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Arguments supporting the existence and clarifying the physical interpretation of phase
transitions in SU(N — o0) lattice gauge theories are reviewed.

PACS numbers: 11.10.Np

1. Introduction

Some ten years ago most particle physicists had little interest in phase transitions.
Today a conference on theoretical particle physics without somebody mentioning phase
transitions is hardly possible. One reason is that phase transitions block the road to a very
nice proof of confinement in quantum chromodynamics.

K. Wilson in 1974 pointed out [1] that, when a gauge theory is reformulated on a lattice,
the strong coupling expansion is rather easy to obtain and that in the strong coupling
approximation gauge theories (here and in the following we consider SU(N) and U(N)
theories without fermions) confine. This result is not directly relevant to continuum theo-
ries, because continuum theories are obtained in the weak coupling limit of lattice gauge
theories. If, however, the strong coupling theory could be analytically continued into the
weak coupling region, one could use renormalization group arguments to prove confine-
ment in the continuum theory.

A phase transition corresponds to a singularity in the dependence of the lattice energy
E on the coupling constant g and, therefore, if present, makes the analytic continuation
from strong coupling (g — o) to weak coupling (g — 0) impossible.

Phase transitions in particle theory are not quite the same thing as phase transitions
in thermodynamics. In both cases they may be related to singularities of the function
E(f). In thermodynamics, however, f is proportional to the inverse temperature 1/7,
while in particle physics it is proportional to g-2. In order to illustrate this difference

* Presented at the VI Autumn School of Theoretical Physics, Szczyrk, Poland, September 21-29,
1981, organized by the Silesian University, Katowice.
** Address: Instytut Fizyki Jadrowej, Kawiory 26a, 30-055 Krakéw, Poland.

(561)



562

consider the simple example shown in Fig. 1. Fig. la presents the ground state of N non-
-interacting fermions in a one dimensional potential field. All the levels below the Fermi
level p are occupied and all the levels above are empty. This ground state corresponds in
mechanics to the minimum of energy and in thermodynamics to the minimum of temper-
ature. The-effect of increasing the temperature is shown in Fig. 1b. The Fermi surface at
p becomes blurred. Holes below u and particles above appear. Fig 1c shows the corre-
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Fig. 1. Fermionsin a one dimensional potential (see text); a) ground state, b)state at a higher temperature,
<) state at a lower coupling constant, d) the same as (c) with the unit on the vertical axis rescaled by 1/8

sponding change as interpreted in particle physics. A change in B means rescaling the poten-
tial. Consequently, the Fermi level moves, but the Fermi surface remains sharp. Another
version of Fig. lc is shown in Fig. 1d. Here the unit on the vertical axis is rescaled by
1/B. Thus the potential curve looks the same as in Fig. 1a and 1b. As easily checked, when
B decreases, the Fermi level is lower than in Fig. la. As shown by this example, some
properties of thermodynamical phase transitions are different from the corresponding
properties of the phase transitions discussed in particle physics. Nevertheless the analogy
is close and all the terminology, as well as most physical intuitions, can be taken over.

From this point of view it may be surprising that Gross and Witten [2] studying two-
-dimensional gauge theories with SU(N) gauge groups on a lattice found in the limit
N = oo a third order phase transition. Before explaining why third order phase transi-
tions are unusual let us comment on the N — o limit.

For quantum chromodynamics the relevant lattice gauge theory is of course that
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in four dimensions (x, y, z, t) and with the gauge group SU(3). This is a very difficult
theory, however. For the continuum theory it has been suggested [3] that an instructive
model is one with SU(N) gauge group in the limit N — o0, g = 0, g2N fixed. The simpli-
fications are significant. In particular [3] only planar graphs occur in the weak coupling
expansion. Unfortunately, even this simplified model is so complicated that only in two
dimensions the solution has been found. Gross and Witten studied the two dimensional
lattice version, which also can be solved analytically.

Our intuitive notion of a phase transition usually corresponds to a first order phase
transition. When water boils, the volume of a unit of mass changes by three orders of
magnitude. It is obvious that the phase has changed.

Second order transitions are more subtle, but still rather common. Consider for
example a non-interacting, monoatomic Bose gas. Let us start at a temperature above
the Einstein condensation point. When temperature decreases, the momentum distribution
of the particles gradually changes — particles become slower on the average. At the con-
densation point the picture changes. The momentum distribution for non-zero momenta
becomes frozen. Only its normalization decreases. The surplus particles condense i.e.
drop to the lowest energy (p = 0) single particle state. Thus here nothing spectacular
happens at the transition point. It is the evolution of the system below the transition point,
which is different from the evolution above.

