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ON GEODESIC NORMAL FLOW OF PERFECT AND VISCOUS
FLUID

By V. 1. OBozov
Orenburg Polytechnic Institute*
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It is shown that flow-lines form time-like shear-free normal congruence of geodesics
only in conformally flat gravitational fields of a perfect and viscous fluid. This is found
to be a necessary and sufficient condition that the gravitational fields of a perfect and viscous
fluid are conformal to a flat space-time.

PACS numbers: 04.20.—q

1. Introduction

In [4] we have established the following theorem: In nonstationary gravitational
fields of an irrotational perfect fluid the acceleration of the fluid particles is zero, but
this theorem is valid only for some nonstationary gravitational ficlds of an irrotational
perfect fluid.

The purpose of the present paper is to show that the flow-lines are geodesics only
in the conformally flat gravitational fields of a perfect and viscous fluid. In Sections 2, 3
we consider the gravitational fields of a perfect fluid. In Section 4 we investigate a viscous
fluid.

In Section 2 it is found that the condition #, = 0 gives the relations oy, = 0, 65 = 0,
where f,, wy, 04 represent the acceleration, vorticity and shear of the flow, respectively.

In Section 3 we have established a necessary and sufficient condition tor the gravita-
tional fields of a perfect fluid to be conformal to a flat space-time. For the realistic de-
scription of a perfect fluid we used the realistic equation of state in the form g = o(p),
where ¢ is density, p is pressure.

In Section 4 it is shown that a necessary and sufficient condition for the gravitational
fields of a viscous fluid to be conformal to a flat space-time is equivalent to the same con-
dition for a perfect fluid. Here we used the equation of the viscous fluid state in the form
g = o(p), { =Up), n=n(p), where n and ¢ denote the coefficients of shear :and bulk
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viscosity, respectively. We chose this equation of state because of the following considera-
tion: The energy-momentum tensor of a viscous fluid can be written as

Ti = (04 P)uity— pgu+2n04, (L.1)

where p = p—{0, 0 = u", is the volume expansion, u; is the dynamical velocity and
¢ = 1 (c is the light velocity). From (1.1) it follows that the flow of a viscous fluid is a ther-
mal-free flow. Actually [1] the energy-momentum tensor for the thermal flows assumes
a specific form. If the thermal flow in a viscous fluid is absent, the fluid mo'ion is isothermal.
Therefore, the equation of state in this case is ¢ = o), n =n(p), L = Up).

2. Velocity field of a perfect fluid with geodesic flow

In the general case we have for the gravitational fields of a perfect fluid that

1
ti = ui;nu” = m(p,i_p,nuuui)’ (2‘1)

)
where u; is the velocity (uu" = 1), p, = 6—1" , ¢ = 1 and the semicolon denotes covariant
X

differentiation.
If t =0, it follows from (2.1) that

Pi= P,n“”“i~ (2.2)

The condition (2.2) implies that the corresponding family of streamlines is a normal con-
gruence of geodesics. Actually we have from (2.2)

Pax— Pt = (Patd") sthi—(p ") g+ p " (Ui — t30) = 0. 2.3)

Contracting Eq. (2.3) with «' by virtue of uu” = 1, uu” = 0, 1, = u,u" = 0 gives
(Patt") i = (P tt") mtd"thys

then it follows from (2.3) that uy = u. If uy, = uy, the vorticity of the stream-
lines is zero, i.e. wy = 0. Consequently a family of streamlines with # = 0 is a nor-
mal congruence of geodesics. In this case the covariant derivative of the velocity field
may be decomposed in the following way

0
Ui = 3 (gu— uthy) + 0y, 2.9

where 0 = 4", is the expansion of volume, o, is shear tensor. The shear tensor satisfies
the relations

n nk
Ou =0y, Ouu" =0, g, =0.
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Further, we consider the gravitational fields of the perfect fluid satisfying (2.4).
The field equations for a perfect fluid are

Ry—% Rgy = —(o+ p)uthy+ Py 2.5)

where units are chosen so that 8nG = ¢ = 1; the symbols have the usual significance.
The Bianchi identities, Ryqpm;5; = 0, are equivalent to

Ri[k:l]_% guR .y = C”ikl;m (2.6)

where C", is the Weyl tensor, the square brackets denote antisymmetrization. Substituting
Ry, R from (2.5) and u;, from (2.4) into (2.6), we cbtain

