21] the original
extended technicolour models. At the moment one’s primary objection to such models
may be aesthetic: they look rather cumbersome with an exact gauge group containing 5 fac-
tors (supercolour, technicolour, colour, SU(2), and U(l)) and many supermultiplets
(gauge, supermatter, technimatter, matter and Higgs), and it is not clear how the whole
structure can be unified.

3. Supersymmetric GUTs?

The problem of “naturalness™ for scalar fields becomes particularly acute in the
context of GUTs [6, 7], whose usual incarnations contain at least two sets of Higgs fields
with vacuum expectation values differing by 10'2 or 10'3. It has been emphasized that
this hierarchy of scales can only be realized at the expense of fine-tuning one or more
combinations of parameters of the theory with amazing precision [20], and that this fine-
-tuning must be adjusted in each order of perturbation theory [20, 36]. Several authors
[12, 13, 24] have recently investigated whether supersymmetry [23] can alleviate these
hierarchy problems, with at least some success in dealing with radiative corrections to the
fine-tuning.

The philosophy is to postulate a grand unified gauge group with simple symmetry,
break it down at O(10'° to 10'®) GeV to the intermediate energy SU(3) x SU(2), x U(1)
group while keeping simple supersymmetry, and then finally break supersymmetry (susy)
at an energy scale comparable with that where SU(2). x U(1) breaks down to the U(1)
of electromagnetism:

Ggur X (N =1 susy) - SU3) x SUR) x U(1) x (N = 1 susy)

1015 to 1018 GeV

- SU(3) x U(1). 18)
102 to 103 GeV

The breaking of supersymmetry on a scale of 10° GeV or so may be either explicit or
dynamical: the specific models proposed [12,13] to date break supersymmetry explicitly
because of the difficulties encountered when one tries to unify the dynamical models

which were mentioned in the previous subsection.
The explicit breaking of supersymmetry is constructed to be soft (from terms of dimen-
sion d < 4 in the Lagrangian) and protects [12, 13, 25] the SU(2) doublet Higgs boson
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of the Weinberg-Salam model from acquiring a large mass. It is sometimes said rather
lazily that supersymmetry can be used to protec. the masses of scalars by putting them
in multiplets where their fermionic partners are protected by chiral symmetry from acquiring
large masses. This is not in fact the way things work in the supersymmetric GUTs proposed
instead these models use another remarkable property [23] of supersymmetric theories,
namely that the only renormalization of coupling constants comes from wave function
renormalization. The strategy is the following: one fine-tunes the parameters of the super-
symmetric Higgs potential in such a way that the SU(2) doublet Higgs has very smali (or
zero) mass, while baryon-number violating Higgses have masses 2 O(10'* GeV). There
is no improvement yet on standard GUTs but the peculiar renormalization properties
[23] of supersymmetric theories ensure that this finely-tuned relationship can be maintained
in all orders of perturbation theory. Thus the problem of radiative corrections is avoided,
although the initial necessity to fine-tune is still present, so that the progress is rather
technical. An obvious question is whether a suitably sophisticated Ggyp would in fact
impose masslessness on the SU(2) doublet Higgs [24], in which case the initial fine-tuning
problem would also be solved.

As long as the supersymmetry is eventually broken explicitly, there are also a number
of dimensionful parameters specifying the mass differences between different superpartners
which must also be fixed at values which are presumably much smalier than the Planck
mass. (Note however that the allowable upper bounds on these dimensionful parameters
have not all been determined.) Once again, supersymmetry generally ensures that these
parameters only acquire logarithmically divergent radiative corrections, and they are
therefore technically “naturally”” small in the sense of ’t Hooft. The corrections are not
finite, but are proportional to the bare supersymmetry breaking masses, just as conventional
radiative corrections to fermion masses are proportional to the bare fermion masses which
break chiral symmetry. These properties of the radiative corrections apply as long as
supersymmetry is not broken by explicit fermion masses or other terms which do not
respect supersymmetric relations between dimension 3 coupling terms: such terms would
induce quadratic divergences because they are less “soft”’. One is uneasy about having
so many finely-tuned “small”’ mass parameters to break supersymmetry, even if they are
in some sense natural, and this is a major motivation for the dynamical models [9-11]
of the previous subsection.

There is one dramatic consequence of the supersymmetric GUTs discussed, namely
that the grand unification mass can be substantially altered [13, 37, 38] with the nucleon
lifetime perhaps becoming unobservably long. If one just includes in the evolution equations
for the SU3) x SU(2) x U(1) intermediate energy gauge couplings the contributions of
supersymmetric partners of the gauge bosons (gluinos and the like), one finds [37] that the
rate of approach of the coupling constants is significantly reduced:

1 1 11 -9
— — —— = — — In (m¥/0%) - — In(m}/Q?). 19

a3(QZ) az(Qz) 127'C ( X/Q )_) 127_,: n(mX,Q ) ( )
This means that the estimate of In (my/my,) is increased by about 209} and my becomes
0(10'7) GeV. In a realistic theory one must supplement equation (19) by the contributions
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of Higgs multiplets which have the effect [38] of somewhat reducing my again, but the
proton litetime is nevertheless estimated to be considerably longer than the usual 10!
years or so, unless one has several light Higgs supermultiplets. This circumstance at least
provides us with a possible experimental test of supersymmetric GUTs; if nucleon decays
are detected in the forthcoming generation of experiments, the simplest versions of these
theories are excluded. However, observation of nucleon decay does not necessarily-mean
that supersymmetric GUTs are wrong. Indeed they make slightly less implausible an alterna-
tive mode of baryon decay via intermediate scalars. In a conventional GUT it is necessary
that scalars have masses O(10° to 10'') GeV if their contribution is to be competitive
with gauge boson exchange. In conventional GUTs it is unnatural to have scalars with
masses < my, but this is technically natural in a supersymmetric GUT. Supersymmetrists
need not despair if nucleon decays are observed soon!

