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We consider the hypothesis 1hat the “big” unification of fermionic flavours and genera-
tions takes over the role of the “grand™ unification of flavours and colours, possibly being
followed by the “extended” unification of flavours, generations and colours. We propose
a definite unification scheme of fermion interactions which differs from the conventional
one by interchanging the roles of four colours (I, r, y, b) and four generations (e, u, 7, w),
thereby implying the existence of the fourth fermion generation (@) consisting of two leptons
(Vs »7) and two quarks (h, o).

PACS numbers: 12.20.Hx, 12.30.-s

1. Introduction

In contrast to most of the current work in this field [1, 2], we discuss here the possibility
that the “big” unification of fermionic flavours and generations precedes the“grand”
unification of flavours and colours [3], the latter unification being in fact replaced then
by the “extended” unification of flavours, generations and colours [4]. Speaking more
precisely, we consider the hypothesis that the standard electroweak symmetry group
SU(2) x U(1) for flavours is unified first with a “horizontal”” symmetry group H for genera-
tions and only later, possibly, with the standard strong symmetry group SU(3) for colours,
while according to the currently popular hypothesis those which are unified first are the
two “vertical” symmetry groups SU(2) x U(1) and SU(3) for flavours and colours.

The argument which lay at the roots of our devising this alternative scheme of unifica-
tion was the affinity between flavours and generations (both displaying broken symmetries)

* On leave from the Institute of Theoretical Physics, Warsaw University, Warsaw, Poland.
** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

(285)



286

and, on the other hand, the different quality of colours (related to exact non-Abelian sym-
metries).
Another argument.in favour of our unification scheme goes as follows. Assuming
the fermion contributions to the renormalization group f§ functions for different couplings
to be similar, their Q% evolution is determined by the size of the respective gauge groups.
It is well known that in the conventional unification scheme the coupling constants g and
gs of the standard SU(2) and SU(3) meet at Mg ~ 10'° GeV. Here we introduce the
horizontal SU,(V) gauged interactions with some strength gy and mass scale My;. Obviously
there are several possibilities for the behaviour of the gZ(Q?) on the “coupling plot”.
First we take My < M and consider the cases:
Case 1: g2 (M}) < gh(M}%) < gd(M}) and N > 3. Then gy and g meet below Mg
(see Fig. 1).

Case 2: g2 (M2) < gi(M}) < gs(My) and N < 3. Then gy and g5 meet below Mg.

Case 3: g2(M3) < g(M7%) and N > 3. Then the situation depends on the actual
values of gi(M3) and N. Note, however, that if these values are such
that g,; does not meet g below Mg and if we assume the minimal SUg(5)
unification above M then SU(N) must be larger than SU(5) in order to
get gy = g¢ at some mass scale above M.

Case 4: gi(M3) < gi(M}?) and N < 3. Then gy does not meet the other g’s.

2
W /%qc /1an28, (M2)

w w'e p /107" 5 (Mg)
Fig. 1. ldeological coupling plot in Case 1 corresponding to the symmetry-breaking chain
Upm(1) XSUc(3) < SUR) x U1 xSUc(3) < SUR) x U(1) X SUK(3) xSU¢(3) = SOp(10) x Uc(l) x SUc(3)
w H B

< SOg(10) X SUc(4). The dashed lines illustrate the conventional grand unification
c



287

Thus, if we want to include the horizontal interactions with the mass scale My < Mg
into the extended unification programme, the above list suggests that the unification of
SU@2)x U(1)and H (Case 1, e.g., H = SUy(3))or SU(3)and H (Case 2, e.g., H = SU(2))
is likely to precede the unification of SU(2) x U(1) and SU(3). In the opposite situation
when My ~ Mg we get g, constant (up to fermion effects) below M and then, depending
on gA(M3) < g&(ME) or g&(ME) < gi(ME), we need the horizontal group smaller or larger
than the grand unification group to realize the extended unification programme (unless
gu meets g or gg just below Mg).

2. The big unification

When H is gauged, our scheme of unification leads to a new spontancously broken
gauge group: the electroweak-horizontal symmetry group B o SU(2) x U(1) x H which
describes in a unified way the usual electroweak interactions and the new horizontal
interactions. We achicve this by introducing the additional electroweak-horizontal inter-
actions. The first and second of these interactions are mediated by the gauge bosons of
SU(2) x U(1) and H respectively, and the third by the rest of the gauge bosons of B [5].

