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We consider the motion of a wave packet in the external SU (2) gauge field using the
Foldy-Wouthuysen representation for the Dirac equation. We find that a satisfactory descrip-
tion of the motion of the wave packet in terms of a trajectory of a classical particle is possible
only when the velocity of the wave packet is sufficiently large. We show that in addition
to the vectors of classical spin S and color spin T of the particle, it is necessary to introduce
a tensorial dynamical variable [J??] describing a mixing of the spin and color spin. On the
whole, it turns out that the classical particle has six independent internal dvnamical variables,
compactly described as an SO(3, 1) matrix, due to constraintrelations between 7, § and [J48].

PACS numbers: 11,.10.Np, 03.50.~z

1. Introduction

This paper is devoted to the concept of a classical, colored particle, [11. This concept
has turned out to be very useful in investigations of several theoretical problems, [2],
eventhough one should not expect to observe colored particles in any real experiment
according to the color confinement concept. Furthermore, it has also provided a push
to formal investigations of the classical mechanics of particles with internal degrees of
freedom, see, e.g., [3].

We reconsider the derivation of equations of motion for the classical colored particle
interacting with an external SU(2) gauge ficld from the Dirac equation presented in [1].
The derivation presented in [1] has two basic shortcomings described below. Also, the
spin of the particle was not taken into account. We would like to present a more complete
derivation which leads to a number of entirely new results.

Let us first sketch the derivation presented in [1]. The first step was to derive the Hei-
senberg equations of motion for the momentum and the color spin operators on the basis
of the Dirac equation. Next, the replacement of the operators by c-number classical quan-
tities led to equations which were interpreted as the equations of motion for the classical,
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color charged particle. The color charge of the particle was described by a 3-component
color spin vector I = (I°), I°— real numbers. In the nonrelativistic limit, those equations
were

mx = gl'E'+ £ 3x B, (1)
¢
. L%
Ia — _g 8abc (AI()’_Ab __) Ic, (2)
h c
where dots denote differentiations with respect to time. In these equations
Eﬂi — ng, Bak — k”th, (3)
where
Fo, = 0,49~ 0,4°— 5 g gb4¢ )
pv T Yuity viip ¢ utv

is the SU(2) field strength tensor.

The first shortcoming of the above described derivation is that it is based on the
identification of the matrices & = y°, present in the Hamiltonian for the Dirac equation,
with the ordinary velocity x of the classical particle. This identification, based on the
Heisenberg picture equation

dx

i EY -
W=?[H,x]=ca,

is known to lead to difficulties in the physical interpretation of operators appearing in
the theory, [4].

The known solution to these difficulties is to apply the Foldy-Wouthuysen transfor-
mation. In the Section 2 we do this for the Dirac particle in the external nonabelian gauge
field. Then, we derive the Heisenberg picture equations of motlon in the Foldy-Wouthuysen

representation. In addltlon to the operators of momentum p and color spin T we also

consider the operator $ of the spin of the particle. Next, we replace the quantum operators
by the classical dynamical variables, thus obtaining classical equations for position, spin
and color spin of the classical particle. When one neglects the spin of the particle these
equations reduce to Wong’s equations (1), (2). However, when the presence of the spin
is taken into account, Wong’s equation (2) gets modified by terms of order £°. Our ap-
proach applies only in the nonrelativistic limit and for weak external fields, because only
in this limit can one construct a reliable Foldy-Wouthuysen transformation and define
the positive energy sector of the theory, [4].

The second shortcoming of the approach presented in paper [1] is that it says
nothing about the wave function of the colored particle. Therefore, in Section 3 we
try to derive the classical equations of motion from the motion of a wave packet in the
external gauge field. Our most interesting findings is that in the nonabelian case there
are difficulties in obtaining gauge invariant equations, e.g., for the trajectory x(¢) and
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for spin S(r) of the wave packet. It seems that only when the velocity of the wave packet
is sufficiently large it is possible to describe the motion of the wave packet in terms of
a classical, pointlike particle moving in the external gauge field. This would suggest that
the concept of a classical, pointlike colored particle is of limited legitimacy from the point
of view of Dirac’s equation.

This fact does not contradict the knowledge about nonabelian gauge theories.
Namely, the primary theory of color interactions is the quantized theory. The classical limit
of this theory, if it exists at all, has to be calculated. This is in contrast to the abelian
case, in which just the classical limit is primary — it has the form of the experimentally
well-established Newton equations with Lorentz force, completed with classical Maxwell
equations. This fundamental difference between abelian and nonabelian gauge theories
is related to the fact that QCD is ultraviolet stable and QED is infrared stable.