I11. UNIFICATION IN SUPERGRAVITY

1. Models, and motivations for compositeness

While the models of the previous section have several encouraging features, they are
by no means completely satisfactory. One can also object that none of those models is truly
superunified, in that cach of them has simple supersymmetry grafted on to a more or less
unified gauge group, and none of them combine gauge and supersymmetry transformations
into a more comprehensive algebraic structure. Furthermore, none of the previous models
gave a thought to gravity, whose understanding at the quantized level was one of the
initial motivations for introducing supersymmetry {2]. Supergravity theories are candidates
to fulfill all these objectives: the difficulty is that they are relatively few in number and
their internal symmetry properties bear little obvious correspondence to our phenomeno-
logical requirements.

Supergravity theories [2] are characterized by N = 1, 2, 3, 4, 5, 6 or 8 local super-
symmetry generators and have corresponding SU(N) global internal symmetries, with
vector boson contents appropriate for gauging SO(XN). It is believed that all these internal
SO(N) symmetries may in fact be gauged. The constructions are completed [39] for
2 < N <4, the N = 5 case is almost completed and no problems are anticipated [40],
while there are no known obstacles to the extension to N = 8. Gauging the internal sym-
metry is necessarily accompanied by the introduction of a cosmological constant:

Acosmo oC gzmglanck' (20)

It is not clear whether this is a virtue or an embarrassment: we want the presently observed
value of A, t0 be zero, or at least microscopic on any particle physics scale, and this
means that A, must have been non-zero before the spontaneous breakdown of gauge
symmetries. Hawking and collaborators [27, 28] have argued in the context of quantum
gravity that the apparent A, must be of order mpy. When it is measured over Planck
volume scales. If one wants to introduce A ., # 0 on such small scales, presumably
one must either gauge supergravity or else violate local supersymmetry already at the
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Planck scale. However, it is not obvious that one can do the latter while retaining even
a simple N = 1 supersymmetry at larger distance scales, necessary for making some
contact with the models of the previous section.

There is still another problem, though, namely that the internal symmetry of the
maximal extended supergravity theory is insufficient [14] to contain all the “observed”
low energy group, let alone a GUT:

SO(8) 3 SUB)xSUR)x U(1);  SO(8) = SUR) x U(l) x U(1). Q1)

We see from (21) that even N = 8 supergravity does not contain fields which are candi-
dates to be the W, and it is also impossible to accommodate all the observed fermion
spectrum. Furthermore, the fermions are real with respect to SO(8), and it is not clear why
they do not all acquire large masses, as happens in GUTs which do not have chiral fermion
representations. These observations suggest that if supergravity is to be of any relevance,
some {15, 4] at least of the known “elementary” particles must in fact be composites of
preon fields taken from an underlying extended supergravity theory. And if some of the
“clementary” particles are to be composite, why not all [3] of them?

This point of view gets some indirect support from recent work by Hawking and
collaborators [27, 28] on the propagation of elementary particles through space-time foam.
They claim [27] that any elementary scalar field would acquire 2 mass of order my; from
propagating through the foam of pure gravity, while any elementary spin 1/2 field would
acquire [28] a similar mass from propagating through the foam of a supergravity theory,
at least if it were not protected by an exact gauge symmetry. If these arguments are correct,
it might be impossible to imagine the original ficlds of an extended supergravity theory
surviving as essentially massless down to energies < mpp, and one may be forced to describe
the known particles using composite fields.

The remainder of this section describes attempts to follow this line of thought,
exploiting some concealed symmetries of supergravity theories.

2. Concealed symmetries of supergravities

It has been realized [4] that one can formulate SO(N) supergravity theories in such
a way that they are invariant under a larger global “parent” group, e.g. non-compact
E, in the case of N = 8 supergravity, with a local gauge symmetry e.g. SU(8) in the case
of N = 8 supergravity. This gauge symmetry enables one to reduce to the physical degrees
of freedom, e.g. from 133 scalars in the basic representation of E, via 63 SU(8) gauge
transformations down to the 70 scalars in the N = 8 supergravity theory. The connections
for these gauge transformations are not elementary, but composite fields containing for
example combinations (0,v)v-! where v is a matrix of scalar fields. They therefore do not
correspond to any physical states in the original Lagrangian — they have no poles in
their propagators. Cremmer and Julia [4] however conjectured that they might become
physical, propagating states as a result of the supergravitational dynamics becoming strong
on an energy scale E ~ mp. They emphasized a possible analogy with CPN~! models
in 2 dimensions [41], which start off with a “parent” SU(¥) symmetry and have a gauge
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U(1) symmetry. Quantum corrections generate a long range U(1) gauge potential which
eventually confines the constituents in the two-dimensional model. A similar phenomenon
has been found in a supersymmetric three-dimensional model by Nissimov and Pacheva
[42], with the dynamics generating a physical long-range gauge particle. There are even -
arguments [43] that a nonlinear spinor theory in 4 dimensions will give rise to non-Abelian
gauge interactions at energies E < the cutoff A, presumably to be identified with my;.
Notice that all these examples start with a local symmetry in the Lagrangian, in contrast
with some other subconstituent models which hope to get a (possibly approximate) gauge
theory from a symmetry which is initially global.

3. “Fundamental™ particles as composites

If one is willing to suggest that gauge bosons may be eomposite, it is natural to go
further and suggest [3] that all the observed “elementary” particles — quarks, leptons and
Higgs scalars -—— may also be bound states made out of preons appearing in the basic
supermultiplet of some extended supergravity. The only low-mass particle which might
be left as truly “elementary” is the graviton which is a singlet of all the symmetries in the
extended supergravity theories. All other “fundamental” particles would be composite
with a binding scale of order my,.

The first problem which then arises is the choice of composite supermultiplet(s) with
which to identify the known particlcs. Since the gauge connection > (9,v)v~! + ... is similar
to an SU(R) current, it is natural to start [3] with the massless supercurrent multiplet shown
in Table 1.