The horizontal symmetry group H, describing the fermion generation pattern, may
or may not reflect a preon substructure of leptons and quarks. This group has been exten-
sively discussed in the past, being chosen discrete [1] or continuous [2] in the latter case
usually local (gauged). In the present paper, our tentative choice for H is the gauged chiral
SU,(3) which (as well as the vector-like SUy(3)) is the next-to-minimal H accounting for
at least three fermion generations, the minimal one being the popular SULQR) = SO(3)
(or SUK(2) = SOu(3)) [6]. Our choice of the chiral (rather than vector-like) group H,
defined in such a way that the left- and right-handed fermions belong to representations
conjugate with each other, is motivated by the fact that in this case the usual vector-like
colour group SU(3) commutes with the big unification group. Otherwise it does not
commute and must, therefore, be replaced (at least above the big unification point) by the
chiral colour group SUc(3). Note that any chiral group G is certainly broken down below
the electroweak unification point (where fermion masses appear), but its actual breakdown
point may lie much higher if its vector-like counterpart G is broken down at this higher
mass scale.

As we shall see, the group ﬁJH(3), when unified with SU(2) x U(1) in the minimal
way, actually implics the existence of four fermion generations forming a singlet and a triplet
under SNUH(3) in each of four fermion flavour families:

Ve, Vy =V, Vy, V,,

e ,e, =L ,T ,0

u,u, =cth

d,d,=s,b,0 (=, 1,0), )

where four fermions of the first generation are assumed as singiets of S~Uﬂ(3), while four
new fermions of the fourth generation [7-9] are included in triplets of SUy(3). Of course,
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each of the u, d and u,, d, quarks is a triplet of the colour SU(3). The symbols h and o used
for the up and down quarks of the fourth generation are from the words harmony and odd
which are intended to play the role of charm and strange in the new situation.

In fact, in our case we can repeat the construction of the usual grand unification
groups SUg(S) [10] and SO4(10) [11], if we do not start from the standard group SU(2)
x U(1) x SU(3) but from the group SU(2)x U'(1) x SU(3), where the factors U(1) and
U’(1) are generated by Y and y_Y’ respectively, the latter satisfying the relation ¥ — (B—L)
= Y'—(B'~—L'). Here, L’ and 3B’ denote the numbers of fermions belonging to the singlet
light generation € and to the triplet of heavy generations L, T, o, respectively. From this
relation we can see that U'(1) x Uu(1) x Ug(1) o Ur(1) x Ue(1) o U(1), where the groups
Uc(1), Uy(1) and Ug(1) are generated by B—L,y (B'~L")and I§ = }Y'—4(B'—L') respec-
tively. The minimal unification of SU(2)x U’(1) and SUg(3) gives the fourth rank group
SUg(5) o SU(2)x U'(1) x SUx(3) having the reducible representation 5*+10+1 which
may be identified with each of four fermion colour families {/, r, 3, b) if it contains the
members of four fermion generations (e, p, T, ) as given in Eq. (1). Moreover, this reduc-
ible representation may be considered as the irreducible representation 16 of the fifth
rank group SO(10) > SUg(5). Under the group SOg(10) x SU(3), four fermion flavour
families (1) can be reorganized into four 16’s, onc of them corresponding to leptons and
three to quarks of three colours (suppressed in our notation):

I = [(vi\ s €285 R » <V5> s Vars VR (@ = I, T, w)jl (2)
e\ /L RN ed L J

5 A i
and
u U,
q = sdaR;dRa ! auaR;uR(a =N, (D) - (3)
d L dos L
pa T T

The lepton 16 denoted by / is a singlet of the usual colour SU(3), whereas three quark
16’s comprised into g are a triplet of this group:

q9=14,]- 4)

Thus, under SO5(10)x SU(3) = SUg(5) x SU3)

['=(16,1) = (5% D+(10, D+(1, D ®
and

= (16, 3) = (5%, 3)+(10, 3)+(1, 3), (6)

where / and ¢ are given explicitly in Eqgs. (2) and (3).
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At this point, however, the following caution is necessary. Though the fermion mul-
tiplets (2) and (3) have the adequate SU(2) x U’(1) x SU,(3) contents

