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SECOND ORDER SYMMETRIC TENSORS AND QUADRIC
SURFACES IN GENERAL RELATIVITY
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The algebraic study of a (trace-free) symmetric tensor as a quadric surface in complex
projective 3-space, leading to a quartic curve on the fundamental quadric surface determined
by the metric tensor, is reconsidered. This approach, first given by Penrose and later by
Cormack and Hall is simplified and more details are given. This enables a simple comparison
with more conventional classification schemes. The geometrical aspects and interpretations
are stressed throughout.

PACS numbers: 04.20.—q

1. Introduction

In a recent paper of Cormack and Hall [1] a discussion was presented of the classifica-
tion of second order symmetric tensors in General Relativity using the spinor representa-
tion of such tensors and the methods of algebraic geometry. This paper followed up work
by Penrose [2] and Ludwig and Scanlon [3] and showed that the approaches followed in
these latter two papers were essentially the same. The aim of the present paper is firstly
to present a simplified account of this work which uses tensor notation only and which
gives more details of some of the points mentioned only briefly in the above references
and secondly to present some further geometrical interpretations of the classification.

The notation will be the usual one, with M denoting a space-time manifold of signature
+2. The Riemann, Ricci, Weyl and metric tensors and the Ricei scalar are connected by
the relations

(a) Rupea = Copeat Eapea+§ REapc8ap»

(b) Egpea = Ra[cgd]b +ﬁb[dgc]as

© Riy = Ry R = Rag™,

(d) Ry = Ryy~% Regap = Eoen, (1.1)
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where R, is the trace-free Ricci tensor and the tensor E,,,, is completely equivalent to it
in a well defined sense [4] (see the Appendix). At a point p € M it is convenient to introduce
a complex null tetrad of vectors (I, n, m, m), where / and n are rcal null vectors and m is
a complex null vector satisfying [n® = m,m® = 1 with all other inner products between
tetrad members equal to zero. Also required at p are a real null tetrad of vectors (/, n, y, z)
where I,n® = y,* = z,2° = | are the only non-vanishing inner products and an ortho-
normal tetrad of vectors (z, x, ¥, z) where the only non-vanishing inner products are
—tat” = x,x" = y,y* = z,z" = 1. The following completeness relations then hold

Lap = 2l(anb)+2m(amb) = 2l(anb)+xaxb+yayb
= —lty+ XXy VaVp+ ZaZp- (1.2)

Now any symmetric second order tensor at p (which, since this paper is only concerned
with the algebraic properties of such tensors, may without loss in generality be taken to
be the trace-free Ricci tensor) may be put into one of the following canonical forms by
an appropriate choice of tetrad [5-7]

(a) Ry = —Qotals+ 01XaXp+ 02VaVo+ 03ZaZss

(b) Roy = 20, lany 2 L+ 05500+ 0322,

(©) Rap = 201 1anpy+ 200V + 01 YaVs + 0224Z,

(d) Ry = 201l iy + 02(Lly— )+ 03¥o s+ 022,25, (02 # 0), (1.3)

where in each case the @’s satisfy the trace-free condition R% = 0. The expressions in
(1.3) correspond respectively to the Segré types {1, 1, 1, 1}, {2, 1, 1}, {3, 1} and {z, z, 1, 1}
for R,, where in the first type, the first digit in the Segré symbol corresponds to the timelike
eigenvalue and where cigenvalue degencracies are indicated by enclosing the appropriate
digits inside round brackets. It will be of interest later to note that there are no real null
eigendirections of R, in case (a) above unless the timelike eigenvalue g, is equal to one
of the spacelike eigenvalues ¢,, ¢, and g3, in which case there are at least two, that in the
types (b) and (c) / spans the unique real null eigendirection of R,, and that in type (d)
there are no real null eigendirections!.

2. The Ricci quadric

The two tensors R,, and g,, at p determine two quadric surfaces in complex projective
3-space P3(C) given by

() Rpxx" =0, (i) gupxx" = 0. .1

Here, the x“ are a set of four complex numbers and are to be regarded as the homogeneous
coordinates of a point in P*(C). The second quadric in (2.1) is called the fundamental
quadric. It is a proper quadric consisting of all complex null directions at p and is denoted

