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ON THE THEORY OF FIELDS IN FINSLER SPACES*
By S. IKEDA**

Department of Mechanical Engineering, Faculty of Science and Technology, Science University
of Tokyo***

{ Received July 7, 1981)

Some structural features underlying the theory of fields in Finsler spaces are considered
by taking into account the intrinsic behaviour of the internal variable () associated with
each point. The following three themes are considered: A new “‘parallelism™ of y (i.e., dy)
representing the intrinsic behaviour of y; The conservation laws for the fields in some special
Finsler spaces; The micro-gravitational field as a typical example of the Finslerian field.

PACS numbers: 03.50.Kk, 02,90.+p

1. Introduction

As is well known [1-3], the independent variable of a Finsler space becomes the line-
-element (x, y), instead of the point (x), so that the y-dependence characterizes essentially
the theory of fields in Finsler spaces, where y (= y*; 2 = 1, 2, 3, 4) denotes the tangent
vector obeying only the linear transformation and playing physically the role of an internal
variable associated with each point x (= x*; k¥ = 1, 2, 3, 4). This y-dependence has been
combined, in general, with the concept of “nonlocality” [4] or “‘anisotropy” [5]. In fact,
it has been shown [4] that the so-called nonlocal field theory advanced by Yukawa [6]
can be treated by means of Finsler geometry.

Concerning the concept of “‘nonlocality”, it is carried by the internal variable such
as y, so that a ““nonlocal” field in our sense can be obtained by attaching an internal variable
to each point of a “local” (or Riemannian) field. This way of thinking descends from the
theory of higher order spaces [7]. From this standpoint, the Finslerian field may be regarded,
in a certain sense, as a “nonlocal” gravitational field. These situations will be summarized
im Section 2.
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Next, in Section 3, we shall consider a geometrical grasp of the intrinsic behaviour
of the internal variable y. Since the vector y shows its own inherent behaviour,its “parallel-
ism” (i.e., y) may be different, in general, from the ordinary absolute differential of y (i.c.,
Dy). In this case, the length of y is measured by its own metric tensor b, (i.e., y* = b,,y*»%),
while an arbitrary vector, say X, is measured by the ordinary metric tensor g, (i.e.,
X2 = g, X*X*). This introduction of the new metric tensor b,, is inevitable, because two
different connections (6 # D) cannot be metrical simultaneously for the same one metric
tensor (b,, = g,.), so that if y # Dy, then b, # g,.. Therefore, it occurs that even if
0b;, =0, 0g,, # 0 (resp. even if Dg;, = 0, Db,, # 0). This relation will be used to determine
the relation between dy and Dy.

If the conditions that dy # Dy and b;, 5 g,, are taken into account, then the spatial
structure becomes, of course, different from that of Cartan’s Finsler space [1]. Therefore,
if those conditions are released, then the space reduces to Cartan’s Finsler space. By
doing so, the y-dependence can be considered in various ways by means of the theory
of special Finsler spaces which has recently been developed extensively by Matsumoto
[3] and his school. So, in Section 4, we shall consider mainly the conservation laws for
the gravitational field in some special Finsler spaces.

As to the physical meaning of y, however, it has not been considered explicitly except
the velocity in analytical dynamics [8], and only the physical role of y as the internal variable
has been stressed. So, as a typical example, we shall regard y as the space-time fluctuation
associated with each point x of the (Riemannian) gravitational field and consider the theory
of the micro-gravitational ficld in Section 5. In this case, the most important problem seems
to be the averaging process with respect to y, so that we shall consider this problem from
our own standpoint in connection with the concept of entropy.

At any rate, in this paper, some structural features of the Finslerian field represented
by the y-dependence will be considered concretely.

2. On the concept of nonlocality

As has already been mentioned in Section 1, the concept of nonlocality is embodied
by the internal variable, say o (= w?; 4 = 1,2, 3, ..., N), annexed to each point x (= x~;
Kk = 1,2,3,4) of the “local” field. Therefore, under the premise that the local field is
Riemannian spanned by the points {x}, the nonlocal field becomes “‘non’’-Riemannian
spanned by the line-elements {(x, w)}. It w is taken as a vector, say y, the nonlocal field
is Finslerian. This way of thinking descends from the theory of higher order spaces of order
M (=1,2,3,...) [7), in which an arc length along a curve x* = x"(r) (¢ is a parameter)
is given by the integral

s = [ F(x, xV, x®, x®, .. x®)dt, (2.1)

X

d*x
where x'? = o (x=1,2,..., M) and F denotes the fundamental function. It turns

out that Finsler space may be regarded as the higher order space of order 1.
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Now, as an example, we shall here take up a spinorial nenlocal field & = o(x, w).
Then, its absolute differential is defined by

