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In this paper weconsider the so-called Maxwellian tensors for the curvature and for
the torsion of the space-time and the total superenergy and superspin tensors in the theory
of gravitation with quadratic Lagrangian L, = 025 A i/ +aQ}; A « 24+ 060 A +0,.

PACS numbers: 04.20.Me

1. Introduction

In paper [1] a general method of constructing Maxwellian tensors for physically
important tensor ficlds which are antisymmetric in some pair of their indices was presented.
In this previous paper the antisymmetry of the tensor field for the first pair of indices
was assumed. However, this assumption is not necessary.

In this paper we will use Trautman’s notation [2] of the curvature and torsion tensors.
Theretore, we will consider the tensor ficlds which are aniisymmetric in the last pair of
their indices. For such a tensor field with the components

HMab = ('—)HMba’ (1)

where M denotes any set of indices, the Maxwellian tensor generally defined in [1] has the
following components

Myte = HyHyoo 4+ HyH oo — 4 62 H 3 H . )

We are interested in the following two tensor fields which are antisymmetric in their
two last indices: the curvature tensor field R with components’

Rliim = ()Rl 1 O = T R5,8 A 97 3).

* This research was carried out as a part of the Research Project MR-1-7.
** Address: Zaktad Fizyki, Wyzsza Szkola Pedagogiczna, Wielkopolska 15, 70-451 Szczecin, Poland.
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and the torsion tensor ficld O with components
Qu =(—)Qu: 0" =3 0u% A ¥ 4)

In the above formulac Q is the curvature two-form and @' is the torsion two-form of the
metric, linear connectxon wh = I'y9. § means the field of the co-frames. The Max-
wellian tensor for the curvature tensor field R has the components

ceiihe b vebep ttte b d
R‘(Wklpq{)a = Rkl'?quu('—*_qu"Rklac 5 Rkl Cqudc (5)
while the Maxwellian tensor for the torsion tensor field has the components
..b. .bc PR 'bC P b 'dl.‘ e
oM pite = 057 Qa0 Qe — 75 00,5 Qs - (6)

In the framework of General Relativity (GRT) and in the framework of the Einstein-
-Cartan theory of gravitation (ECT) only a special contraction of the Maxwellian tensor
tor the ficld R, namely the Bei-Robinson tensor in GRT and in ECT and the generalized
Bel-Robinson tensor [3] in ECT may be physically interpreted in a natural manner [3].

The aim of this paper is, among other things, to investigate the physical role of the
Maxwellian tensors for curvature and torsion in the framework of the theory of gravitation
with the quadratic Lagrangian

L, = QQ?} A n}f+§9f’, A*Q a0 A x 0O, (7

In the above expression g, d, o are suitable constants; n; denotes the pseudotensorial
two-form introduced by Trautman [2] and * is the Hodge-star-operator {4].

2. The theory of gravitation with the quadratic Lagrangian
L, = 0@ A ni+aQ A + Qi +00' A x 0,

This theory contains two gauge ficlds: the curvature field Q’J and the torsion field &'
with the potentials w’; and §' respectively. The fundamental equations of the theory have
the following form

or .
D * @h = ( )“‘“ tb"" - QJ. A ’7ka—' “—<_ RU"RJH,;
[0

2% 4
~ RUR;? ) ( 0"0;; Qf;;;Q;-'.'f) o ®
_ x . w 1o
D= (=)= A O=8;n + 60— z'Qa O A nit~ L. ©

Here 1, is the energy-momentum three-form ot matter and S} is the three-form of the
intrinsic angular momentum (= spin) of matter. These two three-forms are defined by the
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following form of the variation of matter Lagrangian
L, = L,[¢", D¢"]
OL,, = 69" A t;+2 5wl A S7+58¢* A L+ an exact form.

(For details, see Trautman [2] or Adamowicz [5].)
From (8) and (9) the tensorial equations follow:

ok ekl - 1 i
Vi@ P+ Q70 +30:%0% = (-) 7a mt%h

. b S
t R, — ~R)— TQ...QM—Q.,,,Q;..