In the region where the classical particle picture of the motion of the wave packet
is applicable, we find that it is necessary to introduce many internal dynamical variables
for the classical particle in order to obtain a closed set of equations of motion. In addition
to the classical spin S and color spin I, it is necessary to introduce a new classical quan-
tity, namely a tensor [J*’], the expectation value of the product of the spin and color
spin operators. Only in the particular case of states in which spin and color spin decouple,
J? reduces to a function of S and T, namely J* = I°S®. It is well-known, [5], that in non-
abelian gauge theories it is even possible to generate spin from color spin, not to say about
the simple mixing between them.

The classical equations of motion describing the motion of the wave packet are differ-
ent from Wong’s equations (1), (2). Namely, the equation for the color spin I contains
more terms than (2), the additional terms are of order ©:°. Moreover, in addition to (1)
and to the modified (2) we have two more equations — an equation for the classical spin
S(t) and for the tensor J(f). The new equations are of the first order.

In Section 4 we show that there are constraints relating T , S and [J*®]. They reduce
the number of independent classical dynamical variables describing the internal motion
of the particle to six. These variables cannot be regarded as the three components of S
and the three components of 1. Furthermore, _f, 3‘, J can be shown to form a matrix,
closely related to an element of the SO(3, 1) group (the Lorentz group). Thus, the clas-
sical, SU(2) colored, spinning particle essentially possesses the SO(3, 1) internal structure.

In our approach, the spin and color spin degrees of freedom are treated in a rigor-
ous manner. Only for translational degrees of freedom do we take 'the classical limit.
Therefore, the presented approximation to the quantum mechanics of the Dirac particle
is in fact semiclassical.

Further general remarks are presented in Section 5 of this paper.

2. The Foldy-Wouthuysen transformation

This transformation is constructed here in the form of an expansion in powers of
1/me, in strict analogy to the abelian case considered in [4]. In fact, the calculations and
the resulting Hamiltonian are almost identical as in the abelian case. The only difference
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is that various components of the gauge potential fip (in the matrix notation) do not
commute, with the result that the nonabelian field strength tensor F v Teplaces F,, = 0,4,
—0,4, from the abelian case. Therefore, we present here only the most important for-
mulae for the sake of completeness of our paper and the final result.

The Dirac equation

P* (ma,,— £ xf"> y—mey = 0, ©)
¢

where A‘# = A:T“, a=1,23, T* are generators of the fundamental representation of
SU(2), can be written in the Schrodinger form

ih 9 H 6
1 B =
5 ¥ ¥ (6)
with the following Hamiltonian
- [ - g frd - 2
H =ca(p—- ?A> 4+ gdy+meB, )]
where o = y%', B = y°. We choose y* to be hermitean matrices, f diagonal, e.g.,

_ Og 0 - 0 6
ﬁ‘(o —ao)’ ““(a o)’

where o are Pauli matrices, ¢° is a 2x2 unit matrix.
The Foldy-Wouthuysen transformation has the form

¥ = exp (iM)y, ®)
é
H' = exp (iM)H exp (—iM)—ih exp (iM) Py exp (—iM). ®)
Then,
-i a 1 HI ? (9)
1 — = .
! Py k4 Yy

The transformation (8) is performed in order to remove odd powers of o matrices from
the Hamiltonian (7). Thus, H' may contain only products of an even number of «’s. The
advantage of the Foldy-Wouthuysen representation is that in this representation the effects
due to the “Zitterbewegung’ of the Dirac particle, [6], are explicitly exhibited.

In the simple case when A4, is gauge equivalent to zero, H’ can be calculated exactly,

3
H = c-ﬁ'\/m2c2+ (}3— —f—Z) +g4,,

. ihc -
4, = 2 doww™", weSUQ).
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In the general case H' can be found only in the form of the expansion in powers of 1/mc