D® = dd -0 ,$dx"—G ddw’, 2.2)

where @, and G mean the spin gauge fields. In order to obtain the covariant derivatives
of &, it is necessary to introduce the base connection of w (i.e., dw) [7], which represents
physically the intrinsic behaviour of w and plays gcometrically the most important role
in the theory of higher order spaces. Of course, dw # Dw, as has been emphasized in
Section 1. When we write dw in the form

So* = do'+E3,0%dx" + Hpcw do® = Pido®+ Qldx", (2.3)
we can obtain from (2.2) the following covariant derivatives of ¢ under the assumption

that P4 is non-singular:
DO = (@,)dx" +(®|,)00";

o, (2.4)

%
- 0 b7} d *
where P§ = 85+ HEpoS, 0F = 25,05, o~ o —Ni o 0®,=0,-NiG, and
N# = Q)(P-')3. Then, by constructing the Lagrangian in terms of those gauge invariant

quantities, some kinds of field equations, etc. can be considered through the variational
principle. From the standpoint of modern gauge field theory [9], (5” of (2.4) represents
a unified gauge field between @, and G, which responds to the “nonlocalization” due to the
internal variable o [10].

By the way, x® (a Z 2) in (2.1) is not a vector, but an exvector [7]. If x* (¢ = 2)
is likened to a spinor [11], then the resulting nonlocal field may be compared, to some
extent, to the so-called superfield [9, 10}

3. On the intrinsic behaviour of the internal variable

As has already been emphasized in the previous Sections, our starting point is that the
internal variable y of the Finslerian field shows, from a geometrical viewpoint, its own
intrinsic “parallelism’ (i.e., dy) different from the ordinary absolute differential of y (i.e.,
Dy). That is to say, when the ordinary absolute differential of an arbitrary vector, say X,
is given by (cf. (2.2)), as usual [1-3],

DX* = dX"+T%,X"dx*+Cs, X" dy*, @3.1)
the intrinsic behaviour of y cannot be grasped by Dy, i.e.,

Dy* = dy"+1",'fly“dx"+ Chy*dy*, 32
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but by a newly introduced “parallelism” éy (cf. (2.3)), i.e.,

8y* = dy*+ 4%, y*dx*+ BL,y*dy* = Pidy*+ Qidx?, (3.3)
where the Finslerian coefficients of connection 4j; and B}, are different from I'}; and C},;
respectively, and P = 65+ B} »", QF = 4,,y". In (3 2) and (3.3), we do not assume such
homogeneity conditions as Cj,y* = 0 and Bj,;y* = 0 from a general standpoint. This
is different from Cartan’s theory [1] (cf. (4.2)).
When the intrinsic behaviour of y is represented by (3.3), it is reflected in the whole
spatial structure as follows: Obtaining dy from (3.3) under the assumption that P} is non-
-singular and then substituting it into (3.1), (3.1) is modified in the form (cf. (2.4))

X* = dX*+ 175X dx* + C5, X5y
(= (X" dx* +(X"1,)8y"), (3.4)

where f,’il = I, —N,Ch,, M = (P~1);C}, and N} = Q%(P~').. From (3.4), the covariant
derivatives of y with respect to x and y, respectively, are obtained as (cf. (2.4))

K *K
V5= —Ni+To
V=63 (3.5)

where the symbol 0 means the contraction by y (e.g., Xo = X, »*). The fact that J"fz #0
is different from Cartan’s theory {1] and is caused by the prescription that even if Dy = 0,
dy # 0, and vice versa (cf. (3.6)).

Now, we shall proceed to the relation between dy and Dy. For that purpose, we shall
recall that there exist two different metrical connections (8 # D) for two different metric
tensors (b,, # g,,) respectively and that even if 6b,, = 0, dg,, # 0 (resp. even if Dg,, = 0,
Db, # 0). From this, it may be considered that the connection & is regarded as a metrical
connection for b;, (i.e., 3b,, = 0) derived from the non-metrical one D (i.e., Db, # 0).
Then, by virtue of Kawaguchi’s theorem [12], one relation between &y and Dy can be
obtained as follows:

5y" = D'y"+Mjy*;