@ Dysyr= -1+, 3% =23+ (L Dyppr =242, 3)ygr =173 + (1 350 = —aa+ (L Dyy=o

to constitute the irreducible representations 16 of SO(10), they mix left and right fermions
and lead, therefore, to vanishing of some off-diagonal generators of SOg(10). In fact, the
generators transforming as (2, 3),.y: =13 (2, 3%,y = - 173, (2, 3y = -5z and (2, 3%,y =52
vanish within these multiplets (while the rest of them, gencrating the subgroup SU,(2)
xSUR(Z)xSTJH(4), does not). We may call the multiplets (2) and (3) the selfbreaking
representations 16 of SOg(10). In spite of the mentioned deficiency they provide, on the
one-loop level, the coupling-constant unification for SU(2)x U’(1) and SUyQ3) since
in the boson sector the group SOg(10) can be fully represented (and the fermion contribu-
tions, if calculated on the one-loop level, are equal for all three factors). So throughout
the present paper we shall restrict ourselves to the one-loop-level unification. This “partial”
unification, though estetically less satisfying than the grand unification, may be never-
theless a realistic alternative to the latter if there are horizontal interactions corresponding
to Case 1 discussed in Introduction.

The group SO(10), since it does not contain U(l), provides no unification group
for SU(2) x U(1) and SUg(3). Such a group is provided instead by SOg(10) x U(1), because

SOx(10) x Ue(1) o SU(2) x SUR(2) x SUx(4) x U(1)
H,_.J —
2Ur(l)  2SUn(3)x Un(1)
5 SUL(2) x Ur(1) x SUx(3) x Uc(1) o SUR) x U(1) x SUL(3) @)
since Ug(1) x U(l) o U(1). Here SU,(2) = SU(2). The relation between the generators

Y,y,Y,B—L,y (B ~L") and I} of the groups U(1), U’(1), Uc(1), Ug(1) and Ug(1) respec-
tively, is

Y=Y —-B-L)+B~L =2I3+B—~L 8)
and hence

Y B—L
Q=1+ 5 = L+Ii+ — - )

Here I} = I,. In terms of the groups SUc(4) > SU(3) x Ug(l) and SUu4) o SUL3)
x Uy(l) we get

P

-1

=

2./6 6
-L= -—;LF(";S = 1/3—,12:,5 = (10)

o

(A1
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and

W=

2./6 6
B—-L = 26 Fy’ = 1/3— = . (11)

3

Wl

(M

L JH

where the 15% and 2;;® matrices provide the basic representations in the space of four colours
(I,r,y,b) and four generations (e, p, T, ®), respectively. The group SOR(10) x Uc(1) is
our tentative choice for the big unification group B.

Summarizing this first step of our unification programme we can say that the big

unification group SOg(10) x U(1), being semi-simple (like the electroweak symmetry group
SU(2) x U(1)), implies two coupling constants gz and gz which define a new Weinberg-like
mixing angle f3: tan 0 = gp/gs. Here, gg is normalized in such a way that in the coupling
it stands in front of the current of the generator 1(B—FE) of U(1). After the electroweak-
-horizontal symmetry breaking our big unification group transits into SU(2)x U(1)
X ﬁJH(S), where now three coupling constants, g, g’ and gy, appear instead of two, gg
and gy (see Fig. 1). Since, due to Egs. (8) and (9),
+ ! ! ! + - 12
e g gY 7 @ e 1
at any Q2, we obtain at the big unification point M2 where g2(M3) = gi(M3) = gi(MD),
the relation

1
=3

tan® Oy (M3
2w( 3)2 ’ 13)
1—tan” 6y (Mg)
As in the case of the grand unification group SOg(10), the massless gauge bosons W3 and

B of the subgroups Ug(1) and U(l) of our SO(10) x U(1) transit into the familiar
massless gauge boson B of U(1) and a neutral massive vector boson Zg:

B = B cos 05— W3 sin 05,

tan? Og(M3) =

Zz = W3 cos 03 +Bc sin 05. (14)

This transition may take place at the big unification point or at the possible lower inter-
mediate unification point corresponding to SU;(2) x SUR(2) (see Eq. (7)). Note that our
big unification SOx(10) x Uc(1) (like the electroweak unification SU(2) x U(1)) gives
us no charge quantization (since Tr Q is not necessarily equal to 0) and still suffers from
axial current anomalies.