2
@ (0 i pifen
-— ( -4?’- RY"R i — R R ,g.’f) , (10)

o
V,.REPT L RIPQN + L RO = () 5z Q" - 0'%)

— ST Q0+ 0% | (11)
4q 24

wt% and .87 which occur in (10), (11) are the components -of the energy-momentum and

spin tensor of matter defined by the following decompositions

1 -
ti = "pmtl.)i, Si' = VIpmS"’i' .

(For details, sce Trautman [2] or Adamowicz [5].)

(8) and (9) (or (10) and (11)) are the system of the differential ¢quations of the third
order on the 34 unknown functions: the 10 components of the metric tensor g of space-
time and the 24 components of the defect iensor k (see [5]).

The gravitational theory with the quadratic Lagrangian (7) seems to be correct from
the formal point of view (see [5]) and it is, in our opinion, the most satisfactory model of
the theory of gravitation with quadratic Lagrangian. This theory unifies the idcas of GRT
with the ideas of the gauge ficld theory.

In vacuum and in the case of vanishing torsion the equations of the theory take the
following form

2R;PR},+2RIR? — LR R™ = —i« RY (12)

VR =0 (13)
and are equivalent to the vacuum Einstein equations

Gik = U ( 14)
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Owing to that, the theory does not admit the non-physical solutions which exist, in vacuum
and when torsion vanishes, in the theory of gravitation with the quadratic Lagrangian

L, = an;— A *Q 400 A %0, (15)

and in the theory with the quadratic Lagrangian considered by Hehl et al. [6, 7]. In the
problem of the static and spherical symmetric gravitational field in vacuum the fundamentat
equations of the theory admit, among other things, the Schwarzschild solution, with
zero torsion.!

Moreover, in the theory with Lagrangian (15) and in the quadratic theory considered
by Hehl et al. [6, 7], there exist fundamental difficulties with the “weak field approximation”
and its correspondence to the Newtonian theory.

3. The Maxwellian tensors for curvature and torsion in the considered gravitational theory

From the fundamental cquations (8), (9) of the theory it is obvious that the curvature
tensor field R and the torsion tensor field Q have their own energy-momentum tensors,

The energy-momentum tensor of the curvature tensor field has the following com-
ponents

fTY% = 20G%, — 2R R;M
— 5 SRR = 20GY—agM5,. (16)

In (16), G%; are the components of the Einstein tensor G: G, = R%, —16fR and M¥;
denotes the contraction of the components (4) of the Maxwellian tensor for the curvature
tensor field R in the indices k, p and /, g. Thus, the above mentioned contraction of the
Maxwellian tensor for the curvature tensor R occurs in the theory as the quadratic (in R)
part of the energy-momentum tensor of the curvature tensor ficld R.

On the other hand, the energy-momentum tensor of the torsion field Q has the com-
ponenis

oT" = a2(004,0i — 3 5,07'0k,) =: apM™,. (17)

and is proportional to the contraction yM*, of the Maxwellian tensor (5) for the field Q
in the indices p, q.

The tensors with the components (16) and (17) together with the energy-momentum
tensor of matter defined by the decomposition

ti = r]pmtpl

are the sources of the gaugs field O

! This problem will be discussed elsewhere.
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4. Conservation laws and.superenergy tensors in the theory

The ficld equations (8), (9) may be transformed to the superpotential form

1 k- Q i ok
d* 0, = (=) =+, A0, — = QL An}
20 20

a B

— 2—a \le‘b_ EQM;, rlp, (18)
o4 ‘ .

d«Q; = (—)2—_(91 A %@ =9 A = @)+l A xQ

a

In D [ Ik 1 -1

—~w., A ¥ — — O, A N~ — S; (19)
2a 4a

from which follow the continuity equations

d[t,,—2awf‘,, A %O, +0Q% A mti+a (RM‘.’,,— TQM‘.’,,) '1,,] =0, (20)
a

d[SE+2a(3 A # @;— A x O)—daw’; A » Q,+4awl, A+ Q' 4+200, A 1] =0. (21)

- B . . ‘
From these equations we can get, with help of the Stokes integral theorem [8], the
tollowing integral conservation laws

. o
J[ ty—200% A % O+ 09 A ;1,',',-’.‘+c‘1 (RM‘.’,',— — QM’.’,;) np] =0, (22)
a
a2

ajﬂ [Si+20(3 A *x ©;—9, A x O)—4aw%; A * Q) +430", A * QF4200, A n/¥] = 0. (23)

Here 0Q is the boundary of an arbitrary, four-dimensional domain © in space-time.
The expressions contained inside the quadratic brackets in formulae (20) and (21)

represent the conserved total energy-momentum and spin three-forms (non-tensorial) of
matter and gravitation.