! Further details of the classification may be found in a recent revicw article {[7].
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by 4. Those:members of # which in the above coordinates are complex multiples of a real
null vector consitute the reality section £ of #. Now it is well known from algebraic ge-
ometry (see, for example, [8]) that the intersection of two quadrics in P3(C), one of which
is proper, is a quartic curve u in P*(C). The proper quadric # will be kept fixed throughout
and each trace-free Ricci tensor will determine a quartic curve p on # which is characteristic
of R, up to multiples. Conscquently, a classification of the trace-free Ricci tensor can be
achieved by classifying such quartic curves u on 4 [!, 2]. In fact one learns from algebraic
geometry that such a curve on %4 may be irreducible or may deccompose into an appro-
priate number of irreducible components. These irreducible components will be either one
of the reguli (generators) of the quadric %, a proper conic (plane section?) of # which may
be real or complex (that is either it may or it may not be possible to choose the coefficients
in its equation to be real in the homogencous coordinates used here) or a twisted cubic.
One can also think of these components in the following way. A component of y is called
a {p, q) curve if it intersccts the general member of one of the two families of generators
of # p times and the other g times (counted properly). In this notation, an irreducible
quadric is a (2, 2) curve, a twisted cubic is a (1,2) curve or a (2, 1) curve, a conic is a (1,1)
curve and the generators themselves are (1,0) or (0,1) curves. The curve y will then decom-
pose into a certain number of irreducible components with the proviso, of course, since u
is a quartic curve, that the sum of the first integers and the sum of the second integers in
the pairs (p, q) for the various members of the decomposition are cach equal to two. How-
ever, the fact that the quadrics in (2.1) have simultaneously real coefficients severely restricts
the decomposition of u since, if a line (generator) appears in a decomposition of u then so
must the corresponding complex conjugate generator. Further, the twisted cubic is no
longer a possibility since a decomposition containing such a cubic component would
necessarily contain a single generator only. Finally, if a complex conic appears in such
a decomposition then so must its complex conjugate conic. The irreducible components
which remain as possibilities for u are then in the notation of Penrose [2]

Q — irreducible quartic with real equation;

B — pair of complex conjugate irreducible conics;

C — irreducible real conic;

X — pair of complex conjugate lines.

The full list-of possible decompositions for y is thus 0, B, CC, C?, CX, XX and X2
Here, the symbol CC represents two distinct real conics whereas C? represents a repeated
real conic. Similar comments apply to the cases XX and X?. It will be seen later how this
classification of u is easily reconciled with the Segré classification of R,,.

The classification of y is then refined by firstly subdividing the cases Q and C according
to the number of connected one dimensional picces of the appropriate component which
lie in the reality section 2 of #. This number is then used as a suffix on the corresponding
symbol and leads to types C and C, for proper real conics and @, @, and @, for irreducible
quartics where, following Penrose, the suffix zero has been dropped. It will be seen that

2 More precisely, non-tangent plane sections of Z. A section of % with one of its tangent planes yields
a pair of reguli (a degenerate conic).
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no further refinement is achicved by applying the above analysis to components of type B
or X or by considering isolated point interscctions of the irreducible components of u
with £.

The second refinement arises by considering the real multiple point structure of u.
The types of real multiple point which might occur, together with their symbols as given
by Penrose, are

n — real node with two real branches (double point);
i — isolated real node with conjugate imaginary branches (double point);
nn — two real nodes;
ii — two isolated real nodes;
¢ — cusp (a double point with one branch and coincident tangents);
7 — tacnode (a double point with two branches, real or imaginary, and coincident
tangents);

t” — real curve of tacnodes (a repeated real curve);

t — triple point with one real and two conjugate imaginary tangents;
g — quadruple point with two repeated conjugate imaginary tangents.

It will be seen later that non-real multiple points other than double points are forbidden
and that such double points add nothing to the refinement ot the classification scheme
already achieved. It is also noted that because of its quartic nature, if u possesses a real
triple or quadruple point or more than one double point (real or non-real) then it is necessar-
ily reducible. This follows by a consideration of a plane through the triple or quadruple
point of u and’two other points on g, or a plane through the two double points of # and
another point on u. A similar conclusion also holds if x4 admits a tacnode.

3. The general classification

In order to see the connection between the way in which the quartic p decomposes
and the Segré type of R,, one can, cither by means of a direct calculation using the canoni-
cal forms (1.3) or by foliowing the arguments given by Ludwig and Scanlon [3], show that
the (non-zero) trace-free Ricci tensor may always be written in the following form at p

2Rab = r(asb) + f(agb)_i' (rcsc+ chc)gabs (3'1)

where r and s are non-zero complex vectors at p. Ludwig and Scanlon use (3.1) to classify
R,, according to the following scheme.

Type A. This occurs when r and s are real and proportional and gives two immediate
subtypes according to the sign of the factor of proportionality. It is further subdivided
according as r is timelike, spacelike or null.

Type B. This occurs when r and s are real but not proportional. It is subdivided according
to the sign or zeros of r,r? s,s* and r,s” and according as the 2-space spanned by r and s
is timelike, spacelike or null.

Type C. This occurs when r and s are complex vectors (but not complex multiples of real
vectors) when r is non-null and where s = +7. Again, two immediate subtypes occur
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according to the sign in the last equation. It is further subdivided according as the 2-space
spannzd by thz real and imaginary parts of r is timelike, spacelike or null.
Type D. This comprises all the cases not covered by 4, B or C. It is remarked that the
non-null restriction on r in type C keeps this type disjoint from type B.