A third order transition differs from the second order transition in that the change
in the evolution law at the transition point is infinitesimal. It is only at some distance
from the transition point that the difference in evolution becomes significant. In thermo-
dynamics, a third order transition remains a theoretical possibility without experimental
realizations. Therefore, it is interesting that such transitions may be realized in particle
physics.

In the following section, we present a simple model, which shows that the third order
phase transition found in the SU(N — o) lattice gauge theories can be understood in
terms of the discussion given above.

2. Simple model

The model presented here {4] is a simple extension of a model solved by Brézin,
Itzykson, Parisi and Zuber [5] (further quoted BIPZ). 1t may be also interpreted as a gener-
alization of the one-plaquette lattice gauge theory model considered by Wadia [6]. Wadia’s
plaquette had two spatial dimensions and time was a continuous parameter. Also in this
lattice gauge theory model the third order phase transition in the limit N — o0 occurs.
For N finite, there is no phase transition, however [6].

Consider a Schrédinger equation with the Hamiltonian

= —V2+ W(M). 2.1
The only difference between this Hamiltonian and Hamiltonians found in elementary

textbooks on quantum mechanics is that M is not a simple variable, but an N x N Her-
mitian matrix. Of course the wave functions (M) also depend on matrices. The Laplace
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operator

V2= o +1 L + o (22
B oMz 2 dRe M;)*  d(Im M;))? )’ 2)
] J

i i<j

The potential W is supposed to satisfy the relation
N
W(M) = B Tr V(M) = ﬂz,l V2, 2.3)

where B is a constant, and 4, are eigenvalues of matrix M. M being Hermitian has of course
N real eigenvalues. For instance BIPZ have

BV(M) = 1 M? + % M*. 2.4)
Since W(M) is invariant with respect to unitary transformations of matrix M, we may
choose the representation, where M is diagonal and relation (2.3) follows. The class of
functions V(M) satisfying (2.3) is, however, much broader than the class of analytic func-
tions. For instance, V(M) could have different power series expansions in different regions
of the {4, ..., Ay} space. We shall need this generality to illustrate some interesting points
in physics. Note that the Hamiltonian (2.1) is invariant under all U() transformations
and not only under SU(N) transformations. Thus our model is closer to a U(N) gauge
theory than to an SU(N) gauge theory. This is harmless, because it is generally believed
that for N — oo the differences between SU(N) and U(XN) gauge theories become irrele-
vant.

Matrix M is a simple (zero dimensional) model for intermediate boson fields. The
trace, which is an SU(N) singlet, corresponds to the photon and the N?>—1 other indepen-
dent parameters can be related to the coloured gluons.

The solution of the Schrddinger equation with Hamiltonian (2.1) can be obtained
[5] using the standard variational method. For the ground state

§ &V MI(Vy)* + W(M)y*]
T .

E = Min (2.5)

The operators in the square bracket are invariant under unitary transformations. There-
fore it is legitimate to assume that y(M) is a symmetric function of the eigenvalues 4, ..., iy.
Integrating over all the “angular variables” one finds

2
j d”2,1| | (i1, E [( g}’) 4 ﬁV(ai,)wZ]
k

sti H (Ai—A)?y?

i<j

E = Min

(2.6)

Here BIPZ suggest the substitution
@Ay, ooy Ay) = ]_[(/li—lj)w(/ll, e AN) 2.7

i<j
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and obtain a variational principle corresponding to N non-interacting fermions (¢ is

totally antisymmetric)
o \*
avi - 2
j Z [( alk) Al ]
k

E = Min T . (2.8)

It is remarkable that the problem of N2 bosons (M) with a gauge group, or of N bosons
(41, ..., Ay), has been transformed here into a problem of N fermions ¢(4,, ..., ).
This can be avoided. E.g. Jevicki and collaborators (references may be traced from Ref. [7})
use a collective field formalism and remain with a bosonic problem. In the bosonic inter-
pretation (e.g. putting moduli of 4;—4; in (2.7)) the Pauli principle for fermions is replaced
by highly singular potentials giving short range repulsion between bosons. A discussion
of this problem may be found in Ref. [8]. We keep the version with fermions, because
in the present model it is the simplest.