TABLE 1
i
Helicity 2 .—3/2! -1 —y;zI 0 F12 1 o+ | 432 ) 42 | 452
; ‘
Representation R § | e 216 420 504 378 168 36 3
I +1 | +8 | +28 | 456 | +70 | +56 | +738

The first row of representations have one upper and several antisymmetrized lower indices
Risc.5p while the second row contains trace representations Rfyc. p; Which have
been removed from the top representations to make them irreducible. There is then
a question what to do with the trace representations: originally we discarded [3] them by
analogy with the SU(8) singlet vector field which cannot be identified with a gauge field
in the analysis of Cremmer and Julia [4], though this immediately implies the breaking
of supersymmetry [44].

The next problem is how to embed the observed “low-energy” symmetries into this
representation structure. Even if one does not worry about embedding a GUT such as
SU(S), there is a difficulty with embedding SU(3) .04, in @ vector-like way so as to conserve
parity in the strong interactions. It is in fact impossiblc [3] if one retains all the composite
fields in the massless supercurrent multiplet, and it is confidently conjectured that this
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problem remains if one uses any finite set of supermultiplets which is not completely
vector-like with respect to all the internal symmetry group, as in the case of a set of massless
supermultiplets making up a complete massive supermultiplet. This result has been proved
by Frampton [16] for the restricted case where the maximal helicity in each supermultiplet
is in an n-fold completely antisymmetric representation, and each supermultiplet appears
with multiplicity 0 or 1.

It therefore seems that in order to make contact with the real world, one must cither
select judiciously among the supermultiplet states to be retained and/or use an infinite
set of supermultiplets.

4. A possible superGUT

We propose [3] that one proceed by demanding that the only particles left with
masses < mp, should be a subset with renormalizable interactions. This means that there
shouid be no light particles with 4| > 1, and that the only particles with |A| = 1 should
be gauge bosons. It means further that the residual fermions should be free of anomalies
with respect to the low-energy gauge group. It is also possible that there may be small
non-renormalizable interactions at low energies scaled by inverse powers of the Planck
mass: (E/mp)">'. In our search for candidate superGUTs obeying these criteria, and
starting off from the massless supercurrent multiplet shown in Table I for the case N = 8,
we established [3] the two following theorems.

Theorem 1: The only extended supergravity theory whose massless supercurrent multiplet
is large enough to include enough particles for a GUT is the largest N = 8 supergravity
with its local SU(8) symmetry.

Theorem 2: The only plausible GUT group which can be included in the N = 8 super-
gravity theory is SU(5).

Clearly other frequently discussed [7} GUT groups such as SO(10) and E¢ are not
subgroups of SU(8). We also found two indications that SU(8) breaks down directly to
SU(5), and that SU(6) and SU(7) are not likely to be useful intermediate symmetry groups.
The first reason is that the only SU(6) or SU(7) anomaly-free representations of fermions
in the massless supercurrent multiplet which are vector-like with respect to SU(3)0ur
are also vector-like with respect to the full SU(6) or SU(7) group, giving rise to the familiar
problems in understanding the fermion mass spectrum. The second reason is that if any
component of the 420 of scalar fields in Table I acquires a vacuum expectation value,
then SU(6) and SU(7) get broken. The maximal simple group which has a chiral fermion
representation that is vector-like with respect to colour SU(3) is SU(5). It is possible [17]
to combine this with an SU(2) generation (or family) group which is automatically anomaly-
-free.

It is natural to ask what is the maximal (in the sense of the largest number of helicity
states) SU(5) anomaly-free representation of left-handed fermions vector-like with respect
to colour SU(3) which one can extract from the massless supermultiplet of Table I. It turns
out [3] to be

(45+45)+424) +9(10+ 10)+3(5 + 5)+9() +3(5 + 10). 2)
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We are encouraged to see that the representation (22) contains three generations of chiral
SU(5) fermions, which agrees with our phenomenological prejudices. To fit the observed
particles requires at least 3 generations, the SU(5) etc. GUT calculation of the b quark
mass fails [36, 45} if there are more than 3 low-mass generations, and cosmological nucleo-
synthesis is uncomfortable [46] with more than 3 or perhaps 4 almost massless neutrinos.
Another amusing observation is that the representation (22) contains large numbers of
fermions which are vector-like with respect to SU(5) and can hence acquire masses of order
my to mpy, (105 to 10'° GeV). In fact there is so much vector-like stuff with masses > my
that above all thresholds [3]

Bsuesy = 147% (23)
in a normalization convention where the usual scenario with Ng generations and ignoring
Higgses and superheavy particles would yield —55+4Ng. With such a large positive
B-function it is possible [47] that the gauge coupling constant becomes of order unity at
the Planck mass, as working this trick only requires

{Bsucsyy = 70 (24)

in the energy range between my and mipp, as indicated in Fig. 2. There is therefore no need
for non-perturbative supergravity to manufacture somehow a small coupling ogyy at the

aiﬂ ‘xi‘

SU(3)

SuU(2)

U uQ)
L 1 i Energy 1 L i

1GeV my my 1GeV my mo

Fig. 2. The conventional picture (a) of the renormalization of gauge coupling constants is modified (b)
above the grand unification mass in theories with a large number of superheavy particles of mass O(mx).
The wriggly verticallines in this and the following figure indicate the onset of quantum gravity effects of O(1)

Planck mass. The smallness of agyr & 1/42 at my =~ 10'% GeV -— and hence the smallness
of the fine structure constant also — find a natural explanation through the existence of
very many massive particles: my < m < my.