For the types 4, B and C one has respectively

(a) Ai 5 Rab = i(rarb_% rcrcgab)’
(b) B; kab = T'@aSp) —% I'Cchab,
(c) Ct; Ry = (o) =% ' FQup)- (3.2)

In (3.2) (a), th: real vector r is determined by R, up to a sign. Similarly, in (3.2) (b),rand s
are real non-parallel vectors determined by R, up to the changes r — kr,
s> k50 # xkeR)and s > r,r—s In (3.2)(c), r is complex, non-null, not parallel
to a real vector and determined by R,, up to the changes r —» €% (8 e R) and r — F,
F — r. The classes 4, B, C and D are mutually disjoint and exhaustive of non-zero, trace-
-free Ricci tensors. The relationship between this classification and the classification by
means of Segré types has bzen tabulated [1, 3]. For convenience, the details are repeated
here (Table I).

For th: Ludwig-Scanlon type 4, the equations (2.1) defining p reduce to finding those
complex null directions (members of %) whose homogeneous coordinates x? satisfy
(r.x"y* = 0. This is a repzated real plane section of # and is thus a repeated proper real
conic if r is spac:like or timelike (Penrose type C?). If r is null, the resulting plane section
is a tangznt plane section of # and a repeated pair of generators results (Penrose type X?2).
For Ludwig-Scanlon type B, equation (2.1) shows that u consists of those complex null
directions whossz homogzneous coordinates satisfy (r,x%) (s,x*) = 0. Consequently, u
consists of two distinct real plane sections of # and is thus of one of the Penrose fypes CC,
CX or XX, according as neithzr, exactly one of, or both of r and s are null. For Ludwig-
-Scanlon typz C, a similar argument shows that u consists of those complex null directions
satisfying (r,x") (7,x") = 0 and is thus composed of a conjugate pair of complex plane
sections of . Sinc: r is non-null, a conjugate pair of proper complex conics results and
the resulting curve is of Penrose type B. Finally, for the Ludwig-Scanlon type D, the
irreducible Penrose type Q for u results.

Thz results of this section enable one to construct the basic connection between the
Penrose classification and the Ludwig-Scanlon (and hence the Segré type) classification
(Table I). The various refinements of this basic connection will be considered in the follow-
ing sections.

4. The real multiple point structure of u

Let / bz a real null direction and construct any real null tetrad /, n, y, z. Then R,;, may
be written as

Ry = 2R gy + R0+ RPnny + 2R,y + 2R 2,
+ 2ﬁ6n(ayb) + 21§7n(az,,) + Zﬁsy(az,,) + ﬁgyayb +R! Ozaz,,, (4.1)
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TABLE |
Comparison of the Ludwig-Scanlon, Segré and Penrose types
- -
. Sign of relevant invariant ' .
Ludwig-Scanlon Segré Penrose
type type type
rar? 5g5° ras® 1

Ars + {(1, 1, D1} Cir™
Az x - {11, 1, )} c?
As+ 0 {2,1, 1)} X%
Bia 0 0 - + {1, na, XXii
B 0 0 + + {,Ha, 1 XXii
Bag + 0 0 0 13, 1)} Cy X1
Bz + o - 21, 1} C.Xi
Bac + 0 + o+ {201, 1)} C1Xi
Big + + 0 — {a, ni, 1} CiCynn
By + + - - {1, D1, 13 CCinn
B, + + + - i, D1, 13 C,Cinn
Bsg + + - 0 {2, D1} C,CiT
B, + + + 0 i@, H1} CCit
Bsy + + - + {1,101, O} C,Cy
Bsy + + + + {1,101, 1} CiCy
Big 0 - - + {21, 1)} CXi
Bap 0 — + + 21, 1} CXi
Bs, - - - + {1,101, 1)} cc
Bsp - - + + {1, 11, )} cc
Bsa + - 0 + {z,2(1, D} ¢, C
Bep + - - + {z,z(1, 1)} cc
Bs. + - + + {z,z(1, 1)} C,C
Ci+ + {1,101, D} B
Cat 0 {a, 21 Br
Cix : - {(1, H1, 1} Bii

(4] 2 1s €2y ¥3 Q
D, {gtherxsiseg ¢ } {LL1L1 Qz}
D, {z,2,1,1} Q,

02 z e = 03 'an

01 Z 02, 03 and either
D, 01 >0(+) or g, <O0(—). {2,1,1} S04

@1 = @1, p3 and either

e1>0(=) or o: <O0(+) 5 Qi
D, i {3, 1} Qic

The first five columns for types 4, B and C and the first and third columns for type D give the Ludwig
-Scanlon classification. Here, 1 = (ras®)2—(rar%) (sps?) and is positive, negative or zero according as the
2-space spanned by r and s is timelike, spacelike or null. The eigenvalues occurring in the type D case refer
to equations (1.3) (a) and (b) and the notation (+) and (—) indicates the choice of sign in (1.3) (b). The
sixth column (third column for type D) gives the Segré type, where the convention that all degeneracies
are included inside round brackets and that in the diagonal case, the first digit corresponds to the timelike
eigenvalue, is adopted. The final column gives the Penrose type.
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where the tracafree relation 2R* + R® + R'® = 0 holds. One now considers a geighbourhood
of / in 4 in th: usual topology, the membears of which may be written with homogeneous
coordinates