The variational principle (2.8) corresponds to the single particle Schrédinger equation

dZ

[- e +pV (X)] P(x) = ep(x). 2.9)

The ground state energy for Hamiltonian (2.1) is the sum of the N lowest eigenvalues of

equation (2.9), where a k times degenerated eigenvalue is counted as k equal eigenvalues.
Wadia’s problem [6] is obtained putting

BV (x) = —32— sin? x. (2.10)

Since we are interested in the solution for N large, one may use the WKB approximation,
or (equivalently) the Thomas-Fermi approximation. E.g. the Thomas Fermi approximation
yields

S dx
N = jJu——ﬁV(x) —. @.11)
Here a; and a_ are the right hand side and the left hand side classical turning points.
The total energy is

+ d o
E = uN-3% .[ -Ri Ju—pv(x)® dx. (2.12)

From formulae (2.11) and (2.12) it is possible to calculate the derivatives of the energy E
with respect to f at fixed particle number N. By definition, a k-th order phase transition
occurs at f = B, when the k-th derivative is discontinuous there, while F and the lower
order derivatives are all continuous.
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3. Discussion of the model

Differentiating E with respect to f one finds

JE _ 3E—uN an
op B '
For B # O this is clearly continuous. The second derivative
0E 3(E— uN) aN? 1
= + , (3.2)
op? 4p? 2p* 1B
where
ay
10 - [ @3
I Nu=pv(n) '

is the classical time necessary for particle with energy u to go from a_ to a.. For contin-
uous potentials ¥(x), I(f) may be infinite, but its inverse occurring in formula (3.2)
is continuous. This explains why the phase transition, if any, must be of at least third
order.

The third derivative is discontinuous if and only if

dI- dI
= 2 (3.4)

dp dp

is discontinuous. Then a third order transition occurs.

4. Example [

An example is shown in Fig. 2. The phase transition here will be caused by the discon-
tinuity of d¥jdx at x = x,. Everywhere else the potential is assumed regular. Let us check
first that, according to the qualitative argument given in the introduction, a third order
phase transition is expected for this potential.

When the Fermi level rising arrives at y, (see figure, one may use the interpretation
from Fig. 1d) there is no jump in energy, i.e. no first order transition, but the evolution law
changes. The change, related to the deviation of the continuous line from the dotted one
in the figure, is first very small and increases linearly with p— p.. According to our discus-
sion this causes a third order phase transition.

The same conclusion may be reached more rigorously by an analytic argument.
Suppose that the break occurs at x = x,. Then

oo =

+ Vilx—xo|+ Vi (x=x0) + O(}x = x4|2) 4.1
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and
1) = CB)~ ot Jhhe O g @.2)
Vit+(Vy)?
where C(f) is regular at B = f.. Substituting
hom i (95) (B-52, 43
0B /p=s.

which is valid for u close to p, one clearly sees the discontinuity in expression (3.4). For
V: = 0 there is no break and the discontinuity disappears.

v {X)

Xo

Fig. 2. Potential with a break at x = x,

This example suggests two remarks. At the transition point the weak coupling expan-
sion (in powers of f~!) and the strong coupling expansion (in powers of f) diverge by
definition. There are, however, many methods of improving convergence. The methods
of Padé and Borel have been particularly popular among physicists. There are many others.
The question arises: could one find a method, which would make the continuation across
the transition point f = f. possible. As seen from our example, in the general case the
answer is negative. Full knowledge about the potential for x < x, is not enough to predict
its behaviour for x > x,. Consequently also the dependence E(f) for f > f. is unpredict-
able.

The second remark is related to the fact that, since in the weak coupling limit g in
Fig. 1d 1s very close to zero, only the bottom of the potential is relevant for the transition
to the continuum limit. Therefore, replacing for x > x, in the potential shown in Fig. 2
the continuous line by the dotted one, gives a different lattice theory with the same contin-
uum limit. The new potential has no break and consequently, there is no phase
transition. This idea works. Manton [9] replaced Wilson’s formula for the action (the action



568

roughly corresponds to the potential in our example) by another one giving the same
continuum limit. Calculations indicate that using Manton’s action instead of Wilson’s one
can indeed kill the phase transition in some models {10], [11].