M5 = 1 b*'Db,,. (3.6)
Therefore, from (3.3) and (3.2), the following relations can be obtained (cf. (3.1)):

db,,
A% =T%+1 b"”<

ax F:'Abtu F:ulbw) >

ob,
BY, = C5 41 b (5—;‘ —C'b —C;,lbv). (3.7

Here, it must be admitted that this kind of theory is stimulated by the (three-dimen-
sional) Finslerian deformation theory of ferromagnetic substances [13], where the vector
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y (= y';i = 1,2,3)is regarded as a spin or magnetization vector and its length is normal-
ized as 9; jyi y’ = 1 at each point by adopting suitable units. Namely, J,; corresponds to our
b,,.In the case of the magnetization state, each y rotates to become parallel to the direction
of the applied magnetic field and neighbouring vectors {y} become parallel to each other
in a Fuclidean sense, not a Finslerian sense. Therefore, in this state, this Euclidean “parallel-
ism” of y, which is nothing but éy in our sense, cannot be grasped by the ordinary Finslerian
absolute differential of y (i.e., by). That is to say, dy must be introduced in order to preserve
the Euclidean length of y (i.e., 6,;y'y’ = 1) invariant under the “parallelism” éy = 0,
by which the metric conditions 83;; = 0 hold good, but DJ;; # 0. Therefore, from (3.6),
8y' = Dy +(3 5*D5,,)y’.

4. On the conservation laws in some special Finslerian fields

When the conditions of the previous Section that y # Dy and b,, # g,, are relaxed
and the ordinary relations that 8y = Dy and b,, = g, are assumed, the spatial structure
reduces to that of Cartan’s Finsler space [1]. On the side of Finsler geometry, the so-called
theory of special Finsler spaces with Cartan’s connection has been developed extensively
by Matsumoto [3] and his school, so that in this Section, by using this theory, we shall
mainly consider the conservation laws for the gravitational field in some special Finsler
spaces [14].

First, the metric tensor g,(x, ) is given by

L’
=1 4.1
8ix 2 6y‘6y" ( )
where L(x, y) denotes the fundamental function positively homogeneous of degree 1 in y.
ag;ul

In this case, since the relations that C,;, = Cui = Chu (= 3 ) are assumed and

then such homogeneity conditions as
Cui.xyx = C;z).xyl = Cp).xyu =0 4.2)
are satisfied, (3.4) is changed into (cf. (3.1))
= dX*+F},X*dx*+ C; X"Dy*
= (X*,0dx*+(X*|)Dy*, 4.3
where Fj;, = I'i;—N}Cs, Nj =T}, and the covariant derivatives are defined by

axX"

XM_ 5).

+Fj, X",

K

)¢
X"z = ——— +C X", 4.4
ay*
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o 0 0
where —— i = Fy ~Nj — 5 —. Of course, y*|, = 0 and y*|; = 3} (cf. (3.5)). By use of (4.4),
there appear in Cartan’s Finsler space three kinds of curvature tensors (S3,,, Py, Ry
and two kinds of torsion tensors (Rf,, Pj,) through the following Ricci-identities [3]:

XK[A[u_Xx“t]J. = R:luXv'_RZJ.Xxlv’
[).‘ -X* 'p i = Pv)va“C;uXK{v—P;).Xxlw
Xxl).lp—XxLu‘). = Sv).,uXv' (4'5)

Their definitions are omitted here for the sake of simplicity (cf. [3]). Secondly, in order to
consider the Finslerian conservation laws, by analogy with Einstein theory [15], the most
Riemann-like curvature tensor R}, (the third curvature tensor) should be noticed. Then,
by contraction of the Bianchi identity

eulx{R;pA|x+PﬂGpv zx}= 0, (46)
it is found [14] that a conservation law such as
(Ri—% ROk =0 4.7

cannot be obtained, in general. The symbol &,;, means cyclic permutation of g, 4, x
and summation [3]. Therefore, it is necessary to specialize the spatial structure. Here, only
one typical example will be described [3, 14]: When the space is of scalar curvature K(x, y),
the torsion tensor R,;. (= R}.g,,) is given by

HAK = 'ZIT Q‘lx{(LzKll"_:;Kyl)hux}’ (48)

where 4, is the angular metric tensor (i.e., A, = 8u—lulx; L = yi/L (unit vector)), and the
symbol 2,, means interchange of 4, k and subtraction [3]. Owing to (4.8) and the relation

R

that P, =P = —S.uxo» the following equation can be obtained from (4.6) [16]:
{(RE—% R&%)+B(S,—% S8y}« —Byjo(Su—7 S4,) = 0, “4.9)
1 &(KL3)

where B, = —
iL - oy

can be obtained and an Einsteinian field equation

. Therefore, if S,—%S5), = 0, then the conservation law 4.7

R,—%Rg, =T, (T):=0 (4.10)
can be proposed; if B,, = 0, then a new conservation law such as
{(R5—3 R&})+B/(S;—7 S6)y }x =0 4.11)

can be obtained; if K = constant, that is, the scalar curvature space is reduced to the
constant curvature space, then because of B, = Ky,, B,), = 0 and »,S, = 0, (4.9) becomes

(RE—3 RO —7 KSy,y ) = 0, (4.12)

which has often been cited as a typical example of the Finslerian conservation law (cf. {3]).
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Thirdly, as to the first curvature tensor Sj,,, there exists the Bianchi identity

eulx{sﬁaullx} = 0> (4°13)
from which the conservation law such as
(Sz—% SOl =0 4.14)

can be obtained and a field equation corresponding to (4.10) can be proposed as follows [14]:
Sui—% S8 =tu (%'l =0). (4.15)

But no valuable conservat ion law with respect to the second curvature tensor Py;, were
obtained, which is still an open problem.

