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A method of constructing examples of Predictive Relativistic Dynamics on the basis
of Lagrange formalism is presented. Kerner’s one dimensional example is obtained.
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In the instantancous formalism of Predictive Relativistic Dynamics (PRD) [1, 2, 6, 7]

the system of two pcint-like i.e. structureless particles is described by Newtonian-like
differential equations:
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where x is the position of n-th particle, x = x* — X2 is the instantaneous interparticle distance,
on
x" = e is the particle velocity and a} are the components of “force”.

Currie and Hill 1, 2] have given the differential conditions which guarantee the

Lorentz invariance of PRD. They form a set of nonlinear partial differential equations.
In the case of the one dimensional motion of two particles, the Currie-Hill conditions
are as follows:
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The nonlinearity makes their integration difficult. At present, five solutions of (2) are known
in the explicit form. They ail have the form

a" = ¢,.(xx,3c__)’ G231, 3%) = —, (3% 5N, (3)

and explicitly:
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It is very hard to find any simple solution which falls off with interparticle distance x
!

faster than — [9]. The solutions (3) do not appear to be physically realistic.
x

In this paper, we present a method of constructing examples of PRD on the basis
of Lagrange formalism. The question can be put as follows: is it possible to ensure the
Lorentz invariance at the level of Lagrangian L(x, %!, X2) and which conditions the Lagran-
gian should satisfy to guaraniee the Lorentz invariance? In other words we look for the
Lagrangian which, via the Euler-Lagrange equations, would provide us with the Lorentz
invariant equations of motion (1).

For two particles the infinitesimal Lorentz transformation of x, x*, x> has the form [3]:

.\J - x+8(x]xl_x25€2), (5)
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where ¢ denotes the infinitesimal parameter of the transformation. From Kemer’s proof
of “No-Interaction Theorem’ [3, 4] it follows that the requirement for the Lorentz trans-
formation to be canonical is too restrictive. In the Lagrange formalism this implies

dG(x, %, %?
L(x, %Y, %*) = L(x, #, #*)+& —(-dt—-’f), )
which results in the Lagrangians of the form
L = c; V1—x'%! +¢, V1— %232 +c5lxl. (8)
They describe the free particle motion or the case of “forces’” independent of x.
Thus we abandon the condition (7) by putting:
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requiring moreover that L(x’, X', ¥*') when expressed in non-ptimed variables gives the
same equations of motion as thosz following from L(x, %!, %2). This requirement will be
automatically satisfied if

2
1AL = Y Apx, ', 3DLL, m =12 (10)
n=1
where
= — — 1n

and 4,,(x, X', X?) are arbitrary functions with det 4,,, # 0.

A similar method has been proposed by Curiie and Saletan [5] for the case of one
degree of freedom.

The function AL(x, X', X?) follows from the Lorentz transformations (5) and (6).
Indeed, if we insert (5) and (6) into (9), perform the Taylor expansion in the parameter ¢
requiring that all terms linear in %" vanish we end up with the following set of equations:

ﬂ* =0 for m # n.
oxX"ox"
They imply that
L = Fy(x, ¥))+F,(x, %2), (12)
G = x'F, +x2F, + h(x', x?), (13)

where Fy, F, and 4 are arbitrary functions of their arguments. The remaining terms in (9)
give:
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Now we put (14) into (10) and thus we get
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Equations (15, 16) come from the comparison of terms linear in accelerations %" which
enter Eq. (10). It turns out that Eqs. (15)—(17) imply that the forces deduced from L satisfy
the Currie-Hill conditions. The mverse statement is more difficult to prove, because it is
not clear whether each *“force” " satisfying the Currie-Hill equations (2) is compatible
with the existence of a Lagrangian satisfying equations (13), (15)-(17).

At the first look, the obtained system of equations is more complicated than the
Currie-Hill conditions, since 4,, evaluated from (15), (16) and inserted into (17) give
a system of nonlinear equations even more untractable than (2). We hope, however, that
these equations could determine some class of Lagrangians thus providing us with the
whole class of dynamical models.

Let us consider the particularly simple cases when:

Ay = Ay, =0, A5, # 0, Ay #0
Az = Ay =0, A, #0, A4,,#0
Both of them lead to Lagrangian (8).
Note that in equations (17) almost ali coefficients are polynomials in velocities. This
suggests to look for Lagrangians which via equations (15), (16) would give the functions

4,., being polynomials or ratios of two polynomials in velocities. The simplest realization
of this is to put:

L= c;(__zi)ﬂw %)f“)*zﬁzﬂ(x) G+ 37 +d(x), (18)

where ¢, ¢,, d and f are functions to be determined. Inserting (18) into (15)—(17) one finds
that the only Lagrangian of the form (18) is equal to

X
L= oz—z-—(fc‘fc‘-)%zfcz), (19)
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This leads to the “‘forces” found by Kemner {10}, namely

- (xl __x2)2

a = —a =—

2x
Other examples, including three dimensional ones, are under investigation.
o . . oL oL
Note that within this approach constants of motion such as P = Frey + Frey
b X

: i oL
or E = x" S —L do not necessarily represent physical momentum and energy
X

n=1



425

with appropriate transformation properties. Here the Lagrangian L represents a mathe-
matical object, only which enables us to determine the forces and therefore we do not fall
in contradiction with the theorem proved by Jordan [II, 2].

The authors are greatly obliged to Dr Z. Chylifiski for the discussions and for the
critical reading of the manuscript.
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