It is natural to ask how the value of my ~ 0(10~* to 10-)mp, could be generated.
Some time ago a possible solution was proposed [48] in the context of conventional GUTs,
which is illustrated in Fig. 3. The Higgs self-couplings are supposed to be of order g2
(the gauge coupling squared) at the Planck mass. Then because they are not asymptotically
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free, they decrease as the energy decreases. When a suitable combination of them decreases
to O(g*), radiative corrections to the Higgs potential become important and can cause
symmetry breaking [49]. Calculations [48] show that they naturally generate my = O(10-*
or 10~°)my. It is possible that this scenario may be adapted to our superGUT picture
as also shown in Fig. 3. Although we have not made any explicit calculations in this case,

di b o« §

SU(3)

SU(2)

U SU(2)

U

Higgs e
Energy

Fig. 3. A possible scenario (a) for the generation of the grand unification mass-scale by radiative corrections
when an appropriate grand unified Higgs coupling becomes O(g*), which may be carried over (b) into a theory
where the gauge coupling increases at energies = my, as in Fig. 2b

it seems quite possible that a relic of the previously unique asymptotic unfreedom of the
multi-Higgs couplings will still drive them to zero at an energy scale of order my, triggering
spontancous symmetry breaking in the same way as before.

It is clear that the climination of unwanted helicity states does violence to the super-
symmetry of the underlying theory: hitherto we have presumed that all supersymmetries
are dynamically broken in the process of generating an effective renormalizable “low
energy”’ gauge theory. An alternative possibility is that one of the original eight super-
symmetries survives, so that one can play all the supersymmetric GUT games of section
IL. 3. Imposing a simple supersymmetry in addition to anomaly freedom restricts us to
a smaller fermion spectrum than that of Eq. (22), and we find that (with or without traces)
the maximal allowed spectra do not lead naturally to a three generation theory, though
non-maximal spectra may contain enough states to embed any of the models of section
II. 3. For example, including traces the maximal three generation spectrum is:

6(1)+4(24)+(45+45)+3(10+ 10)+ 3(5+5)+3(10+5); 25)

and without traces we can keep:
3(1) + 4(24) + (45 +45)+2(10+ 10)+ (5+ 5)+3(10+3). (26)

The spectra increase by one ( 1(_)—{»1_6) and two (5+ 5) if we identify the basic 8 as right-handed
instead of left-handed as was done above.
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Another remark concerns the admissibility of a global Peccei-Quinn [34] U(1) chiral
symmetry in the superGUT framework [50]. There are certainly sufficiently many degrees
of freedom to accomodate such a U(l)pQ in the originally proposed superGUT (22),
or even in the smaller susy GUT versions (25) or (26). However, it is not clear how such
a U(1)pg can be generated dynamically in a plausible way. It should be noticed that the
candidate superGUT (22) has a sufficiently complex structure to generate enough (ng/n),
thereby avoiding a pitfall [S1] of the minimal SU(5) axion model [50].

These examples indicate that the superGUT framework is sufficiently rich to incor-
porate many features desired in supersymmetric and other GUTs.

5. Objections and alternatives

The philosophy [3] that all “elementary” particles are bound states of preons from
supergravity is by no means compelling, and even if one accepts it, there are many objec-
tions that one can make to the specific realization described in the previous subsection.
Why choose only the massless supercurrent multiplet? Why throw away the trace repre-
sentations? What happens to all the unwanted helicity states in the supermultiplet? How
do the dynamics discard them and select a subset of states with renormalizable interactions?
In view of these questions it is to be expected that alternatives to the superGUT of the
previous subscction heve been proposed [17, 18].

One ulicrnative philosophy has been adopted by Derendinger, Ferrara and Savoy
(DFS) [17]. As was done before, they discard all states with {4] > 1 and all statesof |4} = 1
which are rot adjoints of the SU(N) group. They demand that the residual set of 14| = 12
fermions be real under SU(S) with the exception of some number of conventional chiral
SU(5) 5+ 10 generations. Finally, they demand that theory be free of anomalies for the
full SU(N) gauge group. They construct such theories out of supermultiplets whose maxi-
mum helicity stote is in an n-fold totally antisymmetric representation, and demand that
the multiplicity of cach supermultiplet be 0 or 1. Starting with the different SU(N) theories
they find the following numbers of generations:

N=5 N=6 N=7T N-=
2 1 1 3 generations, 27

which seems to favour the N = 8 theory. Unfortunately, not all the supermultiplets they
need in their models can be constructed as bound states of finite numbers of preons. It
is easy to see from the work of Cremmer and Julia [4] that states of integer (half-integer)
spin can only have an even (odd) number of SU(8) indices if they are to be interpretable
as bound states of preons, and this is not true for the supermultiplets originally used by
DFS. They have also considered models in which the maximum helicity state has a two-
-column Young tablcau representation, getting in this way 5 generations from the N = 8
theory, but again at the expense of using multiplets which cannot be bound states of
supergravity preons. If they impose this restriction, they [17] have to be prepared to use
supermultiplets with multiplicities greater than one, and it turns out that SU(5) 5+10
generations can only be obtained in pairs.
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Kim and Song [18] propose a model in which several supermultiplets are used, and
the only trace representations retained in the effective gauge theory are those of fermions.
Optimistically, they also discard high helicity composite fields, and disregard the constraint
that the SU(8) supermultiplets be obtainable as composites of N = 8§ preons. A distinctive
feature of their model is that they break SU(8) down to SU(5) x SU(3) and use the latter
factor as a technicolour group. In fact, in their model, some of the observed low-mass
fermions are composites of hyperfermions, and hence composite on a scale < mpy.

We do not feel that any of these schemes has strong arguments for preferring it over
the original superGUT scheme [3]. Also, many of the previously unanswered questions
still remain unanswered: what happens to the unwanted helicity states with [A] > 17
(though none of the |4| = 1/2 states are discarded in the DFS scheme) how do the dynamics
select which renormalizable low-energy subthcory? The remainder of this paper is devoted
to three different possible fates for the unwanted helicity states:

— They were never bound in the first place;
— Some of them are present in the theory as massless states with very weak couplings;
— They all exist, and have acquired masses by combining with “partner’” helicity states.

