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The aim of these lectures is to present a description of dynamical symmetry breaking
that closely parallels spontaneous symmetry breaking via scatar fields. The link is provided
by the effective potential that can be defined whether or not elementary scalar fields are
present in the theory. I wish to show that the effective potential is calculable in a non-trivial
approximation to a gauge theory.

PACS numbers: 12.40.~y

1. Introduction

Spontaneous symmetry breaking (SSB) is an essential ingredient in our current un-
derstanding of elementary interactions. The now familiar phenomenon of SSB via scalar
fields, as in o models and Higgs potentials, is a subject of elegant simplicity. Finding the
minimum of a potential function in order to determine the properties of the ground state
is basic to our intuition about mechanical systems. However in current fundamental
theories, elementary scalars either do not occur — as in QCD — or are introduced solely
to generate SSB — as in electro-weak and grand unified theories. Scalar fields are not
required for self consistency as for example the gauge fields are. The alternative is to
look for the source for SSB in the dynamics of the gauge theories themselves i.e. dynamical
symmetry breaking (DSB) [1, 2, 3]. Unfortunately DSB does not occur in a simple ap-
proximation in gauge theories. Infinite sets of graphs must be summed which can be
conveniently stated as Schwinger-Dyson and Bethe-Salpeter equations. But generally these
are complicated integral equations and little is known about their solutions. In spite of
these technical complications similar principles govern these two phenomena. My plan
for these lectures is to describe the latter in a way that closely parallels the former. The
link is provided by the effective potential which can be defined whether or not elementary
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scalar fields are present in the theory. This brings our simple intuition about ¢ models
to bear on the technical problems of DSB.

Specifically I plan to direct my lectures toward results of a recent paper by Percz-
-Mercader and myself [4] in which we show that the calculation of the effective potential
is tractable in a widely studied mode! of DSB. The model is chiral invariant QED in four
dimensions. The symmetry which is broken is chiral U(1) giving the fermion a mass. The
approximation is a truncation of Feynman graphs which is rich enough to give DSB yet
simple enough to allow an exact solution to the Schwingzr-Dyson and Bethe-Salpeter
equations and a closed form expression for the effective potential.

The basic mechanism of SSB of the Goldstone or Higgs type is the presence of an
instability in the normal vacuum state, i.e. the vacuum state that is invariant under the
symmetries of the Lagrangian. Suppose for a moment that scalar fields are present and
that scalar sector of the Lagrangian is as follows:

2
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If p? is taken to be megative then the classical field configuration ¢ = 0 is not stable
since the energy can be lowered by increasing ¢. We refer to this as a tachyonic instability
since imaginary mass excitations (tachyouns) lead to exponentially growing field fluctu-
ations. If 4 is also negative then the theory has no ground state (at least classically). Alter-
natively a positive 4 would lead to a ground state in which ¢ takes on the value
+(—6u2[2)"/*. The ¢ —» — ¢ symmetry of the Lagrangian is broken by this ground state.

There need not be a scalar field present to generate a tachyonic instability since the
tachyon could also be a bound state of elementary fermion fields for example. A bound
state tachyon would mean that a certain y y field configuration is unstable. I wish to
stress in these lectures that there is a calculable first approximation” to DSB as there
is for the scalar case, the latter being the tree approximation. These techniques I will
discuss are applicable to problems in dynamical Higgs models, such as heavy color {5],
and possibly to gauge hierarchy and the fermionic mass spectrum in grand unified theo-
ries [6]. However 1 will discuss here no symmetries beyond U(1) x U(1l) and will stress
only the ““first approximation” to DSB.

Much of the work on the dynamics of DSB can be classified as studies of quartic
interactions [1, 7], studies of non-linear Schwinger-Dyson equations for gauge and other
trilinear interactions [8], studies of the stability of various phases close to a phase tran-
sition [9, 10] more recently the linking of chiral breaking to confinement [11] and of course
the connection between the dynamical breaking of ys invariance in QCD and PCAC
[3, 12]). There have also been studies of the solutions of the Schwinger-Dyson equations
[13]. It is on the latter that all the peculiarities of the non-linear problems enter.

