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EXACT RELATIVISTIC SOLUTIONS OF A PLANE-SYMMETRIC
INTERACTING PERFECT FLUID AND ZERO-MASS SCALAR
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Field equations corresponding to plane-symmetric interacting zero-mass scalar fields
and a perfect fluid distribution have been solved exactly for the following physically important
cases: (a) Disordered distribution of radiation (D = 3p); (b) Zeldovich fluid distribution
(D = p); (c) Perfect fluid distribution (D 5= p); (d) Matter distribution in internebular space
(D == 3p/2). For case (a) it has been observed that the only possible distribution that can
exist is an unbounded plane-symmetric, asympiotically tending to plane-symmetric vacuum
solution. Various physical behaviour that the solutions represent have been studied paying
special attention to the pressure, density and energy-content per unit volume.

PACS numbers: 04.20.Jb

1. Introduction

Tolman (1934) has observed that gravitation can never produce hydrostatic equilib-
rium in a finite relativistic fluid D = 3p and that the only possible distribution that can
exist is unbounded plane symmetric, asymptotically tending to the plane symmetric vacuum
solution. Based on this result Teixeira et al. (1977) have obtained an exact solution corre-
sponding to an equilibrium distribution of disordered radiation with planar symmetry
in general relativity. They have observed that this equilibrium is due to the radiation.
An analogous study with the source of gravitation as a linear combination of two inter-
acting fields (viz., the zero-mass scalar fields and perfect fluid distributions) is worth
attempting.

" It may bc mentioned that the study of interacting fields (one of the fields being a zero-
-mass scalar field) is basically an attempt to look into the yet unsolved problem of the
unification of the gravitational and quantum theories. Considerable interest has been
focussed on a set of field equations representing scalar fields coupled with the gravitational
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tield for the past two decades. Bergmann and Leipnik (1957), Bramhachary (1960), Das
(1960, 1962), Stephenson (1962), Gautreau (1969), Roy, Rao and Tiwari (1972) are some
of the authors who have studied various aspects of interacting fields in the framework
of general relativity.

In this context we have solved the problem of interacting zero-mass scalar fields and
perfect fluid distributions for the following cases:

(a) D = 3p (Disordered distribution of radiation)

(b) D = p (Zeldovich fluid distribution)

(¢) D #p (Perfect fluid distribution)

(d) D = 3p/2 (Matter distribution corresponding to internebular space).

2. Field equations representing the interacting fields

The Einstein field equations corresponding to an interacting zero-mass scalar field
and perfect fluid distribution are given by

(Rij=3Rg:p) = —K(Tijin+ Tijin)s e

where T, and T}, are respectively the energy-momentum tensors corresponding to the
perfect fluid and scalar fields, given by

Tijpy = (p+Djusu;— gyp @)}
and
Tijeor = vi0;— 380", (3)
where the scalar potential ¢ satisfies the Klein-Gordon equation

g0y = 0. O

As usual p is the pressure, D the density and u,; are the four velocity vectors satisfying
u! = u? = u® = 0and we* = 1. A semicolon atter an unknown function denotes covariant
differentiation.

We now consider the plane-symmetric metric

ds® = e**dt* —e*Pdx* — ef ~*(dy* +dz%), (5)

where o« and B are functions of x and 7 only, and x*, x?, x*, x* correspond respectively
to x,p,z, L.
The non-vanishing components of the Ricci-tensor R;; for the metric (5) are given by

Ry = (ﬁ“—-%ﬁf+%af—a“(fl)—e(zﬂ'za)(544+2ﬁi—-2a4ﬁ4),
Ry, = %e(—ﬂ_a)(ﬁx1"“11)*%e(ﬂ_M)(ﬁu—0‘44‘*‘252‘*'2“2“4“4[34),
Rys = -"(h—w)(al1)+(2344'“0644+§2‘ﬂi+%“§"‘3°‘4,34)

and
Riy = (Bra—ayja—5B,Bat+30,00 — 5B 0 —3B42s). (6)
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With the help of (2), (3) and (6), the Einstein field equations (1) representing imteracting
zero~mass scalar field and perfect fluid distribution for the metric (5) assume the form