x* = "3 (P4 +ay,+pz, (o, feC). (4.2)
Equations (4.1) and (4.2) togsther with (2.1) lead to th= following equation for u
F(a, By = — (> + R +5 (& + )’ R2+ R* —a(o” + B*)R* — B(a* + B*)R®
+2aR® +2BR" +20fR® +a?R® + B2R'° = 0, (4.3)

whsre one is, in effect, using a one-to-one projection of the neighbourhood of / in £ onto
an op:n subset of the tangant plane to 4 at /, the latter open subset being considered as
an open subszt of C? and the image point being represented by the pair of complex num-
bers (z, f). Thz neczssary and sufficient condition that / be a real multiple point of u
is then (sece, for example, [9])

F(0,0)=0; F —<5F) =0; F —(5F) =0 (4.9)
’ s o = aa =m0 ’ B 6ﬁ e=g=0 . .

But ths equations (4.4) are equivalent to R* = R® = R7 = 0 in (4.1) which, in turn, are
equivalent to / being a real null eigandirection of R,,. (This can also be deduced by a direct
algzbraic-geometric argumznt.) Thus the real multiple points of u correspond precisely
to ths real null eigzndirections ot R,;. As a consequancs u will admit a unique real multiple
point it and only if ths associated R, has Segré type {2, 1, 1} or {3, 1} or a degeneracy
of onz of thsse typzs, more than one real multiple point if and only if the associated R, has
Segré type {(1, 1)1, 1} or some degeneracy of this type and no real multiple points in all
other cases.

To examine the real multiple point structure in more detail, one first notes that one
can, by an appropriate choicz of null tetrad based on /, ensure that in addition to the coeffi-
cients R3, RS and R7, the coefficients R and R® in (4.1) are also zero. This will be assumed
donz. One then recalls that / is a multiple point of order r if all the k-th partial derivatives
of F vanish at / when k < r, but that th> r-th partial derivatives do not [9]. Now at the
real multiple point /, one has F = F, = F, = 0 and in an obvious notation

F,=2R°~RY), F,u=0, Fu=2R"-RY,
Fay= —6R*, F,; =0, Fuy= —2R* Fp,=0,
Faaa.a = Fﬁﬂﬂﬂ = 6R2, Fauﬂﬁ = 2R2, Faaaﬂ = Faﬂﬂﬂ = O. (4.5)

Thus / will bz a real double point (a multiple point of order 2) if and only if R® = R®
= RS = R7 = R® = 0 and eithir R # R® or R! # R' or both. Now the equation of
the tangents to the curve u at the point / is given by

F o0 +2F paB+Fyuf* = 0 (4.6)

and represents two lines in the tangent space to 4 at / which may be coincident. Now the
real double point J/ will be a cusp or a tacnode when these tangents are coincident and this
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oceurs precisely when either R = R® or R = R' but not both. Thus R,, will have Scgré
type {(1, 1, D1}, {(2, D1} or {3, 1} where the indicated dcgencracies are the only ones
permitted. These correspond respectively to cquation (1.3) (a) with ¢4 equal to two of
01> 02 and @3 but distinct from the third, to equation (1.3) (b) with ¢, = g, or ¢, = g5
but not both and to equation (1.3) (c) with ¢, # 0,. For / to be an isolated node, the
tangents at / must be distinct and / should be the only real point on them. This occurs
precisely when R' S R®, R'°, and corresponds to R, having Segré type (1, D1, 1} or
its degeneracy {(1, 1) (1, 1)} (equation (1.3) () with g, equal to one ot ¢,, ¢, and g; but
distinct from the other two and, if ¢ = g, say, 0o S 02, ¢3) or Segré type {2,1, 1} or
its degeneracy {2(1, 1)} (equation (1.3) (b) with 0; S ¢,, ¢3). Again no further degencracies
are allowed. For / to be a node, the tangents at / must be distinct and the real solution
of (4.6) must consist of two distinct straight lines. This occurs preciscly when R® S R* $ R0
and corresponds to R,, having Segré type {(1, D1, 1} (equation (1.3) (a) with g, equal to
one of ¢y, 0, and g3 and lying strictly between the other two) or Segré type {2, 1,1}
(equation (1.3)(b) with g, S 0; S ¢;). In those cases of Segré type {(1, 1)1,1} or
{(1, 1) (1, 1)} where a node or isolated node appears, the real null dircction which shares
an eigenvalue with / is also respectively a node or isolated node. For / to be a triple point
of u, equations (4.4) and (4.5) and the choice of null tetrad show that R® = R5 = RS
= R” = R® = 0and R! = R® = R butthat R* # 0. The trace free condition R¢ = 0 then
gives R = R® = R'® = 0 and so R,, has Segré type {(3, 1)}, being casily rewritten in the
form of (1.3) (c) with ¢, = g, = 0. Finally, for / to be a quadruple point, equations (4.4)
and (4.5), the choice of null tetrad, and the trace tree condition on R,, show that R3 = RS
=R =R7"=R®=R!=R°= R =R*=0 but that R? % 0. Thus R,, has Segré
type {(2, 1, 1)} (equation (1.3) (b) with ¢, = g, = ¢; = 0). This completes the discussion
of the real multiple point structure of y, the remainder of the detail given in Table I and
in the list of multiple point types given at the end of scction 2 being easily checked.