) h h @8
(in fact, the dimensionless expansion parameters are — V, —— 6—1‘) Performing three
mc me

successive transformations of the type (8) with

I afa 2
M1=—*"—Bd(p—§‘A),
2mce ¢

gh .2

M2~4m2c3“ ’
i gh? . oF ig . a2
M, = — Ay E

3 4m3c36{2c2 OC((‘)t h (4o, £]

where

and

h e 2
+ 2"'g_'nc slksSsFik— g 2.3 D‘El
gt s pif v 8 m r 8 m\p
— -2 -2 s 10
ymeeLl S[E(p — &)+ (- A)E (10)

where
i o f ig"Ei_ ta__ & _abe gbpic ) Aa
DB = o,E'+ 2[4, B = (o,E e PR ) T
he he

is the covariant derivative of the color electric field.
The Hamiltonian (10) represents the first three terms in the expansion of the unknown

o . 1 £ .
exact Hamiltonian H’ in powers of ——. The operator S is essentially the operator of the
me
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spin of the particle in the Foldy-Wouthuysen representation; precisely the spin operator

is 1S. In the following, we adopt as the spin operator the operator S. Because 1% = %

for SU(2) group, we have the relation
Ta:‘,‘wb — % 5ab+_;_ iGabCT“.

Therefore, H, is a linear function of T

a

1)

From the Hamiltonian H, we obtain the following Heisenberg c¢quations of motion.

We introduce the mechanical* momenta

I = p’— —g—/f'.
c
Then
dx' i g . gh
= H,x‘ = I'— ti:SsE:
dt h [Ho, ¥] m 2m?e?
and

air g [~ dx dx
dt 2\ "

b ) gbo - B g B
dt d( ri 8F o, 2mc rtik

+
4dme? 8m

For the spin operator S we obtain

as’ g€ ~ a
T
dt me *
g dx? dx'  dx? axt
+1- = pSPLE — B 4 fr T fR),
* e’ ( dt dt  dt dt

and for the color spin operator T

Iy

ar* = ﬁl:l (f‘_i e dxi) Ab] ghace
dt h ‘ t

o o h . o
—_ i 6!‘8sSF;6bacTc+ gz 5 (DiE)bSbacTc
mc 8m*c

ax?  dxf
+ R

pe 5. perse (E"‘ e E“) gt

4

One could also consider “composite’” operators like J® = 728", Because

e b

s,
dt dt dt

o dxt 2
8 petsse [(D,E')‘% + = (D E)] ;;2 D,(D,EY.

(12)

(13)

(14

(15)

(16)

an
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the Heisenberg equations of motion for J* can be easily obtained by substituting in (17)
the equations (15), (16). Of course, the operators J* are not new independent quantum
observables for the Dirac particle. The reasons for considering these operators will be
given in the Sections 3 and 4.

In order to avoid antiparticles on the classical mechanics level, we project (13)-(16)
on the subspace q\f positive energies. This amounts to replacing 8 by the unit 2 x 2 matrix

and to replacing S by £ &, and it is equivalent to considering only the states y of the form

u
v = (,, _ O), (18)
where u is a 2-component spinor.

From equations (13)(16) it is possible to obtain certain classical equations of
motion by the replacement of the Heisenberg picture operators by the c-number classical
quantities. Such a procedure is of course highly ambiguous. For example, any term present
in the equations could be zeroed by multiplying it by the unit operator

i
= 3% [T, %], (19)

which vanishes when IT*, x* become the c-number quantities. Therefore, this procedure
has to be accompanied with the limit 2 — 0, because only in this limit can the r.h.s. of
(19) be equal to one when IT* and x* tend to the c-numbers. Another source of ambiguities
is the relation

A

T = — _%sabc[j‘wa, j‘wb]’ (20)

and the same for S°. When 7° and $” become the c-numers, the r.h.s. of (20) vanishes.
Thus, we have to decide whether 79, §* become zero or I°, S°. In order to obtain nontrivial
classical equations we choose the last possibility.

Taking the above remarks into account we obtain from (13)-(16) the following classical
equations

m ‘%Zt’; - % F’, ‘%ilu gF3,I°, @n
%I; _ hgc gbac gbige d;t i _ .;T AT — z-;g;l—ce"“s""‘S"I”F H
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Equations (21)23) form a closed set of classical equations. There is no need to
introduce here the tensor [J°°] mentioned in the Introduction. From (22) and (23) it follows
that 72 and $2 are constants of motion. Equation (22) reduces to the Wong’s equation
(2) only when S = 0. Notice also that these equations are gauge invariant.

Of course, the classical equations (21)-(23) can not be called “derived” from the
Heisenberg equations of motion because the above procedure for obtaining them is ambig-
uous. Moreover, there is no quantitative relation between the c-numbers 1%, S?, J* and the
quantum operators 17 8%, J®. Therefore, equations (21-23) should be regarded merely
as a particular possibility for a closed set of equations for I, S, X(¢), having a loose relation
to the Dirac equation.