G, = (* - +—a1 20‘118 ) +e(2ﬁ_21)(ﬁ44"°‘44+%ﬁi‘f‘%ai—‘;‘a‘;ﬁ‘t)
K , (26 22),2 28
=-3 (v;+e 3)— Ke’p, N

Gr(=Gy3) = (— By — 2y, +5B =3+ By)+ e(zﬁuza)(3ﬁ44"‘“44+%ﬁi+%‘xi— SosBa)

= ~—K(—-vf+e"25»2“’vﬁ)—2Kewp, (8)
Gy = (ﬁn—xn—?}ﬁ%*‘%“% 2“1ﬁ )‘*“’(zﬁ 21)( 554 44 + a4ﬁ4>
K 2 (28— 1) 2 28
= — 5(1)]4—6 1) — Ke“"D ©)
and
1 3 1 1 K \
Gia = (Bra—2a— 3B Ba+ 30005 —3B 0 —5Pa%)) = — 51’11'4- (10)

The Klein-Gordon equation (4) for the metric (5) reduces to the form
vy — e T30, + 2840, — 2a4v,) = 0. (11)
The conservation equations given by the contracted Bianchi ldentities G = 0. for the
metric (5) are
pi+(p+Dy, =0 (12)
and

D,+(p+D)(2Bs—ay) = 0. (13)

Thus the set of field equations for the unknowns «, ff, ¢, p and D is given by the over-
-determinate set of equations from (7) to (13). The question of over-determinacy of five
unknowns in seven equations is settled finally by actual substitution of the solutions
obtained in the field equations.

3. Solutions of the field equations

The field equations have been solved for the following two cases:

(i) Static case: When the metric parameters «, f and the unknowns v, p and D are
functions of x only.

(i) Non-static case: When the unknowns are functions of ¢ only.
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Static solutions
(ay when D = 3p
From (7), (8) and (9) we have the two equations

(Bii+ay)— (B —ay) (B +30,) = —2Kv] (14)
and
2(B11 ~ o) +(By ~ ) (B, +30,) = 2K}, (15)
Equation (11) yields
r = ax+b. (16)

Here and in what follows, small letters are used to represent constants of integration.
Using the value of v, we gave from (14) and (15)

3 = o—cx—~d. (17)

In order that the solution be analytic at the plane of symmetry, we take
gt = —8xx = —&y = 1, on the plane x = 0. This condition for the metric (5) implies
o = fi = Owhen x = 0. With this, (17) gives

3p=0—cx, as d = 0. (18)
Substituting for § and v in (14), we get
120, + 2a, +¢) (102, —¢) = —18Ka?,
which has a solution
c 10 s

o= —(; +q>x+%log(m+ne3 ), {19

where
q = +5(c* —10Ka*)*?,

By imposing the boundary conditions a(0) = «,(0) = 0, the constants m and n are then
obtained as

and

1 <
n=@_ﬁﬂ. (20)

The boundary conditions imposed imply that the system represents mirror symmetry
w.r.t. the plane x = 0.
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From (7), the pressure p can be easily obtained as
5¢¢ 2N\ _,
= e * 2
P ( 9K ~ 45k)°¢ 2
Denoting the pressure at x = 0 by p,, our results, then, are given by

ds? = fle it —fe " tdx? —f " N(dy* +dz?)

and
p= pof‘-éeu’
where
104 2
(&) = (m+ne3 15 exp ((%— f—) §>,
. Cc
5q2 -1/2
EX) = s(KpoX»)'? 20, with s= —;-(-2— -%) . 22)
C

In order to study the asymptotic behaviour of the solution in regions far from the central
plane x = 0 we introduce a new coordinate system as given by

T 1N x Yy z 1\3
= (..) R — = = = <_~> (23)
t n X y z n

in terms of which the exact solution takes the form
ds* = h3e "dT*—he "dX*—h™'(dY*+dZ?)