5. The real part of n

In this section, the intersection of the curve p with the reality section # will be in-
vestigated. This is the final refinement of the Penrose classification scheme. It turns out
that the curve u may have no intersection with # or that it may intersect £ in a number
of one dimensional connected picces or a number of isolated points or both. A brief discus-
sion of this feature will be given here where it will be shown that in order to rcfine the
classification already achieved, one need only consider the one dimensional connected
pieces in which u intersects £ and then only when 1 is of Penrose type Q or C.

A point in which g intersccts # corresponds to a real null direction &
such that R,,k°k” = 0. So if u possesses a component of type X one secks rcal solutions
for k of the equation /,k* = 0 where [ is a real null direction. Consequently a component
of u of type X intersects Z in a single isolated point and no further consideration of this
case need be given. For a component of type C one secks solutions for k of the cquation
r&® = 0 where r is a real non-null direction. The result is that when r is timelike the inter-
section is empty (case C) and when r is spacelike the intersection is easily shown to be a one
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dimensional connected piece of p (case C;). These results together with the numbering
system given by Ludwig and Scanlon [3] (see Table I) show that corresponding to the
Ludwig-Scanlon types A4, 4,, B;, B3, B4, Bs and B, one has the respective Penrose types
Cc2,C% C X, CCy, CX, CCand C,C. For a component of u of Penrose type B one consid-
ers real solutions for k of the equation r,k® = 0 where r is complex and non-null. Such
solutions correspond to real null directions k orthogonal to the 2-space spanned by the
real and imaginary parts of . Consequently, there is a discrete set of 'solutions, the set
comprising none, one or two members according as this 2-space is timelike, null or space-
like. (This result can be seen geometrically by noting that if a member of R lies on a complex
irreducible conic component then it necessarily lies on its conjugate component and since
these conics lie in different planes this part must alco lie on the line of intersection of these
planes. Since a line and a proper conic lying in the same plane intersect in two parts (prop-
erly counted) the number of members of £ lying on these conics is either none, one or
two.) For these numbers of intcrsections, the corresponding Ludwig-Scanlon types are
C,, C, and C; and from Table I it is seen that these types have already been distinguished
between by their real multiple point structure. Hence, curves of Penrose type B have no
one dimensional intersections with R and a study of the number of discrete intersections
with R provides no refinement of the classification already achieved.

Finally, let u be an irreducible quartic curve (Penrose type Q). Thus R, is of Ludwig-
-Scanlon type D and has no degeneracies among its eigenvalues. To study the intersection
of the curve y with #Z one constiucts an orthonormal tetrad (t,'x, ¥, z) and writes the real
null direction & in the form

ko = totoax,+By.+vza (% B, ye R, &+ 2 +y*—1 = 0) (5.1

and studies the solutions for k of the equation R,,k°k® = 0. First consider the case when
R, has Segré type {1, 1, 1, 1} and is given by equation (1.3) (2) where ¢, 01, 0> and @; are
distinct. Then equations (5.1), (1.3) (a) and the condition R,k°k” = 0, with y eliminated
by means of the bracketed equation in (5.1), gives

<Q_1 19_3> 24 <€%f£3> g2 = 1. (-2)
Co— 03 Q0— &

One now secks the real solutions for « and § of (5.2) which satisfy a2+ 2 < 1, this latter
condition being necessary to ensure corresponding real solutions for y and hence for k.
Now without loss in generality, one may suppose that ¢; < ¢, < @5 and so there are four
cases to consider;

(i) 01 < 0; < 03 <'go- In this case, no real solutions of (5.2) exist.

(i) ¢; < 02 < @o < 03 In this case, the real solutions of (5.2) represent an ellipse
lying entirely inside the circle «*+ 2 = 1 and so cach solution pair («, ) gives rise to two
real solutions for y. Two distinct real one-dimensional connccted picces for y result.