Of course, there exist many other interesting special Finsler spaces, so that in the
future, we should apply them to many interesting physical problems.

5. On the micro-gravitational field

Hitherto, any physical meaning of y has not been asked explicitly, so that in this
Section, one example will be supplied. Our starting point is quite epistemological: even
if the gravitational field in Einstein’s sense is Riemannian at the macro-stage, its microscopic
structure does not necessarily remain Riemannian. From this standpoint, if we regard
y as the so-called space-time fluctuation associated with each point x, then we may consider,
at the first stage, that the resulting gravitational field at some micro-stage, that is, the
micro-gravitational field in our sense becomes an eight-dimensional Riemann space (Rg),
which is a “unified” field between the base space spanned by points {x} and the tangent
space spanned by vectors {y}. Of course, this Rg corresponds to the tangent bundle over
the base space [17]. Then, at the second stage, this Rg can be arranged to become a four-
-dimensional Finsler space (F,) with Cartan’s connection by means of the theory of tangent
bundles (cf. [17]). This transformation process from Ry to F, is very complicated, so that
we shall omit 1t here. Therefore, from our own standpoint, we may consider, with one
bound, that the micro-gravitational field is F,.

In this theory, the most interesting problem seems to be the averaging process with
respect to y. This is formally given by, e.g.,

¢(x) = [(x, »)F () ()% .1

where f(y) means a distribution function of {y}. From quite a geometrical viewpoint, (5.1)
is likened to the “reduction’ of F, to some “non’’-Riemannian space (R,). As an example,
if this reduction from F, to R, is realized by the condition that y is given by a function
of x through dy* = Z%(x)dx*, then the spatial structure of the resulting R, is stipulated
as [18], from (3.1) or (4.3),

DX* = dX"+T5,X"dx* = (X" )dx*;
oxX”

X5 = s +I%, X%, (5.2)
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F] 0 0
where I, = I's;;+Z;C},, and - T e +Z,— P . The metric tensor is also reduced
to g,.(x) = gu{x, y(x)). From (5.2), in a manner similar to (4.5), the following curvature
tensor (R};,) and the torsion tensor (S75,) can be introduced in R,:

Xy au= X = R X" —=55,X" ), (5.3)

In this case, I'§; is given by

P {M} LW = {; 1} +VE, (5.4)

0 : i
where { ’1} (resp_ { hz}) is the Christoffel three-index symbol derived from ( 5 gl,c>
t T

o —
<resp. <—a;; , & ,m)), and Wy, and V7, are defined as the rests constructed essentially by the

torsion Sj,. Therefore, it may be said that by the averaging process with respect to y, F, is
reduced to R,, in which the torsion S}, appears in general. This kind of torsion has been
combined with the concept of entropy (production) from a thermodynamical viewpoint
[19] so that the torsion S}, in our case can also be related to the concept of “irreversibility”
associated with the “coarse graining’’ of the averaging process.

If we rewrite R};, with the use of (5.4) in the form

Rl = K5 DHLLU), (5.5)

then under the assumption of teleparallelism, i.e., R},, = 0, we can obtain an Einsteinian
fi.ld equarion [18]

Kul_—%Kgu}. = Uul’ (5'6)

where K¥;, is the Riemann-Christoffel curvature tensor and the energy-momentum tensor
U, is constructed properly by LY, , or the torsion S%,. In other words, the torsion, therefore
the entropy, contributes to the material term’ at the stage of the field equation, which has
ofien been stated within the thermodynamics of the gravitational field (cf. [18, 20]).

6. Conclusion

In this paper, we have considered some structural features of the Finslerian field
caused by the y-dependence: the relation between the concepts of nonlocality and y-de-
pendence (Section 2); the intrinsic behaviour of y (i.e., y) and its relation to Dy (Section 3);
the conservation laws for the gravitational field in some special Finsler spaces (Section 4);
the micro-gravitational field in which y is regarded as the space-time fluctuation and the
averaging process with respect to y (Section 5).

On the side of Finsler geometry, the theory of special Finsler spaces will progress
more and more, so that the author would like to appeal again to physicists and geometri-
cians-to supply many valuable applications.
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