and
p = lh™ %%,
where
L2 104 m /3
b = [ [e“ "+ (—) ]
n
1 12/5 5q2 1/2
n(X) = r(Kgx*)"* >0, 1= (;) Por 1= %<7 _%) : (24)

Thus in regions far trom the plane X = 0, we have the approximate (asymptotic) solution
given by
. _3n _ 2
ds? = e’ dT?—e °dX*—e °(dY*+4dZ%,
p=1"% p=t
This solution corresponds to the exact Levi-Civita (1918) static vacuum solution with
planar symmetry viz., '

2¢ 6 4¢

ds? = e C dT?—e “dX*—e © (dY?+dZ),

Ke*s ) .
where p(X) = T iX] and ¢ is the surface mass density.
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To evaluate the energy content per unit area on the plane X = 0, we start with the
formula [Tolman (1934)] for the energy content of a volume element viz.,

d’E = (- g)'*QTi—T)dX dY dZ,
where g = det g,,. For our system
d’E

e = 6lh T 7e"dX.
dYdZ

Integrating this diffcrential de’ of the surface energy density betwcen two planes X = + con-

stant, we get
18¢ l 172 1 C 10 qn 4-‘—(—)-qry m -t
') = —\ = T+ e3> T —Dfed T+ —) .
T =5y (K) ( 104>< )< n)

When (X]|, n - oo, we obtain a surface energy density having a finite value

. 18¢ ( AN (1 L
g = —| = s+ —1.
Srqg \K 27 10g

In the absence of zero-mass scalar fields, the expression for the density coincides with the
Levi-Civita surface-energy-density
I 172
c’o =2{— .
K

The mass-density, of the plane-symmetric fluid considered, is maximum and finite on the
central plane X = 0 and decreases monotonically to zero in both directions normal to
the plane.
(b) when p = D (Zeldovich fluid)
Proceeding similarly as above with the same boundary conditions, the solution for
this case is obtained as
o = B—ax,

K 2
B=1{3a+ = ) kst i(ez‘"‘— 1),
2a 2a

v=cx+d,
fa -2
=D) = — ®
p(=D) ra
with the relation

a Kc?
(‘5“ 27 )= 29

For x — 0, we obtain the surface energy density having a finite value ¢’ = A
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The density of the fluid is maximum and finite at the central plane x = 0 and decreases
monotonically to zero in both dircctions normal to the plane.

c)p#D

Because of the highly nonlinear character of the field equations a general solution is
almost impossible for this case. One is naturally therefore tempted to consider some
relations either between the metric parameter o and f or between one of the metric param-
eters and the scalar potential v, which may possibly lead to some exact solutions. Also
a relation between the pressure and the density may simplify the field cquations for a possible
solution.

To start with, we have first taken the relations (as is apparent from the field equations):
(i) By = oy, (i) By = —3ay, (i) By = a,+ A and (iv) f; = —3a,+A4. In all these cases,
though we get an exaci solution, the solutions are found to be non-physical in the sense
that either the pressure or the density or both turn out to be negative.

Next considering a possible functional relationship between the metric parameter S,
the scalar potential function ¥ and the pressure p in the form

B = B(v. p). 26)
from field equations (7), (8) and (9) we get
Bt + BppPi +Byp1i+3 €’ (D=5p) = 0.
Now on physical grounds g'p.p ; # 0. We, therefore, assume
B =0, B,=0, p,=0D=>5p.
The above equations lead to the possible relation
B =mv, D= 5p. 7

With these relations, the solution of the field equations is obtained after a straightforward
calculation:

= 'f;—a x+1log (cosh ()/cosh (d)), B = mv, v = ax+b,

3 2 2

¢ N 15¢ -
P=x e ** sech? (), =k °© *# sech? (0), (28)

a
where 0 = Bex+d)and ¢ = + 3 (6K—m?/4)!/2. Here it may be noted that the integration

constants are determined by imposing the same boundary conditions as in case 3(a).