In the next Section we shall present a more precise approach to the classical limit
of the Dirac equation, consisting of considerations of the expectation values of quantum
observables, in analogy to Ehrenfest’s approach to the classical limit of nonrelativistic
quantum mechanics of a spinless particle [7].

3. The motion of a wave packet in the external nonabelian gauge field

We will investigate the motion of a localized wave packet in the external nonabelian
gauge field in order to find out the most adequate description of this motion in terms of
a classical particle. In other words, the classical particle will be regarded here as an ideal-
ization of the wave packet. We work in the Foldy-Wouthuysen representation in the positive
energy sector. We assume that the gauge potentials are slowly changing with X. This
will allow us to regard ,Zﬂ as constant over the region occupied by the wave packet.

We assume the following form for the wave packet

P, 1) = u(x, Hp(x—X(1), (24)

where x(¢) is the trajectory of the corresponding classical particle. Here o(x—x(t)) is
a c-number valued wave packet, localized at x(f) with the average momentum

{plplp) = mx(t). 2%
These two requirements, together with the requirement of minimal uncertainty, {(4x)*>
{(4p)*> = h?, essentially determine the form of the wave packet. We shall assume that ¢
is normalized to one. The spinor 4™(x, ¢) takes into account the spin and color degrees of
freedom.
Because the wave packet ¢ is localized at x(¢), it would be natural to consider u as
a function of ¢ only,

u(x, t) = u(x(1), t).
However, it turns out to be very convenient to assume that in the vicinity of the point
x(2) (for fixed )
ig
he

where Ax* = x'—x/(t). We assume that u0(f) is normalized to one.

u(}’ = <1 + A‘i(s;(t)’ t)Axi> uo(t), (26)
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The Ansatz (26) has to be completed with certain assumptions. The reason is that
the term

ig .. .

B figx

he
gives a gauge noninvariant contribution to the expectation values, which does not vanish
in the classical limit. In order to illustrate this problem let us consider the expectation
value of 8°. Because {@|dx'|¢> ~ 0, we obtain

Jq’*ﬁbq’cﬂx = {uo|8|ued>
2
+ 7303 [Cuol VA o) (A + Cuol A4S luo) (A7), @7

vzhere || (L) denotes the component of A parallel (perpendicular) to the velocity X, and
A is taken at the point x(¢). The trouble is that the terms quadratic in 4 do not form a gauge
invariant function of the external gauge potental 2“. In effect, these terms would lead
to difficulty in obtaining a gauge invariant equation for the classical spin S°. Similarly,
there are difficulties of this same kind in obtaining a gauge invariant equation for the
trajectory x(t). Therefore, those terms have to be removed somehow.

Unfortunately, the troublesome terms in (27) do not vanish in the classical limit
h - 0, because they are of the order 19, as follows from the facts that

2

2 ~

(> = s
and that {(4p;)*> cannot be taken arbitrarily large without spoiling the assumed picture
of the positive energy wave packet moving along the given trajectory x(f) with definite
velocity ;'c(t).

Our solution to this problem is the following. We adopt the point of view that all our
investigations of the wave packet are carried out in the particular gauge. Namely, for the
fixed in (24) classical trajectory x(¢) we adjust the gauge in such a way that

A, (X(1t), 1) = 0. (28)

It is easy to convince oneself that such a gauge exists for a wide class of trajectories 32(t).
In fact, the requirement 4, = 0 is a rather weak one, because it concerns only a single
line in three-dimensional space. Unfortunately, in general it is not possible to improve the
gauge further in order to also have A'(x(1), f) = 0. Thus, in order to eliminate the term
containing A we have to assume that {(4x)2) is small, i.c., that {(4p")?> is large. This
assumption is not in contradiction to the fact that the wave packet (p(;c—}(t)) moves with
definite velocity only if the velocity is large enough. Taking {(4p")?) = a*m?|x|2, where a
is a small number we obtain the following condition under which we can neglect the trou-
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blesome term in the expectation value (27)

2

g

G AT < %12 (29)

202

Of course, in spite of the fact that we work in the particular gauge (28), we require
that all physical characteristics of the particle be given by gauge invariant quantities
tormed from the cxternal gauge potential zflu and from the dynamical variables of the par-
ticle. In particular, the trajectory x(t) should be calculated from a gauge invariant equation.
As a matter of fact, the role of (28), (29) is to remove the undesired consequences of the
form of the Ansatz (24), (26) for the wave packet. The shortcoming of the form of this
Ansatz is that it is not gauge covariant in the sense that the gauge transformation of f‘i”
is not equivalent to a gauge transformation of Y.