(e+p)o . "
— &ty —(@+Pioithiy; = Clyppne @7

1
3 8l — Wikl — 3

Simultaneously we have from the conservation equations, 7%, = 0, where T7 is the
energy-momentum tensor of a perfect fluid, that

e.u"+(e+p) = 0. (2.8)
It follows from (2.2) and the equation of state ¢ = g( p) that
0, = @qu"u;
With the aid of Eq. (2.8) we can rewrite the above relation in the following way
0= —(e+p)u,
Substituting this relation into (2.7) we obtain
(e+Plopuy = Clyyn (2.9
Contraction of Eq. (2.9) with ' by virtue of u"s,, = 0 gives
U"C pptn = 0. (2.10)

If Chpin # 0, generally speaking, from (2.9) it follows that. o, # 0. Yet in [2] it is
shown that the gravitational fields of a perfect fluid with (2.4), where o, # 0, do not
exist in General Relativity.

Therefore we now consider the condition C",, = 0 satisfying Eq. (2.10). In this case
it follows from (2.9) that oy,u, = 0. Contracting this with @' and using v’g;, = 0, we
obtain ¢, = 0. Consequently in the permissible cases from (2.10) it follows that g, = 0.
Hence we have the following theorem:

Theorem 2.1. The velocity field of a perfect fluid with geodesic flow is defined by

]
U = :‘3‘ (gu—uuy). 211
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3. Necessary and sufficient condition for C"y; = 0

In this Section we prove the following theorem:
Theorem 3.1. Eq. (2.11) is the necessary and sufficient condition for the gravitational
field of a perfect fluid to be conformal to a flat space-time.

3.1. The proof of necessity

Let a gravitational field of a perfect fluid be conformally flat. In this case we have
C" = 0. From Eq. (2.6) with the aid of Eq. (2.5) and C", = 0 we find

(0+ Pl +(2+ Pty — 3 8@ — Uitip(@ + P g = 0. (3.1)
Moreover the metric of conformally flat gravitational fields may be written as
ds* = ¢*[(dx°)? —(dx")*—(dx*)* —(dx*)’].
Hence we have that the vorticity in this case is zero, i.e. w,; = 0.1t the vorticity is zero,
the tensor u;, may be spht up as follows

0
U = L+ S(gik—uiuk)'i'aik'

Hence wpiy; = f4,, where the tensor f; satisfies Eq. (2.1). With the aid of wpyy = tiug
and (2.1) and some simplifications from (3.1) we have
(0+ P)uirathiy— 5 8k, — Uil = 0 (3.2)
The contraction of Eq. (3.2) with ' gives
Qx4 = QU (3.3)
The field equations are given for the equation of state for which ¢ = ¢(p). Therefore from
(3.3) and ¢ = g(p) it follows that
Py = Dby
In this case by virtue of (2.1) we have that #;, = 0. The contraction (of (3.2) with u®,
by virtue of ¢, = 0'and (3.3), gives
= — (Q,uu"giz“é’.z“t} ) (3.9)
3(e+p)
From (3.3) we have g; = ¢,u";. Therefore Eq. (3.4) is equivalent to

Qntt

Uy = — —— —u;uy).
3t 3o+p) (8u )

With the aid of this and (2.8) we obtain (2.11).
Consequently, the necessity of condition (2.11) for C"y; = 0 is proved.
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3.2. The proof of sufficiency

Let the velocity field of a perfect fluid satisfies (2.11). Then we prove that the corre-
sponding gravitational field of a perfect fluid is conformally flat.
The integrability conditions of (2.11) are equivalent to

— 1 n
Ui = 72 4R

where R", is the Riemann tensor of space-time. This, by virtue of (2.11), can be written
as follows
u; 2

% g n— ? u[ko,l]_ §‘ iUy = % U, Ry (3.5)

In the general case C";; # 0 and we have

Run = Coia+ Rikn+ Rop 8 — 5 REis&igne (3.6)
With the aid of (3.6), (2.5) and (3.5) we find

Uu; 92 Q+3p n
3 g8ndn— & upbfn— < Bmiy— —— Bty = 7 4Clae 3.7
3 9 6
The contraction of Eq. (3.7) on i and / gives
0? +3
%' o,nu"uk-l- % 9,k+ 3—‘ uk + Q p uk = 0. (3.8)
From (3.8) it follows that
u[lo’k] = 0, 0," = 0,"u”uk. (3.9)
Using these relations in (3.8) we obtain
0> o+3
0, — — (? + 0, (3.10)

Substituting Eqgs (3.9), (3.10) into (3.7) we find #,C";; = 0. By [3], if w,u" # O and the
dimensionality of space-time n = 4, the condition #,C%;, = 0 implies that C";; = 0.
C"s = 0 means that the corresponding gravitational field of a perfect fluid is confor-
mally flat.