Here we may mention that when we consider the metric coefficient g,, (or g33) to be
a function of the scalar potential function v and the pressure p, we arrive at a solution
(on the same grounds as already argued) which is the same as obtained in 3(b) for the
case D = p.
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Finally, with the equation of state D = np, we get a solution of the field equations
given by:

n+3
o = E—S—_«n;[?-kcx,
p= D ex i 2 tog cosh @)icosh (),

Im? ~2p 2 ‘
p = G- e *sech?(0), v =ax+b, (29)
ml n—-1)(n+7 5~ n)? Ka?
wherer 0 = <~»24x+r), | = Lﬁ_{—gﬁ)“—z and m?* = (I-En) (’3:73 X [% 2+ >
(1_(2;:)—%12%] The constant r is given by tanh (r) = IE’;—E%;% , using the boundary

conditions. However, on physical grounds, we observe that the above solution is valid-
for all values of » > 1, barring n = 5.

This solution automatically leads to a solution for matter distribution in internebular
space by putting n = 3/2.

For both two sets of solutions viz., (28) and (29), the behaviour of the density is found
to be the same as in the previous cases. The energy content per unit area is again found
to have a finite value at x = 0.

Non-static solutions
(b) when p=D
We have from (11)
v, = ac*(a—f). (30)

Now we assume a relationship between the metric parameters o« and f viz., = no. Then
from (7) and (8) we have

o = 2(n_1)log [2(n—1)t+b]. 31

Equation (13) yields the pressure as given by

p = poe’ 73 (32)
where

o =

(n—1)(5n—1)+2K?*a*
4K )

With these values of « and f the scalar potential v is obtained as

a
D ==
2(n—1)

log[b+(n—1¢], n#1. (33)
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Hence, the solution is represented by (31), (32) and (33). As negative values of n lead to
unphysical results, n is restricted only to positive values barring n = 1.

(c) when D #p
By assuming that the derivatives of the metric parameters « and f (w.r.tot) differ
by an arbitrary constant viz.,
ﬁ4 = a4+a’

a rigorous solution of the corresponding field equations is finally obtained:

a 1
A=c— —t— —
2 2a

b—2at
e a

)

v=— — e (34)

4. Some general features

(a) Behaviour of a test particle:

The motion of a test particle in'the model described by the metric (5) is governed by
the cquations of the geodesic given by

i } dx* dx?

ds ds
which becomes

d*x dx\? _ dt \? dx dt
F+ﬂ1 <_> +e(2<z 2'3)051(*‘> +2ﬁ4_4__. =0

ds ds ds ds
and
d4 _ dx \? di \? dx dt
el +e?f20g, (Z) +oty (£> +20y = o = 0. (36)

If the particle is initially at rest, then the path is given by (for the static case)

s=b[edx+c (37)
and (for the non-static case)
s=nfetdt+m. (3%)



394

(b) The matter distribution in the model
The scalar of expansion @ which is defined as
e = Ui, (39
for our system reduces to

O = ¢ (2B, —y), (40)

where U' is the flow vector of the distribution.

For all the solutions it has been observed that U;ij U’ = 0 [Synge (1964)] implying
thereby that the lines of flow are geodesics. The condition W;; = U,,;—U;; for our
system yields W;; = 0 i.e., the fluid filling the universe is non-rotational.

The components of the shear stress are defined by

O = Ui;j—[gij—'Uin]' (41)
For our system the non-vanishing components of g;; are given by
041 = e(zﬂ«a)(ﬂt“%)
and
G32(= 033) = 3 e(ﬂ_za)@ﬁ‘t“%)- (42)

(c) The reality conditions

The non-vanishing components of the energy-momentum tensor 7 J‘ are given by
T = — (e Mol o),
T} (= T3) = (~p+ie Pl —f e7>v)),

T) = (D+1 e i 41 e 203). (43)

The expression for T4, which represents the energy, is positive for all the solutions obtained.
Further the condition of Hawking and Penrose (1970) which is given by the expression

(Typ~7 Tgep)u'u’ >0 (44)

is also found to be satisfied for the solutions.

Editorial note. This article was proofread by the editors only, not by the authors.
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