1t is easy to check that condition (29) is not necessary in the case of an abelian gauge
group because in this case one can always have Al = 0 also.

~ It is natural to ask why we do not simply abandon the troublesome tactor in (26).
The answer is that without this factor the expectation values (33), (34) below would be
different, and that they would lead to problems with the gaue invariance of the classical
equations. In order to solve these problems, we would be forced again to assume (29)
and the particular gauge (28).

Now we are ready to investigate the motion of the wave packet. From (24), (25),
(28), (29) we obtain

CEIPITY = mii)+ AD), DI, (30)
where
(1) = CPITNEY ~ CuolTuod = ubTuq, 31)

because {@|4x'|@> = 0. Equation (30) can be rewritten as
w1y = mi(o), (32)

where I1" is the mechanical momentum (12).

It is just due to the Ansatz (26) and the assumption (29) that we obtain the-following
simple formulae:

LCPI[Te, 14| = mI"()R(1), (33)

and

LS Te, O] %) = mx o SPT%uo). (G4

In other words, with the Ansatz (26), (28), (29) the translational degrees of freedom are
decoupled from the internal degrees of treedom.

Now, we shall derive the set of classical equations describing the motion of the wave
packet. In all our considerations below we shall neglect the spreading out of the wave
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. : o . ... a¥
packet. The spreading out gives a contribution of order # to the time derivative T There-

fore, in order to be consistent, we also neglect all terms of this same or higher order in A.

The equation for the trajectory x() can be obtained by considering the time depen-
dence of the expectation value of IT in the state ly>. We work in the Schrédinger picture
because we have assumed the form of the time-dependent wave function in (24). Because

.

d - i N orfl
—(P|IY>y = — <P\ [H,, IT]||¥ Y} P,
o CPUTYY = - P [Ha, T] 19>+ (¥ 2 19
we obtain from (32) and (10) that
mE(8) = — 2 SFLED, DI+ gFo, (1), DI, (35)
C

where we have neglected the terms of order . This is again Wong’s equation (1).
In order to have a closed set of equations we have to add an cquation for I. From
(31), (10), (33), (34), neglecting terms of order i, we obtain

dal® g/t . s\ b
PRI iei A acIc
d1 h( ATX =4 Je

+ _g__[ "+ (Eczxt Ectxz)} srtbgcadeb(t) (36)
2me
where

Jo(t) = CuolT°S%uod: (37

Because T, 8° are hermitean operators, J¢ are real numbers. Observe now that 12 is not
a constant of motion in general.
Thus, we also need an equation for J(¢). From (37), (10), (33), (34) we obtain the

equation
dJ“b ﬁ - Acl i Ac z_:cadeb
dr h ° -
x? .
4 ’_g Slpb cad( Fc Ecl) Id
8mc ¢
+ 8 _pe e L gy | s (38)
dmc b7 e ’
where
(uo Plue>. 39

From (38) it follows that we have to add an equation for S$°(¢). From (39), (10), (33),
(34) we obtain
ds' 1
= _E. l:_FtP+ _2__ (Eatxp__Eap)-Ct):) _]"p(t). (40)
C

dt  me
Observe that from (40) it does not follow in general that 53(1') = const.
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The four multicomponent equations (35), (36), (38}, (40) form the closed set of classical
equations for the expectation values. These equations can be regarded as the equations of
motion for the classical particle with spin and color spin. These equations are more general
than the equations (21)-(23) of the previous Section because they take into account the
possibility of a mixing between spin and color spin.

J® is the mew dynamical variable for the classical particle, independent of I° S°.
Observe that if at certain instant 7,

ug'(to) = &(16)1"(to), (41)
then
J(t5) = I*(15)S"(1o). 42)

However, it is easy to check trom (36), (38), (40) that the quantity Q® = J* —I°S® is not
a constant of motion. Therefore, in general (41), (42) do not hold for # # #,, and therefore
J® does not cease to be the independent dynamical variable.