5. Example IT

Another potential giving a third order phase transition is shown in Fig. 3. The physical
region is limited to the range |x| < x, and for simplicity V(x,) = 1. The boundary condi-
tions for the wave functions do not affect qualitatively our conclusions. Here the singu-

v (X}

-Xo 6 io
Fig. 3. Potential with maxima at x = +x,

larity of expression (3.4) results not from breaks, but from maxima at |x| = x,. The ana-
Iytic formula is

V(x) = 1=Va(x—x0)* +O(|x—x,3) é.h

for |x| <x,. For |x| > x,, we may assume that the potential is infinite. For simplicity
we also assume that the potential is symmetric V(x) = V(—x). In this case

In jp—pu
I)y=CH+ ———= 5.2
VBV,
Thus there is a third order phase transition.
Let us take for example
V(x) = sin?2x  for |x| < x,. (5.3)

The integral I(f) may in this case be expressed by a well-known elliptic integral [12]

4 I
2 k(Y forp>
5 (/3) b=k

iK(-ﬁ—> for f<u
i H“

1B = ) (54
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where
/2
Km) f & (5.5)
m) = —_————— .
g J1—msin? x
The strong coupling expansion valid for f < u is
2n Qn-DIt 7B\
I(B)=-:—[l+ ) —-—————~—(—)] 5.6
N @t \ g )
n=1

Strictly speaking, in order to obtain what is usually called the strong coupling expansion
it would be necessary to substitute into expansion (5.6) an expansion of u~! in powers
of B. Since expansion (5.6) converges whenever the standard strong coupling expansion
converges, while it is simpler, it may be considered an improved strong coupling expansion.
Similarly the weak coupling expansion valid for > u'is

» 2n - Cn=D1 [uY\
=5 [” ”?T("E)] ©7

Both expansions diverge for § — p. For f close, but not equal to u the approximation by
truncated series may be somewhat improved by introducing corrections for tunneling [13].

We conclude this section with two remarks. In the present example there is no argument
to forbid the continuation of the theory from the strong coupling to the weak coupling
region. Indeed, in the following section we present a version of the WKB approximation,
which successfully bridges the transition region.

The transition from Wilson’s action to Manton’s corresponds for the present problem
to the replacement of sin? x by x2. This kills the maxima, but breaks due to the bound-
edness of the physical region remain. Such breaks cause a phase transition as described
in the preceding section. Thus in this case the phase transition is made milder, but not
eliminated.

n=

6. WKB approximation

Consider the Schrédinger equation

dx?

d2
[— r— 4B V(x):] w(x) = Bey(x). 6.1

The potential V(x) is assumed periodic with period n, twice differentiable and having
exactly one maximum and one minimum per period. We look for solutions w(x) peri-
odic with period n. For V(x) = sin® x, this is the problem considered by Wadia [6] and
Neuberger [13].

Using the standard WKB formulae one can find the approximate eigenvalues in the
range ¢ < 1 from the Bohr-Sommerfeld formula and for ¢ > 1 from the condition that
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the phase of y(x) must increase by 27 over each period. Both these approximations, how-
ever, fail near ¢ = 1. In this respect they are similar to the weak coupling and strong
coupling expansions.

An alternative WKB formula valid for ¢ > 1 and for ¢ ~ 1 is known, however [14].
It reads

T VB V@) dx = 21— 9(a) £ (G- Dlx. 6.2)

Here a; depend on &. For ¢ < 1 they are the adjacent classical turning points and for
¢ > 1, a. is arbitrary and a, = a-+n. The function of ¢

p
a= | (-2, (6.3)

0x?

where the subscript m means that the second derivative of the potential is evaluated at
the maximum. The function

¢la) = -—71:— [arg I'(3 +ia)+a—aln |a]. 6.4)

The function of ¢ denoted J is the smallest positive root of the equation

1

Sind = ———x—.
JI+e

(6.5)

A detailed derivation of formula (6.2) may be found in Refs. [14] and [15].

7. Extension to d > 2 dimensions

Two dimensional SU(N — o) lattice gauge theory is soluble and the phase transition
is seen from analytic formulae [2]. Gross and Witten [2] conjectured, moreover, that
a similar transition should occur in the more interesting four dimensional case.

This conjecture has been proved true by F. Green and S. Samuel [16], [17], who
moreover found the transition points 8, for d = 3 and d = 4 dimensions. Here we present
a short sketch of their argument.

The crucial remark is that, since everybody believes that in the N — co limit differences
between SU(¥) and U(N) gauge theories are negligible, it is legitimate to consider the
series of U(N) gauge theories instead of the series of SU(N) gauge theories.

For a U(N) lattice gauge theory the Wilson operator W corresponding to a path C
is defined by (cf. Fig. 4)

wiCl = [ U. (7.1)

leC
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Here U, is the unitary N x N matrix ascribed to link / on a lattice. The oriented contour C
begins at some lattice node x, goes over a certain number of links (cf. Fig. 4) and ends
in x. Wilson [1] used the trace of W to derive an interesting criterion for confinement.
Green and Samuel propose to study the determinant.