Consequently theorem 3.1 is proved.

4. The viscous fluid with geodesic flow
The field equations for the energy-momentum tensor (1.1) are the following
Ry—% Rgy = —(0+ p)uh+ pgu—2n0y, 4.0

where units are chosen so that 8nG = ¢ = 1. If the fields satisfying (4.1) are conformally
flat, it follows from Bianchi identities (2.6) that

(e+ Pt = 2 (0 — 04" W) + P g— P i i+ 200 4.2)
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where f, = u,u" is the acceleration. If 1, = 0, Eq. (4.2) can be written as follows
3 (0= 0ttt} + P = Pu"uy = 0. 4.3)

1t can be shown after the detailed calculations which are similar to the calculations
in Sec. 2, that Eq. (4.3) implies w; = 0. The condition wy, = 0 defines the normal con-
gruence of geodesics. If wy, = 0 and 1, = 0, the tensor u;; may be split as follows

0
U = g(gik_uiuk)'i'aik' (4.4)
Now we consider the case oy = 0. If 6, = 0, Eq. (4.4) is reduced to
0 .
lk = (glk uiuk) (45)

and the field equations are equivalent to

Ry—%Rgy = —(0+ pug,+ pgis. (4.6)

Eq. (4.6) is similar to Eq. (2.5). Therefore, it can be shown with the aid of calculations
which are similar to the calculations in Sec. 3 that Eq. (4.5) is a sufficient condition
for the gravitational field (4.1) to be conformal to a flat space-time.

Now we prove that Eq. (4.5) is a necessary condition for the gravitational field of
a viscous fluid to be conformal to a flat space-time.

Let the gravitational field of a viscous fluid be conformally flat, i.e. C"y; = 0. In this
case the Bianchi identities, Riqimny = 0, are equivalent to

Rigsnn— 5 SR,y = 0.
With the aid of Eq. (4.1) we can write the above relation as follows
b gm0 —une+ p).n—(Q+ Pt
—(e+ puitipyn— 2001 n— 210y = 0. 4.7)
If C*;; = 0, the metric of space-time may be written in a special form
2 = f2{(dx)? — (dx—(dx?)? ~ (X))

The above expression implies that w;, = 0. In this case the velocity field of a viscous
fluid may be decomposed as

7]
U = tiu,+ g(gik—uiuk)'i‘o'ik- (4.8)

Substituting (4.8) into Ricci’s identities

_ 1, pn
Uig) = 7 UnR%ig
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we obtain
3 R = tiphg +Hitgup + 3 g
u; 62 0 e
- 3 upd n— 5 il — gaiﬁuk]"‘ guit{k“l]+ai[k;!]* 4.9
Now with the aid of Eq. (4.2), (4.7), (4.8) we obtain
(e+p)o

3 hipon+ Byt — (@ + D)oty — 20Ut oty

=205, =20y = O, (4.10)

where hy = gy—uy. Further from (4.10) we find oy, and use this in (4.9). As a result
we obtain

U;
Nu,R"yq = 21 {ti[;z“k1+tit[ku1]+31‘ 8l n— EY upd

9? 0 0 , tin
—— gl — — Oy — — Uit -1 h,
9 8inli 3 9w K1 3% 4n 3 Migk@,1y
+5 (@ + P)Ohipy — (@ + POty — 20Ut Oty = 200 13- (4.11)

Contraction of (4.11) with & by virtue of 1" = 0, o,u" = 0, h,u" = 0, gives
20t = 20t U — 20u"U" Ryim + 201111

2 219* 210 210 -
+ il 0 u"hy + il hy+ i Oi— e ut,+(e+poy
3 9 3 3
+3 [oau"+(e+ P)0]hy—2n oy —2nut o . (4.12)

Substituting 29¢;,, and 25t from (4.12) into (4.11) we find

" n .m n,.m
1R gy + U0 Ryt — U 4" R i)