Equations (35), (36), (38), (40) have to be completed with constraint equations.
The reason is that the fifteen numbers 7%, S®, J* are expectation values in the single state
1y. Therefore, these expectation values depend on 6 independent, real numbers forming
u, (t) (because u, is normalized to 1 and because the overall phase factor of #, does nat
change the expectation values). Thus, the constraints are necessary if the classical mechanics
based on the equations (35), (36), (38), (40) is to be related to the quantum mechanical
Dirac particle. We find these constraint equations in the next Section. We also shall show
how to calculate uy(¢) from known I(z),S*(t), J° (¢), and we shall find the time evolution
equation for ugy(¢).

4. The constraint equations and the determination of the wave function uy(t)

First, let us show that knowledge of the classical quantities 1,8, [J°°] determines the
wave function uy(¢) up to an arbitrary time dependent phase factor. This fact we shall
regard as proof that the above set of classical dynamical variables describing the internal
motion of the particle is complete, in the sense that any other classical, internal dynamical
variable, i.e., the expectation value of an operator in the state u,, is a function of I, S, [J®].

To this end we shall regard the spinor [15'] as 2 X 2 matrix u#,. Then, the normalization
condition wg*u' = 1 takes the form

Tr (i) = 1. (43)

Furthermore,
I° = Cuo| T luo) = 5 Tr(dga"ds) =  Tr(diyo™ i), (44)
St = 1 Tr(ale'd,), (45)

J? =  Tr(d{e"io0™), (46)



531

where the star denotes the complex conjugation, and Tr denotes the transposition of the
matrix. It is clear that we cannot determine the overall phase factor of u,.
From (43)-(45) it follows that

ot = 1 6°+ S5, @n
iy = L 6°+1g". (48)

Equations (47), (48) imply that
ldet ]2 = + —72 = L 32, (49)

Thus, we see that for SU(2)-colored ‘particle
12 =52 (50)
It is easy to see that this fact is consistent with the equations (40), (36) only if
LTS = &S (50"
Utilising (44)-(48) it is easy to prove that the condition (50') is satisfied. Relations (50),
(50" are examples of the constraint equations.

From (49) it follows that #, is a singular matrix only when 82 =72 = 1/4. It is easy
to prove that det i, = 0 is equivalent to

ug' = &y, (51)

i.e., in this case the spin and color spin decouple. In this degenerate case knowledge of i
and S, together with the normalization conditions

=1, 1y =1,

determines &, y up to the arbitrary time-dependent phase factor. For example, when
I?# —1)2,

- s-1s2 {3+
and if I3 = —1)2

% = exp [ia(t)] (‘f)
Analogous formulae hold for ¢&.

Let us remark here that the above relation between f(§) and the 2-spinor (&) can be
refined by utilising the coherent states for the SU (2) group, [8].

In the degenerate case (51) we have J* = I°S®. The constraint (50’) becomes trivialized
to 0 = 0. However, J* does not cease to be an independent dynamical variable for the
particle, as we have argued in the previous Section. This means that the relation det #1, = 0
is not conserved in time.

Now, let us consider the general' case, which also includes det #, = 0. In order to
determine #, we recall that any 2x2 matrix can be written in the form

tly = HV, (53)
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where
H=Ht=+ ugit

(54)

is a positive definite, hermitean matrix, and ¥ is a unitary matrix determined from (53).

If u, is mot singular, the matrix ¥ is determined uniquely, namely

V = H'u,.
From (47), (54) we obtain

1
H= —

S

(16° +So),
where
A=1t+iJ1-43,

and ¢° is the 2 x2, unit matrix, Furthermore, because

we obtain from (47), (48), (56) that
viSev = Io,

i.e., V represents a rotation which rotates S in to I, where

11
I={-1
I3
For instance, when S % —I we may take
- S+I
Vo = ic ———=.
IS+1

Obviously, (58) does not determine ¥V completely. Namely, we can take

V: VQC

where C is any unitary matrix commuting with I¢. Any such C has the form

C = exp [if(1)] exp l:l 5 m:] .

(55

(56)

(57

(58)

(59)

(60)

Thus, we see that in the general case u, is not determined by the knowledge of T(t) and
S(¢t) — apart from the unessential phase factor exp [if(¢)] we do not know the function

y(8)-
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From (56), (59), (60) we obtain

iy = exp [IB()] =% N 25+ {[—|S+I| +(Sx I)cr] (cos% +i 7 sin —;—)

+A(55 +18) (cos Y 4iLgn 1)} . (61)
2 A 2
In the degenerate case A = I = S = 1/2, and therefore in this case all dependence on
(1) takes the form of the undeterminable phase factor exp [ip(z)/2]. It can be shown that
in this case (61) can be written in the form (51) with &, y given by (52).
In the gzneral case however, the function y(¢) does not appear in the form of a phase
falctor, so it has to be determined. This determination is possible if in addition to -f, S we
aso know the matrix [J?]. From (61) we obtain

I°s?