(iii) 01 < 0o < @2 < 03. In this case, the real solutions of (5.2) represent an ellipse
with major axis greater than unity and minor axes less than unity. Again, two distinct
real one-dimensional connected pieces for u result.
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(iv) 0o < @1 < 05 < ¢;. In this case, the real solutions of (5.2) represent an cllipse
lying entirely outside the circle a®>+ f* = 1. Consequently, 1 does not intersect #. The
conclusion is that, in this case, the curve p is either of Penrose type Q or Q, depending
on the inequalities satisfied by the cigenvalues (see Table I). A similar but tedious analysis
can be carried out for the other Segré types using (5.1) ‘and the appropriate equation
in (1.3) and where the null tetrad used in (1.3) (b), (c) and (d) is readily connected to the
orthonormal tetrad in (5.1). The results are that for the Segré types {3, 1} and {z, z, 1, 1}
a single real one-dimensional connected picce for u results, whereas for the Segré type
{2, 1, 1} either p has a single real one-dimensional connected piece and this can occur
with or without a separate real discrete point, or u has only a single real discrete point.
As in the case of Segré type {1, 1, 1, 1}, the various possibilities occurring for the Segré
type {2, 1, 1} are distinguished by certain eigenvalue inequalities (see Table I). From
the geometrical viewpoint, however, these possibilities are also distinguished by the
existencz or non-existence of the real one-dimensional connected piece for p and by
the nature of its (unique) real multiple point.

This concludes the discussion of the intersection of the curve u with the reality sc¢tion
2 and also shows why only the real one-dimensional connected pieces of u need be consid-
ered in order to refine the classification already achieved.

6. The complex multiple point structure of u

The complex multiple point structure of u turns out to be much more restricted and
less complicated than the real multiple point structure as might be expected. (In this section
the word “complex’ will always be understood to mean non-real.) The following is a sum-
mary of the relevant features, the proof of which will be given later.

(i) Suppose that the complex null direction m lies on the curve p. Then m is a complex
multiple point of u if and only if m is a complex null eigendirection of R,,. Consequently,
the complex muitiple points of p occur in complex conjugate pairs.

(#i) Any such curve possessing a complex multiple point is reducible.

(iii) Any complex multiple point of u is necessarily a double point, higher order
points being forbidden.

(iv) Thz number n of complex multiple points possessed by p is restricted to n = 0,
n=20rn= 0.

(v) For a curve with exactly two complex muitiple points, the tangents at any of
these points are distinct. A curve with infinitely many complex multiple points however
has coineident tangents at each such point and .s necessarily confined to a single plane
section of #. A curve of one of the repeated Penrose types C2, C,? or X? results and each
point on it is a tacnode.

(vi) Finally, the following very simple result is noted. If m is a complex null eigen-
vector of R,, with eigenvalue A, then A is real and the real and imaginary parts of m are
real orthogonal spacelike eigenvectors ot R,, each with eigenvalue A. Conversely, if R,
has two spac:like eigenvectors with equal (real) cigenvalue A then R,, admits a complex
null eigenvector with eigenvalue A.
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To prove thesc statements, suppose firstly that m is a complex multiple point of u.
Then one can construct a complex null tetrad (/, n, m, m) based on m and proceed with
an argument similar to that given in section 4 and based on equation (4.3). This method
also reveals that only double points are possible. An alternative approach to this laiter
result starts by letting m and m be a pair of complex multiple points of x one of which
has order of multiplicity at least three. Then any plane containing m and m contains a com-
ponent of x and this implies that the line mi is a generator of 4. This is a contradiction
since no generator of # can contain a complex point and its conjugate. Next, the fact that
such a curve p which possesses a complex multiple point (and hence at least two such
points) is necessarily reducible follows from the comments at the end of section 2. Now
suppose that m is a complex null eigenvector of R,,. Then one writes m® = u®+iv® where
u® and " are real orthogonal spacelike vectors of equal norm and

R, +it")y = (A+i0) (u,+iv,) (4, 0 € R). (6.1)

The real and imaginary parts of (6.1) together with the symmetry condition R, u%"
= R,,v"u” shows that ¢ = 0 and that #° and ¢° are cigenvectors of R,, with equal (real)
eigenvalue A. The converse is similar. It now follows that if more than two complex mul-
tiple points are admitted, then infinitely many are admitted for if m,; and m, (m, # 7))
are complex multiple points, they determine distinct spacelike eigen 2-spaces of R,, whose
eigenvalues are necessarily equal (eigenvectors of R,, with distinct eigenvalues are ortho-
gonal). Then infinitely many complex null eigenvectors of R,, are generated by the resulting
infinitely many pairs of orthogonal spacelike eigenvectors with equal norms and eigen-
values. It follows that if exactly two complex multiple points are admitted, the Segré type
of R, is {1, 1, (1, D}, {(1, D) (1, D}, {2(1, D} or {z, Z(1, 1)} with no further degeneracies
allowed. In each case, the appropriate canonical form in (1.3) and the methods of section
4 show that the tangents at these multiple points are distinct. Similarly, if infinitely many
complex multiple points are admitted, the Segré type of R,, is {1, 1, D1}, {1(1, 1, 1)} or
{(2, 1, 1)} and coincident tangents occur at each complex multiple point. In these cases,
a repeated Penrose curve of type C2, C? or X2 results. It is now easily seen that no further
refinement of the classification scheme already obtained is achieved by considering the
complex multiple point structure.