™

Fig. 4. Two-dimensional lattice with a Wilson loop C enclosing surface X

Define
1

P[C] = (Det W¥ ~ ¢, (12)

Here the averaging is over all possible matrices U,. This can be given a rigorous meaning
(cf. e.g. [1]). Z is the surface (e.g. the number of plaquettes) enclosed by the contour C.
For two dimensions this definition is unambiguous. For the other cases the minimal
surface should be taken. The sign ~ means that more slowly varying factors, e.g. expo-
nentials of the length of C, are omitted. o is a constant coefficient.

Note that P[C] for SU(N) theories would be identically equal one and certainly would
not be suitable for distinguishing between phases. Green and Samuel propose that « is
an order parameter.

o((p)

8. A

Fig. 5. Order parameter a(f). The scale on the vertical axis is arbitrary
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An order parameter should change at a phase transition between zero and a non zero
value. For instance, if a non magnetized piece of iron is put into a magnetic field and then
the field is switched off, the final magnetization is an order parameter: it is zero above
the Curie temperature and non zero below.

A qualitative graph representing the dependence of « on B, if « is an order parameter,
is shown in Fig. 5. The scale on the vertical axis is arbitrary, so that no importance should
be attached to the fact that a(f) for f < . is drawn as a straight line. It is important,
however, that a(f) = 0 for f > B.. Green and Samuel have checked on a number of
exactly soluble models (i.e. for a number of lattices) that «(f) is indeed an order parameter
for U(N) lattice gauge theories in the limit N — oo. They have moreover given qualitative
arguments that this should be the case also for lattices, where the solution of the UWN — «©)
gauge theory is unknown. Further they found that in the strong coupling limit « # O,
while in the weak coupling limit « = 0.

The strong coupling limit involves no problems of principle. The weak coupling
limit, however, deserves some discussion. In two dimensions the Coulomb potential is
proportional to r and therefore confines. Accordingly, for finite N the authors find o # 0.
The N dependence, however is

o= 0(i) for g > B, (7.3)
N

so that for N — oo, a = 0 as it should. This result can be obtained perturbatively. For

three dimensions the perturbative (weak coupling) expansion yields a = 0. It is known,

however that in this case non-perturbative effects (instantons) dominate. Including instant-

ons one finds

a=0@E" for B>8, 7.4

where ¢ is a constant. Thus again @ = 0 in the high ¥ limit, but the physics is very different.
Finally in four dimensions

x=0 (1.5)

for any M.

Once the interpretation of a as an order parameter is accepted and it is known that
B — 0 corresponds to the a # 0 phase and § — o0 to the & = 0 phase, it is possible to cal-
culate the transition point f_. It is enough to calculate o in the strong coupling approxi-
mation and to extrapolate the function a(f) to the point where it vanishes. Note that in
this approach it is not necessary to deal with the weak coupling range, where perturbative
and nonperturbative effects compete.

Using a strong coupling expansion up to ¢ Green and Samuel found for dimensions
d = 2, 3, 4 the transition points §; = 0.500, 0.435 and 0.396 respectively. The normaliza-
tion here is § = 1/g2N. They estimate by comparison with shorter expansions that at least
the first two digits of each B, are reliable. Of course the result for d = 2 is exact and had
been known [2].
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8. Summary and remarks

Let us summarize the results and report on some remarks from Ref. [17]. It has
been made plausible (a physicist might perhaps say proved) that SU(N — oo) gauge theories
on two-, three-, and four-dimensional lattices have phase transitions and the transition
points have been found.

The physical origin of the transition depends on the number of dimensions. The weak
coupling phase may be described perturbatively for d = 2, is dominated by (non-pertur-
bative) instantons for d = 3 and has still some other structure for d = 4. This makes
extrapolations from lower dimensionality to d = 4 risky.

For d = 4 Green and Samuel argue that the a % 0 phase is dominated by monopoles,
which cause confinement, while in the & = 0 phase the monopoles play no important role.

Going from N = oo to finite N, for d = 4, along the U(N) sequence, one always
has the phase transition. For the SU(XN) sequence the situation is less clear. It seems,
however, [17] that even if there is no phase transition, singularities for complex g close
to the real axis should occur. They limit the convergence radius of the strong coupling
expansion just as efficiently as a phase transition would.
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