JP =1 3 +sin yA® +cos yB?, (62)
where
i—28? 1°S(SP+ I
A% = = ':eadb T4 —0gde ___’(._:_)] (63)
41| iS+1}2

‘st 21—28?
B? = — ot
I 28+

(S"+I") (S + )+ — o [2s”1“—(z—2§2)53"],

In these formulae the barred indices d, b, etc., denote the change of sign of the vector or
the tensor when the value of the index equals two, e.g.,

i 1. 00
=0 -1 0].
0 0 1

The presence of the barred indices is due to the fact that 6* = ¢4, From (62) we can deter-
mine y if know I, S, [J*].

Thus, we have proved that I, S, [J*] form the complete set of classical dynamical
variables for the internal motion of the particle. Now, we shall find the constraints. For 15
real number valued quantities I?, S, J*° we have to find 9 independent equations, in order
to be left with 6 independent quantities.

In order to find the constraints, we consider the matrix M”,, defined by

M, = 1 Tr (udo’ues”). (64)
Comparing (64) with definitions of I°, S°, J®, we see that
MOO = %’

Mby =S, M° =14 M® =2J% (65)
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The matrix M, obeys the relation
MvugveMaa = !det ﬁ0|zgua, (66)

where (g,,) = (1, —1, —1, —1) is the Minkowski space-time metrics. In the degenerate
case this relation can be easily verified by a direct calculation. In the nondegenerate case,
det 4, % 0, this identity comes simply from the fact that L’, = M”"/ |det 5] is a Lorentz
transformation, because the matrix #,/|det #i,]'/? is an element of the SL 2, C) group.
Here we use the well-known relation between SL (2, C) and the proper, ortochronous
Lorentz group, [9]. The Lorentz transformations obey the relation

LvnquLq« = 8us

This relation leads to (66). )
Let us recall that |det i,| is determined by T or § via (49).
From (65), (66) we obtain that

-

182 = |det 4,2, 67
FI°-J*s? =0, (68)
4J°0J% — 1% = |det 1,|26%. (69)

Another set of relations is obtained from the fact that if L', is a Lorentz transfor-
mation, then (LT ¥, is a Lorentz transformation too. The difference between L and LTis

equivalent to the interchange of $ and T, and to the replacement of J* by J*. Thus, we
obtain

3-1 = |det ]2, (70)
1gb_g =0, (71)
4J% g% _ 8PS = |det i,|25%. (72)

In the degenerate case these relations can be easily verified by a direct calculation.

Equations (67), (70) are equivalent to (49). Equations (68), (69), are the nine
constraint equations. Equations (71), (72) are equivalent to (68), (69) because (68),
(69) together form the sufficient condition for L’, to be the Lorentz transformation. The
previously found relations (50), (50") also follow from (67)<69).

The next problem to be investigated is the question whether the classical equations of
motion (36), (38), (40) respect the constraints, i.e., whether the above relations are con-
served in time if f, s, [J®] evolve in time according to the equations of motion.

It seems that the most illuminating way to find the answer to this question is to
observe that the three classical equations of motion (36), (38), (40) can be derived from
a single equation for #,(¢). Then, the solutions to (36), (38), (40) can be regarded as the
expectation values (44)-(46) in the state uy(¢) for all 1 — this would guarantee that together
they form the matrix (64) for all 7, i.c., that the constraints are conserved.
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Such an equation for i, can be derived in the following manner. From the Schro-
dinger equation

0
ih—V¥ = H,¥
Py 2

we obtain for the wave packet (24) that
¥ = u(x, p(x—X(1)) = p(%, Due(t),

-

Jp ou
h—u0+lhtp~—5—(1 = H,qu,. (73)

Here we regard u, as the 2-spinor, not as a 2 x 2 matrix.
Now we assume that

+ i}
uf = o = 0. (74)