6. Possible fates of unwanted helicity states
A. They were never bound?

Is it possible that the dynamics of the extended supergravity theory could avoid
forming bound states in unwanted helicity channels, while forming the bound states that
are desirable? Earlier we have taken the point of view that the binding dynamics could
implement Veltman’s theorem [32] by forming poles corresponding to a renormalizable
subset of composite fields — gauge spin 1, anomaly-free spin 1/2 and spin 0 — while
singularities associated with nascent unrenormalizability could preclude binding in other
composite channels.

Soluble supersymmetric non-linear ¢ models in 2 and 3 dimensions do not shed much
light on this problem. In the two-dimensional case [41] anomalies give a mass to the com-
posite gauge field and its superpartner acquires the same mass. This is an interesting
example how a potentially anomalous gauge interaction can be removed from the low
energy theory [52]. The three-dimensional model {42] exhibits a strong coupling phase
in which both the gauge fields and their superpartners exhibit zero mass poles. In neither
case are there any high helicity fields that one might fear could become physical and mess
up renormalizability. In both cases simple supersymmetry is preserved by the dynamics.

In our case the breaking of some supersymmetries is necessary, since as noted previously
low energy (< my) phenomenology can tolerate at most N = 1 supersymmetry, and at
least some high helicity states from the supermultiplet of Table I must disappear since
there is no known consistent interacting field theory for particles of helicity > 2. As far
as we know, there is no theorem or principle requiring the existence of a bound-state pole
in all composite channels. Indeed, there are even arguments to the opposite effect. Weinberg
and Witten [53] have argued that there can be no massless (composite or e¢lementary)
state with helicity |A] > 1/2 in a theory with a Lorentz-covariant conserved current, and
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1no massless state with helicity {4] > 1 in a theory with a Lorentz-covariant energy-momen-
tum tensor. However, these technical assumptions of Lorentz covariance exclude most
cases of physical interest. Thus gauge theories possess vector currents which are Lorentz-
-covariant only to within a gauge transformation, and theories of gravitation — such as
extended supergravities — do not possess a Lorentz-covariant energy-momentum tensor
either. In the case of N = § extended supergravity there are currents associated with
rigid SU(8) transformations, and explicit construction [54] shows that they are covariant
only up to an Abeclian gauge transformation. Therefore the Weinberg-Witten [53] theorem
is inapplicable to our problem — fortunately, since it would have been disastrous if it had
been relevant.

We conclude this discussion in the belief that our knowledge of strong coupling
dynamics is not sufficient either to exclude or to sanction the hypothesis that the unwanted
helicity states in our massless supercurrent multiplet just were never bound in the first
place.

B. Are the unwanted helicity states in fact present?

What if the unwanted helicity states do bind, and show up in the physical spectrum?
Unless one can find mechanisms to marry them off with partners so as to acquire large
masses (see discussion C), they may be around as zero (or low) mass particles. This is for
the most part phenomenologically disastrous, but not universally so. Massless states of
high helicity are tolerable because their couplings are characterized by inverse powers
of an intrinsic mass paramcter, in our case the Planck mass [55]. We will not prove this
here in all generality, but give a simple illustrative example. It suffices for our purposes
to consider helicity amplitudes for 2 < 2 scattering of massless particles. Ader, Capdeville
and Navelet (ACN) [56] have shown that dimensionless amplitudes F have the following
kinematic singularities:

F(14+2 - 3+4) = ()" (J =0 (J—u)™F, (28)
where s, 1 and v are the conventional Mandelstam variables and
)'S = I)'l +}~2 +/{3 +i4|,
Ay = Ay —Ay— A3+ 44l
;'u = I;'l_)‘2+;'3—j'4l) (29)
and the dynamical structure is manifested in the kinematic singularity-free amplitude F.
As a warm-up, consider spin 1/2 + spin 1/2 — spin 1/2 + spin 1/2:
Ac=1/2, A= =102, A3 = X1/2, i,= Fl/2 (30)

In this case
by=0, 4,=00r2 A,=20r0 (31)

so that
F~ (uort)F. (32)
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The amplitude F can contain a direct channel photon (or gluon) pole ~ 1/s so that the final

dimensionless amplitude
uort
P () o

need contain no dimensionful parameter (cf. the well-known amplitudes and cross-sections
for ete~ - wtu-, qq or qq — prp-, q'q’). Now consider the possible production of a mass-
less helicity 3/2 particle in e*e~ or qq collisions via spin 1/2 + spin 1/2 — helicity 3/2
+ spin 1/2:

Ay=1/2, Ay = =172, 23=3/2, 1,=1/2. (B34
In this case ‘
Ag=2, A=0 1,=2,

and if we put in a direct channel photon (or gluon) pole we get

us\ ~
F ~ <~> F, (35)
s
and for F to be dimensionless we need a factor in F with the dimension of (mass)~%, which
can in our case only be (mp ). The cross-scctions for singly producing such a massless

helicity 3/2 perticle at present energies would therefore be completely negligible. A similar
analysis can be made of the process

Ay =12, A= ~1/2, i3 =13/2, i,= =32, (36)
with the conclusion that the dimensionless amplitude
F~ (tu¥)F. @7

If we look for a direct channel photon (or gluon) pole in F, this time we get a coefficient
O(mp)~*. This may seem surprising since one might imagine giving the helicity 3/2 state
a conventional dimensionless minimal gauge coupling. However, the only known [57]
field-theoretically consistent way of doing this involves giving a non-zero mass to the spin
3/2 particle, which we have excluded by hypothesis.