7. Further comments on the geometry of #. Invariant 2-spaces of R,

Let / be a real null direction in & and let L and L be the conjugate pair of generators
of # through /. The members of L are contained in the tangent space to # at / and are
hence orthogonal to / as well as being null. Now if m is any complex (non-real) member
of the generator L, let L’ be the other generator of & through m. The point m uniquely
determines the conjugate point 7 which lies in both Land L’. Hence m uniquely determines
another real null direction » distinct from / and lying at the point of intersection of 'L’
and L’. Thus after an appropriate scaling, a comlex null tetrad (/, n, m, m) is determined
up to the ambiguities m — €m, ! — Al,n - A-'n (0, A€ R, 4 # 0). Now the members
of L can be represented formally by the 2-parameter family of directions {m-+a/: « € C}
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together with the direction /. Consequently, with / fixed, a change of m within L results
in a change of null tetrad (with the above mentioned ambiguities taken into account)
which may be written in the component form for the usual null rotations about / (cf. [10])

I'* = Al°, m'* = e(m°— ABI%), n'* = — A" 'n®+Bm°+ Bm®— ABBI, (7.1)

where 4, 0 € R, Be C and where A has been taken positive so that the direction / may
always be considered, say, future pointing. The null rotations (7.1) preserve the set of
future pointing timelike and null vectors and also the orientation of a triad of spacelike
vectors. This latter orientation would not be preserved if, with / fixed, one changed from
m in L to some member of L. '

Each point in £\Z has real and imaginary parts corresponding to two real orthogonal
spacelike vectors of equal norm determined up to a rotation within the 2-space defined
by them and there is a one-to-one correspondence between such points and spacelike
2-spaces at p € M. In particular, such points which lie in L correspond to the spacelike
2-spaces orthogonal to /, the “‘wave surfaces™ -of /. These comments enable one to give
a simple geometrical interpretation of two recent results of Cormack and Hall [11] and
in particular of the concept of an invariant 2-space of R,, at p € M. A two-dimensional
subspace V of the tangent space T,(M)to M at p is an invariant 2-space of R, if, in compo-
nents, whenever * € ¥, R&’ e V. The following results are known [4, 6, 7, 12]:

(i) for any traccfree Ricci tensor an invariant 2-space always exists;

(ii) a null 2-space is an invariant 2-space of R,, if and only if its unique null direc-
tion is an eigendirection of R,;

(iii) a 2-space V is an invariant 2-space of R, if and only if its orthogonal comple-
ment V is also.

It is now clear that a null invariant 2-space (in fact an orthogonal pair of null invariant
2-spaces) is then interpreted in terms of the geometry of # as a real multiple point of u.
Next, let G be the four-dimensional (Grassman) manifold of all 2-spaces at pe M and
G the (four-dimensional) open submanifold of G consisting of all non-null 2-spaces at p.
One can now construct a real-valued differentiable map ¢, on G where if F is a non-null
2-space at p and F,, any (necessarily non-null) representative simple bivector for F, then?
Eabcd Fab ch
o) = 5
ga[cgd]bF F )
where E,;., is given by (1.1). The value of ¢ ,(F) is clearly independent of the representative
bivector chosen for F. Now if F is a spacelike 2-space at p, its othogonal complement F
is a timelike 2-space at p and it follows from (7.2) that ¢ (F) = —qbl,(}iE ) [7, 11]. Thus ¢, is
determined by its values on spac:like 2-spaces at p. From the remarks above one can,
therefore, consider ¢, as a real-valued differentiable function on #\%, where if m e Z\%#
corresponds to the spac:like 2-space F, th:n with an abuse of notation
EpeaF B -Rab’—ﬁ(amb)

@ (m) = ¢ (F) = = 5 (7.3)

b od (a=b) *
2ga[cgd]bFa F gapm''m

(1.2)

3 This should be compared with the Riemannian curvature (sectional curvature) function.
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where m” is a representative complex vector for m and where the last equality follows from
(1.1) (b) and the choice iF,, = 2my,m,,. The following results can now be established
from (7.3).

(a) if L is a generator of 4 and / is the unique member of £ contained in L, then the
value of ¢ ,(m), m € L\{l} is independent of m if and only if /is a (real) null eigendirection
of R,

(b) if one examines the values of ¢, in a neighbourhood in #\# of the point m,
that is at points of the form m'® = m®+al®+ pn° —afme (o, B € C) where the complex
null tetrad (/, n, m, i) is constructed as above, then the critical points of ¢, (in the obvious
sense) are precisely those points in #\% which represent spacelike invariant 2-spaces
of R,

Thus all invariant 2-spaces of R, are determined by the behaviour of ¢, on B\%.
The proofs of these two results, given in a different form in [11] are readily gathered from
(7.3) by considering an expansion of R,, in terms of the complex null tetrad (/, n, m, m)
similar to that given in terms of a real null tetrad in (4.1) and referring to the theorem in
section 2 of reference [11].

