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Effective lagrangian of QED at high temperature in the one-loop approximation
is studied. The connection with the Johnson-Baker-Willey function FI*1is emphasized. The
connection between the effective lagrangian at high density and the renormalized photon
propagator at small distances is also postulated.
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Recently I have studied the temperature corrections to the effective lagrangian of
QED. In particular I have shown [1] that at low temperatures (I" < m, where m is the elec-
tron rest mass) these corrections are extremely small and are proportional to exp(—m/T).
This means that one can use the zero-temperature QED very quietly in the vicinity of our
Solar System. At high .temperatures (T > m) the behavior of the effective lagrangian is
diametrically opposed to the low-temperature case since the temperature corrections
dominate over the lagrangian of the Maxwell theory [2]. A similar situation we encounter
considering the renormalized photon propagator at small distances. But it is known that
in the Johnson-Baker-Willey (JBW) model of QED the photon propagator approaches
a constant value o [3]. In this publication T argue that in the JBW model of QED the
temperature logarithms sum up giving a constant factor which multiplies the lagrangian
ot the Maxwell theory!. Moreover, I show that the effective lagrangian at high temperature
determines the same Johnson-Baker-Willey function F'*J as both the photon propagator
at small distances and the effective lagrangian at strong magnetic fields. I also conjecture
that all these statements are fulfilled for QED at high density.

Let me consider the case of weak magnetic field, i.e., B < B,, = m?/e, and high tem-
perature.
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1 This is in the close analogy with the behavior of the effective lagrangian at strong magnetic field [4].
(379)



380

Under such circumstances the effective lagrangian takes the form:
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The functions {(T/m) and y(T?/m?, &) are equal to:
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where a, is a constant of order 1. Moreover, n(T%/m?, «) fulfils the same renormalization
condition as the photon propag;ator d(—qg?*/m?, o). Therefore, broadening the Ritus ar-
guments [5 ldealing with the asymptotic behavior of the effective lagrangian at zero temper-
ature I find:

o
n(T?m? a) - —, (5)

Tem %o
where a, is the zero of both the Gell-Mann-Low function v [6] and the Johnson-Baker-

-Willey function F''1 [7]. So we see that at high temperature the effective lagrangian is equal
to:

(B, T) = T*ATm?, o)— 2132, T*> m® > eB, (6)

%o

and the magnetization of the virtual electron-positron pairs gas is proportional to the
magnetic field B.

To make a close analogy between QED at small distances, strong magnetic fields
and high temperatures let me consider the effective lagrangian in the one-loop approxi-
mation taking into account only that part which is proportional to the lagrangian of the
Maxwell theory. In the k-th order of perturbation theory? a diagram which contributes
to that part of the effective lagrangian has k—1 photon and 2k —2 fermion lines. There
are also k integrations over virtual photon momenta. The Feynman fermion and photon

2 1 confine my consideration to k > 2 since the case of k = 1 was studied in [2].
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free propagators that enter into such a diagram have the following form in the high-
~temperature limit:
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where my is the electron bare mass and N = 0, +1, +2, ... Taking advantage of these
expressions I find that in the k-th order of perturbation theory the proportional to B2
part of the effective lagrangian at high temperature takes the form:

e
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where ay is the bare coupling constant, » is the parameter of the dimensional regularization
and L{ is the calculable function of n.

Repeating the calculations performed in [8] I find that in the one-loop approximation
the effective lagrangian is of the form:

B2
LUNB, T, o, m) = T*Q"YT|m, o)— - B (TIm,«), T*> m®>> eB, (10)

where

BT m, ) = QY X x)+ F1' () In (T/m), (11

and Fm(a) is the JBW function, i.e., the effective lagrangian at high temperature defines
the same function F''1(x) as the renormalized photon propagator at small distances [3]
and the effective lagrangian at strong magnetic field [8].

Up till now I have studied the high-temperature corrections to QED. But it is well-
-known that there exist objects of extremely high densities. So, it is interesting to in-
vestigate the high-density corrections to QED, and in particular, to the effective lagran-
gian. T confine my considerations to that part of the effective lagrangian which is pro-
portional to the lagrangian of the Maxwell theory. Summing diagrams that give the
second power of the magnetic field I obtain:

2

~ 2 (=3 wim, WY, (12)
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where p is the chemical potential and

weid
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Here, K(k), K'(k) and Z(u), cn (u) are the elliptic integrals and functions respectively [9],
and k, as the function of z and y, is defined by the equation:

K'(K)

-2
?—(.]5- = 43{_)) Z. (14)

To determine theasymptotic behaviour of j(2; u/m, u/T) one can use the Mellin transform.
The result is:
1 asp
J2s pfm, p/T) = —In (—) p>m>T, (15)
4n m
where a; is a constant of order 1. So we see that the factor multiplying the free electromag-
netic lagrangian — B?/2 has the same logarithmic behavior as those we have encountered
in the cases of strong magnetic field and high temperature. I conjecture also that the effec-
tive lagrangian at high density determines, as in the previous cases, the Johnson-Baker-
-Willey function Ft'1, which plays a very important role in the finite QED as the function
which zeros are equal to the asymptotic coupling «, and/or the observable coupling con-
stant a & 1/137 [3].

To recapitulate, all these properties of QED are the consequences of both the renor-
malizability of this theory at the external electromagnetic field, finite temperature and
density, and the fact that the quantities eF,,, T and u are the renormalization invariants
[10].
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