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The rigorous lower bound for the elastic-to-total cross-section ratio is derived at finite
energies in analytical form. The obtained bound allows one to make numerical estimates
of total cross-section which are sufficiently close to corresponding experimental data.
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One of the most important directly observed consequences of the general principles
of the quantum field theory is the existence of the connection between the values of elastic
and total cross sections.

The first bound on the ratio of the elastic cross section to the total one was obtained
by Martin [l], who proved that at asymptotic energies
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The strongest result of this type was obtained by Singh and Roy [2] and by Lukaszuk [3]:
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The bounds (1) and (2) show, that classical Froissart-Martin bound [4, 5] can be improved
by the factor o,,/0,, (approximately).

In the present paper we shall show that the analogous bound is valid for finite energies
as well. On the one hand, this circumstance allows to improve essentially the Froissart-
-Martin bound at finite energies and, on the other hand, it gives the opportunity to obtain
the lower bound of the value of elastic cross section when the total cross section is known.

Let us begin from the simplest case of nn-scattering and consider n®nP-scattering
for exactness. As in the problim of derivation of ordinary Froissart-Martin bound at
finite cnergies [6-12], we shall use an information about the z-channel D-wave scattering
length a5, which, according to Froissart-Gritov formulae, can be cxpressed through the
integral of the imaginary part of elastic emplitude for unphysical value ¢ = 4m?:
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Our task is to obtain the bound on the total cross section within some interval of encrgies
(51, 52) if the ratio o,/0,,, = b(s) is Yixed. This tound is valid in some “middle”” point
of given interval.

At first, it should be noted that:
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since A(s, t) > 0 for # > 0. Representing A(s, 4) as A(s, 4) = s¢(s, 4) and using the middle
value theorem,
AG, ) = Sl a5y, ) P, @
8 Sy—5,
Se(sy, 52)
is obtained.
For solving the problem of maximizing A(S, 0) if A(5, 4) and b(5) are given, we shall
use the generalized method of Lagrange multipliers [13]. For our case the Lagrange function
is written as

¥ = li 21+ Da5)+ D[ AG, 4)~ 12} Ql+Da 8)P(z)]

+C{b(3) li I+ 1)a5)— i QI+1) [af ) +ri ()]}

I=

+ ,i QI+ DAfa ) — a6~ riE)], )
=0

Here z = 148/(5—4); D, C, 2, are indefinite Lagrange multipliers, a(5) and r(5) are
maginary and real parts of partial wave amplitude respectively; / are even.
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The presence of the last term in (5) is connected with the necessity to take into account
the unitarity condition:
a(s) = ai(s)+ri(s).

The variations of L with respect to g, and 7, lead to the following partial-wave regime
that realizes the maximum of A(S, 0):
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It is obvious that a, decreases monotonically with the increasing of /. Distracting from
the fact that / are integer, we can define such L that a; = 0. Later on we shall make our
bound only worse taking the nearest upper even integer instead of L. Then we obtain

It can be expected that “a; = 1 regime” will not be realized for sufficiently small values
of b(s). For this purpose it is enough that the inequality d <1 is valid.

More specifically the conditions under which the “q; = 1 regime” is not realized we
shall consider later, and now let us assume that they are fulfilled, and
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Inserting (6') into the partial-wave expansion and summing we obtain
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For simplification of equations (7) we shall use the following estimations of Legendre
polynomials and their derivatives [10-12]:
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which are valid for y > 1, a < 1. In our case cha = 1+8/(5—4), a < 4/\/5_——2 i.e. the
condition « < 1 is practically fulfilled if s = 10 GeV?2. Using inequalities (8) we can derive
the following bound on the total cross section for y > 1:
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The value of y is determined from condition (for y > 2):
. Ve

4G, 4) > b(E) %ﬁz— 8. (10)

where
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It is easily seen that the function g(y) increases monotonically for y > 2 and that
lim g(y) = 1. Since g(y) > 0.85 for y > 2 and g(y) > 0.95 for y > 2.5, the influence of this

P
function is very weak. Solving (10) as in Ref. [11] and conserving the main terms in the
expression for y, we come to the tollowing final inequality for the total cross. section:
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The dependence of our bouhd on s will be more obvious if we use another way of
.averaging A(s, 4) in (3'). Representing A(s, 4) ad A(s, 4) = s2¢(s, 4), we obtain
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instead of (4), and consequently y in (11) is replaced by
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We are still to make clear under what condition the supposed partial wave regime is valid.
This problem can be solved by using (7) and (8):

) < b(§)<1+ 31; + %) (12)

In the case of nPnP-scattering y is proved to be greater than 2 even for the energies higher
than several GeV. Consequently, the necessary condition d(5) < 1 is fulfilled if 5(3) < 0.44.
Since y monotonically increases with energy, the condition, imposed on b(5), becomes
more and more liberal with the growth of energy.