In terms of the components, equations (18) and (19) have the form
018 5020:7 = Vlgl Gut+ 1%, (24)
0,[2a008 \/1gl R = Vgl (S5 +,57), (25)

where

i . ) o .. ‘
th‘?b = (=)I*,0.4— ~ (R%— SIR)

+ 2 emy— Z oM (26)
2e \ RV ZeMip )
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1 q! « gl lg- P plqa 4 prqa
45 gS.,'. == E—a (Q,— Q..,-(—F.,v,,R.,,..+F.,,,,R.,-..

@ . . .
+ % (Q¥0%+ Q%'+ 0%, 27

The sum +/ Ig] (1% +,t%,) is the conserved energy-momentum complex of matter and
gravitation while the sum Vigl (xS%+,5%}) is the conserved spin complex of matter and
gravitation in the theory.

These complexes are not intrinsic tensors. Therefore, it is sensible to introduce in the
theory the total superenergy and the total superspin tensor of matter and gravitation.

These tensors should be constructed in the normal coordinate system NCS(P; &) of
the Riemannian part of the metric connection of space-time? exactly in the same way as
in the framework of GRT and ECT (See [3]).

We construct them from the sum ,,t%+,t% and from the sum ,,S% + ,S%%

As a result, we get the two following tensors: the total superenergy tensor of matter

and gravitation S with the components '

S?y = 2a(g" —200") [V R ey
+ Vo R @i +4 R ooV 9@

where
a o 1 i
7% = 267 2 oMP— L M2 )+ 00— — % (29)
o 20 a 20

and the total superspin tensor of matter and gravitation S with the components
S = 4a (8" 20"") [e(5Via R
+ Vi R RS+ % RE o Vo R
~5 SV R g+ Vi R ) RE
— & R Vo RV Vo T+ 4 Rl T
+4 Rma T =3 R0 T,, (30)

where
. a . .0 ) .. : 1 )
T :=(-) >a (0¥~ 0%)— 2a (Q??qéle_‘-Q?qig’k'*_Q’fi{)_ iz S (3D

In the above espressions V means the covariant derivalive with respect to the Rie-
mannian part of the full metric connection of space-time and RY;;,, denotes the components

2 The choice of NCS(P; o) is dictated first of all by the maximal analytic simplicity of the calculated
expressions (For further argumentation, See [3]).
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of the curvaturc tensor calculated from the Riemannian part of the connection; x*,, are
the components of the defect tensor (see, eg. [5]).

Multiplying (28) and (30) by N lgl we get the components of the corresponding super-
energy and superspin compléxes.

It is seen from the formulae given above that if the torsion vanishes in vacuum, then
the components of the total superenergy tensor of matter and gravitation also vanish.
Therefore, in this case, the total superenergy tensor of matter and gravitation given by (28)
has no value.

5. The case of vacuum and vanishing torsion

Let us consider the theory more precisely in the degencrate case: vacuum and @ = 0.
Then, as was mentioned in Section 2, the equations of the theory reduce to the vacuum
Einstein equations, G; = 0. As a consequence, in this degenerate case the energy-momen-
tum tensors of the tensor fields R and Q and the total superenergy tensor of matter and
gravitation vanish. Therefore, in this case, thesc tensors have no value as tenscrs describin g
gravitational field. However, this degenerate form of the theory may be considered as the
standard Einstein theory in vacuum with a Riemannian connection @', as a gravitational
field and we can assign to the gravitational ficld & an energy-momentum pseudotensor
(sec, e.g., [3, 4]). The superenergy tensor of the ficld @Y, calculated from this pseudotensor
in the way described in [3], contains the contraction of the Maxwellian tensor for the
curvature tensor field R namely, the Bel-Robinson tensor (see [3]).

The author wishes to thank Prof. A. Trautman for suggesting the problem.
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