This completes the discussion of the geometrical interpretation of certain of the im-
portant properties of R,, by means of quartic curves on %. Some physical applications of
the classification scheme have been discussed elsewhere [13, 14] (see also [7] for further
references).

APPENDIX

The equivalence of the tensors R,, and E,,; has been utilised to obtain a classification
scheme for R, and hence for R,, by an analysis of the tensor E,, [4, 7]. In these references,
however, the analysis concerned the tensor f:tabcd = E,4+iE} i, Where * denotes the
usual duality operator. In this appendix, a brief discussion is given of a direct analysis of
the algebraic structure of E,,,. It is convenient to use the block index replacement where
capital Latin letters 4, B take the values 1-6 and replace a skew pair of small Latin indices
according to the scheme 1> 23, 2> 31, 3> 12,4 > 10, 5 «> 20, 6 <> 30 (see for example
[15]). With this notation, the components E,., at p are replaced by the 6 x 6 matrix‘E g
and a bivector F,, is replaced by a 6-vector F . Block indices are raised and lowered in the
usual way and for the duality operafor, one notes the result *E,; = —E %5 which together
with the trac free condition £4, = 0 will prove uscful in what is to follow.

The following three results enable the classification to be given. They concern the
study of the eig:nvectors of E,p, that is 6-vectors F* satisfying E, zF® = JF, where F,
and A may be complex. Such eigenvectors are intimately connccted with the invariant
2-spaces of R, [4, 7]

(AD) E, p has an even number of independent real eigenvectors

* - - . i - -
Proof. If E 5 has a real eigenvector F, then F 4 is also an eigenvector and is independent
. . * . -
of F,. If E 5 admits another independent real eigenvector G, then again G, is an eigen-
* * . .
vector and it is easily shown that F,, F,, G, and G4 are independent. A similar argument



418

N * *
holds if a fifth independent real eigenvector H, is admitted, for then F,, F ,, G, G, H , and
a 4 are six independent real eigenvectors.

(A2) If a non-simple elementary divisor of order >> 3 exists for £, and if £, has only
real eigenvalues then its Segré type is necessarily {3, 3}

Proof. The existence of a non-simple elementary divisor of order > 3 implies the existence
of three independent real vectors F,, G, and H satisfying

EABFB == OLFA, EABGB = OCGA+FA, EABHB = O(HA+GA‘

The duals of these equations can be written as
. %¥p * *p * *
E p(—F") = —o(—F,) Ep6° = —aG +(—Fy)
* * *
Es(—H®) = —a(—H,)+G,.

Now it can be shown that the vectors F,, G,, H,, —F 45 G 4 and -H 4 are independent
and so they constitute a basis of vectors from which the Segré type of E,p is clearly seen
to be {3, 3}.

(43) If E,p admits a complex eigenvalue then, in an obvious notation, it has Segré type
{z,Z, -z, ~Z,1,1}

Proof Xt W, = F,+iG,(F, and G, real) satisfies EzW® = oW,, where o = a+if,
a, B € R, then necessarily W,, f/kVA and ITVA are eigenvectors of E p with eigenvalues @, —w

and —@ respectively. It can then be shown that W,, W,, P*I‘/A and V’f/A constitute an inde-
pendent set of eigenvectors of E 5. One then shows that the elementary divisors correspond-
ing to any complex eigenvalue is necessarily simple. In this step the tracefree condition is
useful. One is then left with the two possibilities {z, Z, —z,—Z, w, @} and {z, Z, —z, ~Z,
1, 1} (the z,Z, —z, —Z, 2} case being ruled out by result (47) above). It is then straight-
forward to show that the former is impossible and the result follows.

The classification is now completed by noting that the only possible Segré types for
a 6x6 real matrix when all its eigenvalues are real are

G (1,1,1,1,1,1} G) (2, 1,1, 1,1} Gil) {2,2,1, 1}
(iv) {2,2,2} (@ {3,,1,1} (i) {3,2,1}
(vii) {3,3) (viii) 14,1, 1} (ix) {4, 2}

) {51} (xi) {6}.

To these must be added those cases where complex eigenvalues occur. Now the result
(A1) eliminates the cases (if), (iv), (vi), (viii) and (xi) above whilst the result (42) climinates,
in addition, (v), (ix) and (x). Finally, result (43) reduces the possibilities when complex
eigenvalues occur to a single case. The only Segré types which can occur are therefore

,1,1,1,1,1}, {2,2,1,1}, (3.3}, {z.% —z, —%1,1}

which are easily shown to correspond to the canonical forms for R,, given by (1.3) (a), (b),
{c}, (d) respectively.
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