My plan for these lectures is as follows: (2) I would like to give some background
and then give the results of the paper by Mercader and myself [4] in order to clarify the
direction of these lectures. (3) Then I will give a short review of the effective potential
and Legendre traunsforms for the scalar field case. (4) Next I would like to show how
DSB occurs without introducing any new formalism. This is a pedagogical digression to
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show how a negative mass-square bound state signals a phase transition. (5) I will present
next the main formal developments. This consists of selecting appropriate classical source
terms and defining the corresponding generating functionals. (6) There are two theorems
on Legendre transforms that are needed in order to calculate the generalized effective
potential and I will give them here. (7) We need solutions of Schwinger-Dyson (SD) and
Bethe-Salpeter (BS) equations which fortunately are exactly soluble and are given here.
(8) Finally I will give conclusions and discuss limitations, generalizations and speculations.

2. Background

Chiral symmetry breaking is the example 1 will discuss in these lectures and 1 would
like to contrast here two early models of this: The Gell-Mann Levy o model [14] which
involves a scalar field and the Nambu Jona-Lasinio model [1] that does not. The ¢ model
is very familiar to everybody but I would still like to review it to facilitate comparisons
later.

(i) Gell-Mann Levy ¢ model

Consider the following Lagrangian involving fermions v, w interacting with a spin
zero chiral doublet (7, o)

£ = Pliy - 0—glo+iysm)yp+3 ((8,0)” +(3,m)") = V(o, 7). @1
This is invariant under the chiral transformation:
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Fig. 1. An effective potential giving spontaneous symmetry breaking

where V is a tunction of the chiral invariant ¢2+4n% If we pick the simple form for

m? A
Vo= =N (e +n2)+ —4T(02+n2)2 the essential features of chiral breaking are very
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transparcnt. Ignoring the fermions for the monient and treating the meson fields classically
we then wish to find the lowest energy configuration. The cnergy can be lowered by taking
the ficld to be constant in space and time. The minimum energy configuration is deter-
mined by the potential V(e, n). If m? is positive then the minimum of ¥ occurs at the origin
and 6 = n = 0is the ground state. If one picks m? < 0 then the origin in the o, 7 plane is
an unstable stationary point and we have the situation depicted in Fig. 1. Any fluctuations
of the field will grow exponentially and the system will pick a new ground state out of the
2

continuum of minima on the circle 62+ n? = Mfi We can make a chiral transforma-
tion if necessary to put the point of the ¢ axis.

A few simple results follow: There is clearly a zero frequency normal mode correspond-
ing to displacements around the symmetry axis which is the massless pseudoscalar Gold-
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Fig. 2. Qualitative behaviour of the spectrum for spontaneous chiral breaking. For the o0 model { = — u?2,
AZ
For the Nambu Jona-Lasinio model { = —1+ iﬂz

stone mode. There is a “‘radial” mode corresponding to the massive scalar particle. Further
note that the fermion picks up a mass given by go. This qualitative behavior of the spec-
trum is plotted in Fig. 2.

(i) Nambu Jona-Lasinio model

Consider now a Lagrangian that involves only fermion fields which have the same
chiral transformation propertics as above

& = iy - Oy +g{(Pw)’ —(Pysp)’} (2.3)

This model has essentially the same features as the ¢ model but now the instability is
dynamical in origin. The properties are less apparent and I will just give the results. In
the v u channel the Bathe-Salpeter equation reveals a chiral doublet resonance with the
quantum number of the ¢ and n as above. (Because the fermion constituents are massless
prior to symmetry breaking the ¢ and 7 can decay and hence they are not bound states but
rather are resonances.) As one increases the coupling constant, g, these states become
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tachyons and the qualitative features of the spectrum are identical to those in Fig. 2.
The fermion mass arises from a Schwinger-Dyson equation shown in Fig. 3:

—-— - —Q—

Fig. 3. Generation of a mass term {on left) from a four point interaction in the Nambu Jona-Lasinio
model
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This equation has a trivial solution, M = 0, and a “‘self consistent” solution given impli-
citly by

A
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The lowest energy solution switches from one to the other as (gA42/2r%)—1 changes sign
as shown in Fig. 2. The presence of a tachyon in the normal vacuum correctly signals
that it is not the state of lowest energy just as it does in the ¢ model. Unlike the ¢ model
this chiral breaking is dynamical in origin. It is a consequence of the strong attractive
forces and not the result of putting an instability in by hand. The lowest order SD and BS
equations in this model reduce to algebraic equations because the interaction is quartic.
These become integral equations in the case of trilinear interactions and in general are
not soluble in closed form.