3. The extended unification

Turning to the second step of our unification programme we can see from Egs. (2)
and (3) that the fermion electric charge @ is not traceless in any of the four 16’s. The trian-
gular axial current anomalies appear in any of these four 16’s (also the triplet (16, 3) as
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a whole is not free of them). Fortunately, the reducible representation (16, 1)+(16, 3),
comprising all leptons and quarks of the four flavour families (1), becomes charge traceless
and anomaly free. It might suggest that this reducible representation could be regarded
as the irreducible representation 64 of an extended unification group E = SOg(10) x U(1)
x SU(3), under which

f=1l+q=64=(161+(163). (15)

In this case the unification of SOz(10) x U(1) nad SU3) would be minimal, giving an
eight rank group E (similarly the minimal unification of SU(2) x U(1) and §fJH(3) gave
us the fourth rank group SUg(5) = SOgx(10)).

Unfortunately, the seventh rank simple group SO(14), whose complex lowest spinor
representation is 64, does not contain the subgroup SOR(10) x Uc(1) x SU(3) (it would
contain SOg(10) x SO(4) with some SO(4)). Instead, the irreducible representation 64
with the content (15) is provided by the eighth rank semi-simple group SOg(10) x SU(4)
2 SO0p(10) x U(1) x SU(3) since then 64 = (16, 4) = (16, 1)+(16,3)".

The minimal unification of SOg(10) x SU(4) leading to a simple group is the cighth
rank group SO(16) > SOg(10)x SU(4) because SUc(4) = SO(6). Thus SO(16), if
not the semi-simple SOg(10) x SU(4), is our tip for E, though unlike SOz(10) x SU(4)
it is disfavoured by having only real representations [12]. A related necessary consequence
of this group is that it implies the existence of extra four 16*’s of fermions, forming together
with the previous four 16’s its real lowest spinor representation 128 which decomposes under
SOg(10) x SU(4) as 128 = 64+64*. Here 64* = (16*, 4*) represents a 16* of new leptons
and a 16* of new (colour) quarks, both including four generations (compare Egs. (2) and
(3) for analogous 16’s of ““old” leptons and quarks). All of these new leptons and quarks
should be heavy but unified with the “old’’ at the extended unification point. The mass
difference between the “old”” 16’s and new 16*’s (forming together the real 128 = (16, 4)
+(16*, 4%) at the extended unification mass scale) requires presumably an “ugly” SO(16)
symmetry-breaking bare mass term for new 16*’s. In any case, this mass difference is
unavoidable because otherwise the new right-handed and “old” left-handed fermions
could mix, even at low energies. Such a mixing would redefine the latter (and former) ferm-
ions and lead, therefore, to an admixture of right-handed chiral interactions for “old”
fermions, which are certainly not observed experimentally at low energies.

Also in the conventional scheme of unification, the group SO(16) [13] can be consid-
ered as a disfavoured candidate for the role of the extended unification group for the grand
unification group SOg(10) and the horizontal group SUy(4) (note that SOx(4) would lead
to SO(14) [4, 9]). In this case the chain of spontancous symmetry breaking has the form

SO(16) = SO4(10) x SU(4) o SOG(10) x Uy(1) x SUL(3)

> SU(2) x U(1) x SU(3) x SUk(3) > Ugm(1) x SUL3). (16)

! The group SOg(10)XSUc(4) contains the- subgroup SU, (2)XSU(2)xSU(4) [11]. However,
the inclusion of the big unification as a first step allows, if it is desirable, to avoid the latter group as an inter-
mediate unification.
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In contrast, in our scheme of unification we propose the chain
SO(16) = SO(10) x SU(4) = SOg(10) x Uc(1) x SU(3)

> SU2) x U(1) x SU4(3) x SU(3) o Ugn(1) x SUL3). (17)

In Egs. (16) and (17) the roles of four generations (e, y, 1, ®) and four colours (/, r, y, b)
are interchanged (except for the lowest mass scale). We can see that in the chain (17)
there appear four unification points corresponding successively to the electroweak wuni-
fication (SU(2) x U(1)), big unification (SOx(10) x Ui(1)), colour unification (SU(4))
and, finally, extended unification (SO(16)). There may also exist some intermediate uni-
fication points such as that corresponding to chiral unification (SUL(2)x SUg(2) with
SU,(2) = SU(2)) or generation unification (STJH(4)).