2n 2 2,
= 3 gl .~ 3 uugd h+ ES 0 gi[z“kl'*‘% hie,n
+3 0" hypgthy = 20581 1y — 20 470tk 4.13)

If C”ikl = 0, we have that
R
Ry = Rip&nn+ Rap8iyi— 3 Saudu
Using this relation and Eq. (4.1} we can rewrite Eq. (4.13) as follows

2

2n »
3 hyb n— 3 0 4" gty + % hiso

—3 QU Rty — 20 WOy — 20,0,y = 0. (4.149)
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Contraction of (4.14) with g* gives
2n nyal . .
5 =0 u)+5 (0~ eu"u)tn'o,y = 0, (4.15)

where #" = g""n ,,. Substituting (4.15) into (4.14) we find
0" uichpy — 20 "o — 201507,y = 0.

This relation is equivalent to

”nanikl = Oa (416)
where

Uit = Opchigi+ 20

By virtue of v"6,, = 0, u"h,, = 0 we have

u"anik, = 0. (4-17)
It is easily scen that both equations (4.16) and (4.17) are satisfied by

iy = 0

or

N = Nl "t (4.13)
(the solution 5, = 0 does not satisfy Eq. (4.16) and (4.1) by virtue of Eqs # = #(p),

If a,;; = 0, the contraction of a,;; = 0, on i and / gives o,, = 0. By [5], if 6,4 = 0,

C"u = 0, we have that t, = 0. Consequently in this case the condition (4.8) is iransformed

into the condition (4.5). Therefore in this case the necessity of condition (4.5) for C";,;, = 0
is proved.

Let a,;, # 0, but Eq. (4.18) is valid. From (4.18) and the equations of state
¢ = o(p), { = {(p), n = n(p) it follows that

0x = 0y, L= u'uy, p,= P,nu"uk- (4.19)
With the aid of (4.19), (4.18), (4.15) we have
0, = 0, u"u,. (4.20)

Now using Eq. (4.20), (4.19) in (4.2) we obtain
(¢+p)ty = 24t"0,.
By virtue of 7,u" = 0 the above relation is equivalent to
b = 0, (04 Plhu—200p = by

It is easily seen that the equation
“”bnk =

is valid. From "b,, = 0, u"b,, = 0 by virtue of 1,u" = 0 it follows that #, = 0 or b, = 0.
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If b, = 0, the analysis gives o+p =0 and o, = 0. In this case Eq. (4.8) is
reduced to (4.5) [5]
Now let b,, # 0 and #, = 0. By virtue of t, = 0 we can write Eq. (4.8) as

0
Uiy = 3 (g —uitt) + 0. 4.21)

If Eq. (4.21) is valid we can use a co-moving coordinate system (CCS). In CCS we have
the following relations

ug=u’=1, wu,=u"=0, goo=2g"=1,
202=0, —8up =1 %fB. =123,
= (dx%)% —y,pdx"dx". (4.22)

In this case it follows from (4.20) and (4.21) that
0=u", =1y ”“” = f(x°). (4.23)

It can be shown that the condition (4.23) and C";, = 0 are satisfied, if the metric form
(4.22) is reduced to

2 = (dx°)? = F(x%)c,p(x")dx"dx". (4.24)
In CCS Eq. (4.21) can be rewritten as

Kap = 5 KoVap— 204, 4.25)
where

ayaﬁ
Keyg = —5 »
/] axO

K2 = y*Px
The substitution of y,; = F(x%)c,4(x°) from (4.24) into (4.25) gives 0,5 = 0. Simultane-
ously by virtue of "6, = 0 and (4.22) we have 640 = 0, 6y, = 0. The relations o4 = 0,
0o, = 0, 0,5 = 0 are equivalent to o, = 0. Consequently if #, = 0, b,, # 0. Eq. (4.8) is
transformed into Eq. (4.5).

We have considered all the cases. In all the cases, if C";; = 0, the velocity field of
a viscous fluid is defined by (4.5). Therefore the necessity of the condition (4.5) for C*y,
= 0 is proved. Consequently we have proved the following theorem:

Theorem 4.1. The relation (4.5) is a necessary and sufficient condition for the gravita-
tional field of a viscous fluid to be conformal to a flat space-time.

Editorial note. This article was proofread by the editors only, not by the author.
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