In fact, this assumption does not restrict the generality of our arguments, because if a cer-
tain i, does not obey (74), then

t

uo(t) = exp [—- f(uo ; uo) t'] fig()
o

obeys (74). Because #i}ii, = 1, the above exponential is a time-dependent phase factor
(the integrand is imaginary). Therefore, (74) is merely a restriction on the overall phase
of u,, which has no effect on 1,8, [J*], as is clear from 31, 37), (39).
From (73), (74) we obtain that

zh 6_ = (u*qu)q)— = AL e, (75)

and therefore
0 —
if o= Hyuo—(udH yuo)u,, (76)

where
— ig .. . ig . e .
H, = | @®x¢*1— & Zax)H, 1+ & 2ax*) p— & 254 L 4oipgs (1)
he he c ¢
is the “effective’” Hamiltonian for spin and color degrees of freedom. It is easy to check

that H, has the form (wa neglect terms of order h? because we neglect the spreading out

0
of the wave packet which gives the contribution of order & to —a'i—))
— 5 - - h n, A h N a )
H,=imit— & atygdy+ B0 amgp, - B0 ompsby B porst (79)
c 2me me c

Of course, H, is a hermitian matrix.
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Thus, the time evolution of u, is governed by the nonlinear equation (76). In fact,
the nonlinear term in (76) is superficial. The simple change of phase of u,, performed by
passing to

t
i -
w(t) = exp ['}{ J(ugquo)dt'] (1) (79)
0
removes this term. Namely, w(f) obeys the linear equation
ow
ih— = H,w. (80)
ot

The nonlinear term in (76) is necessary in order to ensure (74). Of course, w(t) does not
obey (74) in general.
From (79), (80) we see that

d i o
= @WPug) = - ullH, Pluo, 8D

where P denotes 7%, $® or J®. It is easy to check that this equation leads to equations
(36), (38), (40) for I°, S°, J*.

Now we can prove that the constraints are conserved in time. The proof is based on
the plausible assumption that equations (36), (38), (40) for the fixed trajectory X(t)
have a unique solution determined by the initial data T(to), S(to), [J%(t)]. If the initial
data are specified in such a way that the constraints are satisfied, then there exists uy(to)
such that (44-46) are true for ¢ = t,. Next, we solve (76) for u, (¢) with the u(t,) as the
initial data. Applying (44-46) again with the calculated uo(t) we obtain the solution f(t)
S@), [J4(t)] of equations (36), (38), (40) with the chosen initial values. As for this
solution (44-46) are true for all ¢, the constraints are conserved in time.

Finally, let us state once more the most interesting result of this Section: the internal
degrees of freedom for the classical particle with spin and SU(2) color spin are described
by a 4 x4 matrix M’,, which is closely related to an element of the SO(3, 1) group, due to
the constraint equations.

5. Remarks

Since a summary of this paper has been presented in the Introduction, let us here
present only certain gencral remarks.

First, we note that in the case of the abelian gauge group it is always possible to adjust
the gauge in such a way ‘that, in addition to A*, also A vanishes along the trajectory.
The difference between the nonabelian and abelian cases is essentially due to the fact that
the nonabelian, constant gauge potential can yield F w = 7# 0, 50 it cannot be gauged away
to zero, while the abelian constant gauge potential gives F,, = 0, and therefore it can be
gauged away to zero.
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Therefore, in the case of the abelian gauge group equation (35) for the trajectory
x(1) is legitimate for any velocity, as it should be because in this case we have to obtain
the well-established Newton-Lorentz equation.

In the nonabelian case we have found that the classical dynamical variables obey
gauge invariant equations of motion only asymptotically, when condition (29) is satisfied.
We expect that in general it is impossible to extract from the quantum theory a satisfactory
notion of the classical trajectory of colored, point-like, particle. This would suggest that
the concept of a classical colored particle is of limited relevancy for the description of
color interactions. Nevertheless, the classical mechanics of colored particles remains
interesting on more autonomous grounds, as a very interesting extension of ordinary
classical mechanics.

Let us mention here that we have also investigated the time evolution of a localized
wave packet in the case when condition (29) is not satisfied. It turns out that initial wave
packet placed in the external nonabelian gauge ficld behaves like a superposition of two
wave packets, each of them moving with different group velocity. These investigations will
be published in the form of a separate paper.

Our results were obtained with the approximate Hamiltonian H, in the Foldy-Wouthuy-
sen representation. The obtained classical theory is a nonrelativistic one. Moreover
equations (36), (38), (40) for the internal degrees of freedom cannot be rewritten in the
relativistic form by merely introducing the proper time by yd/dt = d/dr. The equations
have truly nonrelativistic form.

Finally, let us stress that in our investigation we have made extensive use of the fact
that we consider just SU (2) gauge fields. However, we expect that the difficulty with the
concept of the classical colored particle will persist for ,other nonabelian gauge groups.
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