Let us remark that, if we call alternatively the big unification group SO(10) x U(1)
{which is unified with SU(3) into SO(16)) the “flavour’ group, our scheme of unification
fits to the general discussion of colour embeddings in simple unifying groups presented
in Ref. [14] (see Case 5 there). Then the discussion of Ref. [14] implies that the embedding
of SU(3) in SO(16) is uniquely given by SOxz(10) x U(1).

At this point we should emphasize, however, that the realization of the extended
unification of SOg(10)x U(1) and SU(3) into a simple group encounters, in the con-
ventional field theory, a serious problem related to the increasing difference of the running
coupling constants, gz —gj, with the increasing mass scale (see Fig. 1). Thus, unless the
too fast decrease of g7 is slowed down by the appearance of some scalars (perhaps sub-
-elementary scalar constituents) destroying the asymptotic freedom of SOy(10), the simple
group SO(16) must be abandoned as a candidate for the extended unification group E in
favour of the semisimple group SOg(10) x SU(4). In this case the extended unification
becomes equivalent to the colour unification (SU(4)). However, the extended unifica-
tion into a larger simple group is still possible if the too slow decrease of g2 is accelerated
by an additional unification of the colour with some supercolour into a large strong
symmetry group [15].

Summarizing this second step of our unification programme, we can see that if the
hypothetical extended unification into a simple group exists, then starting from the extended
unification point up the electroweak charges gfy and g’1Y should have equal norms when
evaluated for the full fermion irreducible representation (including leptons and quarks,
“‘old”” and new). Since the full democracy of all fermions rules from this point up, these
norms become easily calculable, giving us the asymptotic value of the Weinberg angle
entirely determined by the electroweak content of the full fermion representation:

Tr I3
TrY?'

12
tan® Oy = S = 4 (18)
g
In this way, in the case of the sequential electroweak structure of the fermion representa-
tion, we get the popular asymptotic result tan? 8y, = 3/5, which has been previously obtain-
ed in the conventional unification scheme [3] by using, in the range from the grand uni-
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fication point up, the electroweak content of any sequential fermion generation described
by 16 = 5¥+10+1 of SOg(10) » SUg(S), and neglecting differences between genera-
tions (so the extended unification was, in fact, applied to this calculation). A relevant
difference between both unification schemes is that in ours there is much more structure
in the “grand plateau” between electroweak and extended unification points since there
should be placed the thresholds corresponding to gauge bosons of the spontancously
broken big unification group SOR(10)x U(1) including its horizontal subgroup SU,,(3).
If the kinks at these thresholds were not significant, the SU(5) predictions of: (/) the correct
value for sin? 0y in the experimental range and (ii) the magnitude of 10'*-10'5 GeV for
the grand unification point would be valid in our scheme without major changes (the
second prediction being only reinterpreted as concerning the extended unification point).
Since these kinks are in fact significant, the discussion is much changed and bccomes
nvolved, depending on unknown factors. It may go as follows.

Let us assume the colour unification SU(4) (but not necessarily the extended uni-
fication into a simple group). Then making use of the renormalization group equations
(on the one-loop level) for the groups SU(2), U(1), SU(3) and U(1) we obtain respectively
(see Fig. 1):

‘—2iT*:- 2,1 5 = 212 + 1,{§,l}ln-ﬂﬁ—, (19)
ga(Mg) g Mp) g My (n) My,
Lot L e My A
gD oy~ ron) T gty T WP g BB g0 (0
b @2_1 3 = “z"l“z" = *E“Lf + *12 {(z.% In He, 20
gr(Md) — @€MY@y e My
2 1 = _,1 — ,*1i ! 8 ]y,( oe)
T g(ME T g (MY g (Mp) <z >~ 2shin My’ )

where My, My and M are the clectroweak, big and colour unification mass scales (no
other intermediate unification being allowed in this calculation). Here, the numbers in
parentheses {, } refer to the case of three and four fermion generations respectively.
Eliminating ga(M3), g&(M3), g5 (M&) and g&(M?) from Egs. (19)-(22) and using the
first Eq. (12) applied at point M3, we get the compact relation

4r 4r 4r

g =D — A
(M) T g(My) T gd(My)

11 leMC 2 2 < My )
= —] + — {3,4} Jtan" " 0 \4 -]l —, 23
I n- Mw { } [ wl/ 3] My, (23)

where tan? 0w (M3) < 3/5. Hence the formula for sin? 0y = ¢?/g?:

M il M MgM ;
sin® Oy (My) < 1—1 = ¢ ( W) i,(ﬁj,) In ﬁ»fB—TC. (24)
- S(Mv‘) 61 4n My
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Putting a(M3) = 1/137, ag(M) = 0.2 and sin? 0,,(My) = 0.23, we obtain from Eq. (24)
MM < 1075M3, ~ 10°° GeV2. (25)
So, if the colour unification SU(4) follows closely the big unification, we have
My < 10"° GeV, M ~ 10'° GeV, (26)
while if the colour unification approaches the Planck mass we get
My <10 GeV, M. ~ 10'° GeV. 1))

Obviously, My < My may be much below My. An analogous formula to (25) has been
derived in Ref. {16} in the framework df the conventional unification scheme involving
the chiral and colour unifications, where our My is replaced by the chiral unification mass
scale.

4. Conclusion

In conclusion, we would like to emphasize the characteristic features of our unifica-
tion scheme, where the “big” unification of flavours and generations precedes the over-all
“extended” unification of flavours, generations and colours (and possibly also some
supercolours). A general feature is the existence of neutral horizontal vector bosons Wy
related to the spontaneously broken group H with the mass scale M, lying in between the
familiar electroweak unification mass scale My, and a new big unification mass scale My
which in turn precedes an extended unification mass scale My corresponding to either
a semisimple or simple group. The mass scales My and My are connected with the addi-
tional vector bosons related to the spontancously broken groups B and E. A more specific
feature of the model, where H = SUL(3), B = SO4(10) x U(1) and E = SO4(10) x SU(4)
or E = SO(16) (or eventually E could be a larger simple group including some super-
colour), is the existence of four fermion generations (e, |, T, ®), €ach in four colours
{/, r, v, b), forming a singlet (say ¢) and a triplet (say y, 7, ®) under ﬁJHG), both of them
decomposed into a singlet (/) and a triplet (r, ¥, ) under SU(3). If the singlet under
SU,(3) is the generation e, then the horizontal octet of vector mesons W), can be coupled
only to the horizontal triplet of generations u, T, ® lcaving the generation e uncoupled.
In this case the Wy, mediated decays b — st—pt and t — ct~pt are allowed, whiles —» dpe*
and ¢ — up-e’ are forbidden, implying the decays B~ - K-t p" and T+ — D't put and
prohibiting K- — nt—e*and D+ — r#te*. Similarly, the Wy mediated scattering p*s — 1'b
(and prc — t7t) Is permitted, whilst e*d — p*s (and e*u — pic) is prevented, the former
giving an associate 1+ bottom (very weak) production in the deep inelastic p scattering
on the quark-antiquark sea in the nucleon. The Wy mediated annihilation sb — p-t+
(and ct — 1) is also possible, while ds — e p* (and uc — e~pt) is excluded, the former
implying the decay of the strange bottom mesons into p¥t~,

Note that, in the case when the W, mediated generation changing processes involving
the lowest generation e are forbidden by the decoupling of e from the higher generations
I, T, 0, the mass scale My, may be smaller than its estimate in the case when such decoupling
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does not appear [5]. In particular, the lower limit of 10*-10° GeV for My (see the first
Ref. [5]) extracted from the experimental bounds on K{ — p¥e* and K+ — mte—p+, does
not hold in the-new situation. At any rate, if the big unification is followed by the Pati-
-Salam colour unification we have My < My < My < M. where MgM¢ ~ 1026 M2,
~ 10°° GeV? (no other intermediate unifications appearing in this case).

Finally, it is worthwhile to point out that our unification scheme shoul/d be realized
in Nature if the running coupling constant for horizontal interactions, g3, lies between
those for electroweak and strong interactions, g2 and g2, and the horizontal symmetry
group H is not smaller in size than §U,(3) (see Case 1 discussed in Introduction). In fact,
in this case gy joins g before gs will be able to meet g. If H were §TJH(2), gy could join gg
before gg meets g. The alternative “big” unification of generations and colours would
then be realized (see Case 2 in Introduction). In the case of big unification of flavours and
generations, the extended unification into a simple group may require an extension of the
colour group SU(4) into a larger strong symmetry group including some supercolour {15],
in order for g5 and gz to meet. (The other possibility: scalars destroy the asympto-
tic freedom for SOy(10).)

One of us (W. K.) would like to express his gratitude to the CERN Theoretical Divi-
sion for the hospitality extended to him in September 1981. He is also indebted to Jacques
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