Let us now consider the problem of np-scattering. In this case we must take spin
into account. For the exactness we shall consider the crossing-symmetric process of pion-
-proton scattering, i.e. we shall look for an upper bound on the quantity

(+) _ 1 xtp TPy 1 (1/2) (3/2)
O’ = 7 (010" +01,°) = 3 (000l " +20:5{ 7).

For taking spin into account we shall utilize the helicity formalism [14]. Then

A(s, t) = Z [(z+1)3, (1+ 5%) a,.(s)+1B;_, (1+ 2—;2> a,_(s)], (13)

where

P, —P;
B(x) = 14 1(X)—Py(x) ,
I1+1.
g is the c.m. momentum. '
As it has been shown by Yndurain and Common [14], the Froissart-Gribov formulae

in this case lead to the following bound on A (s, 4u3):
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Here A{*)(t) is the t-channel D-wave, M and p are the masses of nucleon and m-meson
respectively, G? is the tNN coupling constant,

2M V 1[su—(M>— %]
Vs, M, 1) - ou, M%)

sin ¢’ = —

Ax, y,2) = X2+ y 422 —2xy—2yz—2xz.



432
Since

B.(2) = Pi(2)+ -(Z—_—P~ Pi(2) = P(2) [1+ x +0(a2)] o~ —/i_
L L ( L + 1) L L 2 3. \/S s
the decomposition of A(s, ¢) in equation (13) coincides with an ordinary decomposition
in Legendre polynomials in the spinless case with the precision of terms, having the order
p/</s. Therefore the inequality (11) remains valid.

Let us now consider the numerical calculations of our bound on the total cross sections
for different intervals (s,, 5,). For this purpose we shall evaluate the integrals in the left
side of (14) between the limits (M + u)? and s,, using the experimental data on the total
and elastic cross sections of np-scattering (s, being the initial point of the interval within
which we are looking for the bound). For evaluation of low-energy part of integral below
(2.3 GeV)? the calculations that are based on phase analysis [15, 16] were carried out.
By inverting the considered problem we can get, using the same method, the lower bound
on A(s, 44%) it the total cross section is given. And then we can evaluate our integral between
limits (2.3 Gev)? and s,. .

According to calculations of Yndurain and Common [14], the value of 4 in (14) is
equal to 0.177 u=*. Our calculations show that integral of A(s, 4¢?) from the beginning
of the cut to (2.3 GeV)? is equal to 0.139 u—4.

Here are the final evaluations of quantity

S1

1 —le’| S
d—4x J ds——iez—23~£A(s,,4u2):
(s—M"+p°)y ¢

d(s,)
(M + p)?

51 = (2.3 GeV)? 4(s,) = 3.8x10°2 p—
s = (4.0 GeVy?

§ = (6.9 GCV)2

a(sy) = 1.8 x 1072 y—*
a(sy) = 1.2x 1072y
51 = (12.0 GeV)? a(sy) = 8.7x10-3 u+

The final bounds on total cross section are given in the Table.

TABLE
Upper bounds on total cross sections of crossing-symmetric wp-scattering
Interval of lab. momenta Interval of ¢.m. energies )
(GeV/c) (GeV) 0ot (5) (mb)
2.3+25 2.3+6.9 37.3
8.0=76 4.0+12.0 44.8
25+230 6.9--20.8 58.0
76690 12.0+-36.0 71.5
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Thus, the obtained bounds are sufficiently close to saturation by experimental data
and considerably tighter than analogous bounds that do not take into account the ratio
of elastic cross section to the total one. A comparatively slow growth of Bounds with
increasing of energy should be noted, which is connected with the decreasing of ratio
of elastic cross section to the total one with the growth of energy.

It must be noted in conclusion that the inequality (11) can be used for obtaining
the evaluations of elastic cross section for the energies at which the experimental data
exist only for the total cross section.

Editorial note. This article was proofread by the editors only, not by the authors.
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