One can make a similar analysis of scattering amplitudes involving massless spin
1 particles. There it is well-known that individual Feynman diagrams give amplitudes
which would lead to cross-sections blowing up at large s, but that one can get cancellations
between different Feynman diagrams with direct and crossed-channel exchanges, which
make the theory renormalizable, if and only if the couplings are those of a gauge theory.
Since the unwanted states of helicity +1 in the supermultiplet of Table 1 do not lie in an
adjoint representation, they cannot have. gauge couplings. Hence they must run into
power-counting problems analogous to equation (35) (which can easily be checked using
the ACN rules) and hence have low-energy production cross-sections suppressed by powers
of the Planck mass. Similar arguments work « fortiori for states of higher helicity.
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There is one possible way in which one might anticipate a possible very weak low
energy coupling to show up: if it can interact coherently with large amounts of matter
as does the graviton. Clearly any other massless spin 2 field which is a singlet of the low
energy exact gauge symmetry SU(3).omur X U(1) could have such an interaction, and
clearly such states abound in the supermultiplet of Table I. We have no excuse why their
exchanges should not show up with a magnitude comparable to conventional graviton
exchange: perhaps they do ? Although the exchanges of bosons with non-trivial SU(3) x U(1)
transformation properties of fermions cannot act coherently on large bodies of matter,
one might worry whether multiple exchanges could, ¢.g. the simultaneous exchange of two

Fig. 4. An attempt to generate a long-range potential by the exchange of a pair of states of helicity 3/2

helicity 3/2 fermions shown in Fig. 4. If these two fermions were massless there would
be no mass gap and a long-range potential could result. However, the helicity rules (28,29)
applied to the matter-matter-helicity 3/2 — helicity 3/2 amplitude F of Fig. 4 ensure a strong
suppression at the 1 — 0 tip of the crossed-channel branch cut which dommates the long-
-range potential, making it unobservably small.

It therefore seems that certain of the unwanted helicity states might indeed be present
and have interactions with known particles which are too weak to be detected directly
experimentally. This does not necessarily mean however that they can have no observable
consequences. As has been emphasized by Steigman, Olive and Schramm [58], their gravi-
tational interactions cause the Universe to expand faster than would be expected on the
basis of the observed degrees of freedom, and this could affect primordial nucleosynthesis.
From the successful comparison of the cosmological *He abundance and calculations
assuming a conventional expansion rate with three species of light neutrinos, one can
infer [46, 58] that the Universe could only have been expanding a factor ¢ faster than the
conventionally assumed expansion rate with two low-mass neutrinos, where

£—-1<0.15 (38)
at the time of nucleosynthesis. In general one has

T 4
§2=1+4;43_gd<'%)’ gd=%gf+gba (39)
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where g; and g, are the numbers of fermions f and bosons b which decouple from the rest
of matter at a temperature Ty, and T is the (time-dependent) effective temperatures of f
and b, which we assume to be universal. At the time of nucleosynthesis we have

AN o
<7) N <4g(TD)) ’ @0

where g(Tp) is the total number of helicity states which were thermally active at the
decoupling temperature Tp,, including observable fermions F and bosons B, as well as
the ones which decouple. The condition (38) requires

go+5 8 < 0.07[g(Tp)*. (41)

Equation (41) is satisfied for the desired values of g,, g since if we include all the
helicity states in the original supermultiplet of Table 1

g(Tp) = 1920. (42)

While it is unlikely that all of the unwanted states in the original supermultiplet of Table I
could be massless with very weak interactions characterized by inverse powers of the
Planck mass, this possibility cannot yet be ruled out by the nucleosynthesis constraint
[46, 58]. However this constraint could perhaps be useful if it were tightened up in the
future.

C. Have the unwanted states combined with “partner” helicity states to
acquire large masses?

It was recalled [3] in subsection IL.3 that it is probably impossible to embed a vector-like
SU@B)coour group in a theory with any plausible finite set of complete massless super-
multiplets, the only known exceptions being superpositions of massive supermultiplets
in which case there is no obvious reason why all the states do not have masses O(mp).
Thus one must either take only some judicious subsets of complete supermultiplets, as
was done in subsection I1.4, or else one must postulate an infinite set of supermultiplets [16].
It is interesting to note in this connection that Grisaru and Schnitzer [59] have recently
advanced arguments that scattering amplitudes in extended supergravity theories may
Reggeize. They have deduced the quantum numbers of the physical zero mass states which
should appear on some of these Regge trajectories, and have shown that they correspond
to a set of supermultiplets which include the one in Table I on which we have been focussing
our attention. However, they also find other supermultiplets, and it seems likely that
a full study of all scattering amplitudes will reveal an infinite set of supermultiplets. In
fact, previous to their work, we had already been led to imagine a scenario in which such
an infinite set might actually be present in the physical spectrum.

It is a striking fact that the physical spectra in both 2- and 3-dimensional non-linear
og-models [41, 42, 60] contain unitary representations of the “parent” global symmetry,
e.g. SU(N) in the case of 2-dimensional CPY~! models [60] and SO(N) in the 3-dimensional
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model of Nissimov and Pacheva [42]. In unpublished work, Rabinovici [61] has studied
2-dimensional non-linear g-models with a “parent” non-compact SO(N, 1) symmetry.
He found an apparent infinity of solitons in the physical spectrum: could these form a uni-
tary representation of the “parent’” non-compact symmetry? If so, one would be led to
hypothesize that the physical (composite) spectrum of an extended supergravity theory
may not only contain unitary representations of the local symmetry (SU(8) in the case
of the N = 8 theory) but in fact full unitary representations of the non-compact global
“parent” symmetry (non-compact E, in the case of the N = § theory). Unitary repre-
sentations of these non-compact groups would of course contain infinite sets of unitary
representations of their compact local subgroups. These then reopen the possibility of
“partner”” helicity states combining with all the unwanted helicity states in the original
massless supermultiplet of Table L.

The structure of unitary irreducible representations of U(l, 1) is well-known [62],
and the analogous Barut force bosonic constructions of unitary irreducible representations
of some non-compact groups appearing in supergravity theories have also been made
recently [63]. However, these methods have not yet been extended to the case of the non-
-compact E, group encountered in N = 8 supergravity. We would like to know not only
what are the appropriate unitary representations of non-compact E, which can be obtained
using the 70-dimensional scalar fields of the N = 8 theory, but also how one can represent
the supersymmetry transformations on them and whether this requires the use of reducible
E, representations at each spin. For orientation we consider first the simpler case of N = 4
supergravity, which is mathematically more tractable.

The N = 4 theory is invariant under SU(4) x SU(1, 1). The scalar fields of the theory
can be described by a complex scalar z which is an SU(4) singlet. Under infinitesimal
SU(1, 1) transformations:

L,z=1i, L_z=iz*, Lyz= —iz,

L,Z= —iz’, L_.Z= —i, Ly =iz, 43)
[L:, L_] = —2iL,
[Lei L+] = iL,,

[Lo, L-] = —iL-, )

here L. is the hermitean conjugate of L., and L, is the generator of the compact U(1)
subgroup. The group SU(l, 1) acts non-linearly on the fundamental supergravity multiplet
(preons) in the way described explicitly in Ref. [54]) for the more general case of Sp(2n, R),
where here n = 1 [Sp(2, R) = SU(L, D}

Multiple commutators of SU(1, 1) generators with a supersymmetry generator produce
new fermionic generators, which in turn, when anticommuted with each other give rise
to generalized momentum operators. In this way, starting from the SU(1, 1) algebra together
with the original supersymmetry algebra, one generates an infinite dimensional super-
algebra. It is easy to see that the commutator of an SU(1, 1) transformation with a local
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supersymmetry transformation of parameter &(x) gives a supersymmetry transformation
of parameter &'(x), where

L+ 8' == Z Z’)’s&‘,
L ! i
- = -— ZYg¢,
€ 4 Vs
, i
LO: £ = — Z Y589 (45)

plus field-dependent transformations. Since we wish to find the rigid (global) algebra
generated by supersymmetry and SU(l, 1), we have to consider the asymptotic limit of
large x. In this limit all fields vanish except for the scalars which tend to some constant,
and therefore we drop all field-dependent terms except the supersymmetry transformations
with parameters (45), in which asymptotically both ¢ and z are constant. This result appears
plausible since a generator of supersymmetry transformations is expected to transform
under SU(1, 1) like the spin 3/2 field which is a gauge field for supersymmetry. By repeating
the process we see that multiple commutators give rise to the fermionic generators

QA,n,m = EanQA

0" m = 2'2"0" = Op (46)

where z and Z are the asymptotic constant values of the scalars and Q, and Q* carry oppo-
site helicities. Without writing here the complete infinite dimensional superalgebra we
note that the above construction bears a strong similarity to that by which infinite Kac-
-Moody [64] algebras are obtained from ordinary Lie algebras. While in the Kac-Moody
case one makes the generators of a Lie algebra functions of the points on the unit circle
(the group U(1)) in our case we make the generators of the original supersymmetry algebra
functions of points in the quotient space SU(1, 1)/U(1). Clearly the infinite dimensional
superalgebra admits SU(1, 1) as a group of automorphisms since this group can be re-
presented on the quotient space. Observe that in the Kac-Moody case the infinite algebra
has c-number terms similar to Schwinger terms, which are necessary for the existence
of certain unitary representations. It is possible that such ¢-number terms are also needed
in our case. This type of algebraic structure is also reminiscent of the Virasoro algebras
encountered in dual models [65]: it would indeed be remarkable if the supergravities
eventually turned out to have a deeper connection with dual theories.

Some of the above results can be generalized to the more complicated case of N = 8
supergravity where the group is non-compact E,. The quotient space E,/SU(8) can be
parametrized by a matrix Z constructed from the scalar fields which are in the 70 of SU(8).
The non-compact generators of E, operating on the eight supersymmetry charges will
generate an infinite number of supersymmetry charges which transform under SU(8) like
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the product of an 8 with a symmetrized power of 70’s. Similarly they will generate general-
ized momenta and these together with the supersymmetry charges will form an infinite
dimensional supersymmetry algebra. We do not have to write it down to guess at the form
of a representation. If we start with a supermultiplet of N = 8 supergravity and apply
to it the non-compact generators of E; we obtain an infinite set of states. A basis for this
set consists of the original supermultiplet plus supermultiplets whose SU(8) content for
each helicity is a product of the original SU(8) representation for the same helicity with
a symmetric product of 70’s. This infinite multiplet can be thought of as obtained from
the original multiplet of N = 8 supergravity by multiplying it by an arbitrary number
of scalar fields, but we consider it as a linear set of states on which one can obviously
represent toth the generators of E, and the original supersymmetry charges. Consequently
the full infinite algebra obtained by commuting these quantities an arbitrary number
of times can also be represented. In this infinite multiplet every representation which appears
for a given helicity recurs an infinite number of times and therefore the E, representations
are not irreducible. However it could be that the infinite supermultiplet is irreducible
as a representation of the infinite supersymmetry algebra.

It is easy to satisfy oneself that the symmetric products of 70’s of scalar fields include
an infinite number of times cach and every SU(8) representation with the Young tableau
representation

(47)

where

Heg+h, = even. (48)

To sece this, it is convenient to lump together the two boxes representing a pair of anti-
symmetrized SU(8) indices:

H-r (49)

I
Then adding a new 70 = H - H in a symmetric way to an already symmetrized product
-

of 70’s requires a compiae overlap (or mismatch) of one or both “double boxes” of the
new 70 with those of the last 70 previously laid down, i.e.
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Suppose we already have an arbitrary representation of the type (47) with ng+ n, even.
Then we can clearly add to it

E:Am:l
. F = ne -
1
or | =>4ng = 4n, = 1
M T
or O+ g+ == = Ang = 2
L I R N O
or ‘:’=-=>An6=dn4=dn2=0
L1 1
or —’}— + 4+ = =T T1=4n, = 2. (5D
N

Games like this enable us to construct any other representation with ng+n, even, and in
particular adding an arbitrary number of

=. (52)

enables to replicate any such representation an arbitrary number of times.

Given an infinite number of every representation of the type (42, 43), if we break
SU(8) down to SU(6) it is then easy to see that the symmetric products of 70’s contain
an infinite number of every type of representation of SU(6). Reverting to conventional
single box Young tableau notation,

a || of SUS) = |- =-, |, Z] of SU(6)
a E of SU8) = ||, . [H of sSU®)
a [ of SU®)= |-, T[1, of SU®. (53)

|

Hence we can construct an arbitrary representation of SU(6)

a1, i

oI - [

111

IENRE

(54)

(
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with no restriction on the numbers of times (ns, n4, 13, n,, n,) that the various heights
of columns appear. This means that all unitary representations of noncompact E, obtained
by multiplying a “base’ representation R(4) by arbitrary symmetric products of 70 scalar
fields contain every representation of SU(6) an infinite number of times.

It is known [66] that an irreducible representation of non-compact E, cannot contain
more than k copies of any k-dimensional representation of SU(8) However, it is very prob-
able that supersymmetry cannot be represented using a set of irreducible E, representa-
tions at each helicity. (Recall that the representations R(Z) in Table I are reducible as
far as SU(8) is concerned.) Nevertheless, one can ask whether it is true that an irreducible
unitary representation of non-compact E, contains every representation of SU(6) an
infinite number of times. The answer is clearly yes, since there is an infinite set of distinct
SU(8) representations obtained in the E, series which all contain the same SU(6) represen-

1_

tation. To see this, recall from (48) that a i—! of SU(8) contains a singlet of SU(6), as

-

does a H of SU(8), so that we can always get more copies of any given SU(6) representa-

tion by going to SU(8) representations with more 70 scalars and taking the appropriate
element in the reduction with respect to SU(6).

Infinite dimensional representations are peculiar objects for which the conventional
arguments about real vs complex representations become rather ambiguous, since there
infinitely many ways of establishing correspondences between different helicity states.
Consider for example the trivial SU(3) example of discrete infinities of 3 and ZE representa-
tions. It would be natural to pair them up as follows:

(55

13 ) o
12 16
(RIS Ry SR INY

so that no massless state survives. However, one could equally well set up the correspon-
dence

169

3

3.
o (56)
3

1t |
fwal

in which one massless triplet survives, or indeed any finite number of 3 or 3 representations.
The infinite-dimensional representations of SU(6) that we have look a priori very chiral,
but we can use the liberty of helicity matching exemplified by (55) and (56) to leave any
arbitrary finite subset of massless helicity states.

It is easy to set up a systematic procedure for matching unwanted helicity states with
states of identical internal group (< SU(6)) representation content but different helicities,
as required if these unwanted states are to be able to acquire large masses O(mp). Start
with an arbitrary representation R(4,) of some helicity 4, from our original massless SU(8)
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supercurrent multiplet, and a set of non-compact E, representations with helicities including
Ao and —4,. Find for each helicity in the set the smallest number of 70’s which give a copy
of the desired representation R(4,) and remove this copy of R(4,) leaving behind at each
helicity an infinite number more copies of R(4,), as argued above. Repeat the procedure
with the first unwanted state of helicity 1o—1, belonging say to a representation R(A, —1).
And so on down through all the helicities down to ~—A,. Iteration can remove all the
unwanted helicity states from our original supercurrent multiplet. We can then go on to do
the same matching for unwanted helicity states in the newly introduced non-compact E,
multiplets. Since there are an infinite number of copies of every representation R at every
helicity, we can continue this process indefinitely, always finding a possible set of helicity
partners for any unwanted helicity state.

In this way we can find possible ways of giving masses to all unwanted helicity states,
leaving behind any arbitrary desired finite, null or even infinite subset of desired helicity
states. Of course this simple group-theoretical argument gives no inkling of any criterion
for deciding which (if any) desired helicity states avoid acquiring large masses. However,
it does suggest that the structure of composite states in the N = 8 extended supergravity
may be sufficiently rich to dispose of all the unwanted helicity states in the massless super-
current multiplet we discussed previously.

IV. OPEN PROBLEMS IN SUPERUNIFICATION

We have seen that despite all the interest and activity in supersymmetric versions
of various unified gauge theories, it is still by no means clear that supersymmetry is relevant
to Nature (or vice versa). A fortiori, it is even less clear what the supergap either should
be or may be.

In section II we saw that a supergap [8, 29] lower than 102 GeV cannot yet be excluded,
even if it may seem implausible to some of us. We also saw that a supergap [9-11] of
order 10° to 10* GeV may help solve various problems of mass scale hierarchies and dynam-
ical symmetry breaking, but no completely satisfactory model yet exists. Looking further
afield, the search for proton deccay may tell us [13, 37, 38] whether supersymmetry is
relevant at all at energies < 10'° GeV.

In section ILI we turned to attempts at unification in supergravity theories [2,4].
At this point we do not even know the complete catalogue of such theories: can the N > 6
supergravities be gauged, and if so, is this useful? We saw that unification in extended
supergravity seems to require the use of composite states. However, difficult questions
are then raised about the fate of unwanted helicity states. Much of section III was devoted
to possible answers to these questions: maybe some were never bound, maybe some are
light but interact undetectably weakly, maybe all the unwanted states found ‘‘partner”
helicity states and acquired large masses O(mpp).

The investigation of these possibilities requires much more understanding of the
dynamics of supersymmetric theories than we now possess. We do not know [11] whether
non-perturbative dynamical breaking of supersymmetry is even possible, let alone whether
the apparent symmetries of extended supergravities might be broken in the bizarre ways
that we seem so find necessary.
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However, it is at least possible to imagine that in extended supergravity we do have
the ultimate physical theory, and what we have to do next is learn to solve it.

We would like to thank P. Frampton, M. Gell-Mann and M. Giinaydin for useful
discussions.
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