I would like to give a preview of the main result I will present in order to clarify
where the discussion is leading. The model is massless QED in four dimensions which
of course involves trilinear interactions. There are no scalar fields. This model also exhib-
its DSB. It has resonances which can become tachyonic and drive the instability. T will
show that there is a quantity which I call the generalized effective potential, V(¢,, ¢,, ...)
which serves the same role for this model as V{0, 7) does for the ¢ model. The arguments
¢1,®,, ... correspond to the bound states of § and . This function is calculable in a ““first
approximation” and has a relatively simple form:

~ g4 Zd’be 4 242
d*k 1 d*k g s
V) = =i | o ln( ~ ) \ { S T SRS = —zgg-},

(2.6)

where Sy(k) is the fermion propagator and is the solution of a soluble SD equation, F,(k)
and g, are the normalized bound state eigenfunctions and eigenvaiues of a soluble BS
equation, g is the coupling constant, and u? is a scale parameter which I will explain
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later. This function, Eq. (2.6), signals symmetry breaking in exactly the same way as
V(o, 7} does for scalar theories as in Fig. 1. In this way we are able to determine which
of the candidate vacuum states that we may find correspond to the field configuration
of lowest energy.

Before going on 1 would like to show that SSB in the ¢ model can be viewed as an
effect arising from summing an infinite subset of Feynman graphs. Since this is a useful
way to view the approximations which give DSB it is worthwhile to see how the effect
works for this trivial case.

Consider the Lagrangian, Eq. (2.1) and add to it an external constant source term
Jo(x). (This extra term is just a useful device in the functional formalism and will be
set to zero at the end.) Looking only at the ¢ sector:

2 o
, m 2 L4
Vo> V+Jo = ‘—2—0' + EU +Jo. (27)

With the external source on, the vacuum properties are determined by the stationary
points of V+Jo:

1 A
g = —— J+60' . (28)

m

This may be viewed as a truncated non-linear Schwinger-Dyson equation for the one-point
function 6 = {0,,>. By truncated, I mean that it sums a subset of all one-point-function
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Fig. 4. (a) Graphical depiction of Eq. (2.8) for the ¢ model, (b) a representative graph, (c) fermion mass
term

graphs — in fact tree graphs only, as shown in Fig. 4. The representative graph shown

there can be obtained by iterating Eq. (2.8). Finally recall that the fermion mass is given
by m = go which is shown in Fig. 4c.
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It is clear from Egs. (2.7), (2.8) that when you turn off J, ¢ goes to either zero or
(—6m?/2)"'* depending on which corresponds to the minimum of V. Looking at this result
graphically, in Fig. 4 note that all the graphs are proportional to a power of J yet when J
goes to zero the sum need not be zero. In our generalization to DSB this is precisely what
we will look for: We will introduce a generalized source term which violates chiral invar-
iance. As we turn it off we will look for solutions to SD equations that have a residual
chiral breaking. The criterion to decide if such a solution is the one of lowest energy is
to see if the corresponding stationary point of V is a minimum. The SD equation will
sum subsets of graphs in the fermion mass term and the important property of that subset
is that it contains bound state poles which yield the structure of scalar field poles shown
in Fig. 4. In essences the bound states play the identical role of the scalar field in the o
model.

3. The effective potential, scalar fields

The classical potential function that determines the ground state symmetry, as in the ¢
model example in the last section, has a generalization to the full quantum theory and
is called the effective potential. Here I will briefly review the concepts that are needed
for later generalizations. For a more complete review, see for example Ref. [15].

In the functional formulation, it is useful to introduce external classical sources
coupled to the fields. I will restrict these sources to be constant in space and time through-
out these lectures. For the case of a single scalar field, we add to the lagrangian the follow-
ing source term:

£ - L(P,0,0)+JP. 3.1
The vacuum to vacuum generating functional is then given by the functional integral:
<0I0>J - eiW(J)Id‘x — I [dd)]eijd4x(2+.l¢'). '(3.2)

W(J) thus defined generates the n-point connected Green’s function in momentum space
at zero momentum.

o]

w(J) = Z 5’% G™(0,0, ...). (3.3)

n=1

(I will not discuss the more general generating functional W{J(x)] which replaces W(J)§ d*x
in Eq. (3.2) and which gives Green’s functions at finite momenta.) One can now define
a classical field ¢ which is conjugate to the classical source J and the effective potential
is just the Legendre transform of W(J):

o= W _ 000
T dJ o0

Vig) = ¢J—W. (3.5)

(3.4)
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V(¢) has a simple graphical interpretation: — V(¢) is the generating function of one par-
ticle .irreducible graphs at zero momentum

Vig) = z Ly (0,0, ...). (3.6)

To see this it is worthwhile to expand out these functions in a Taylor series. The Taylor
series for V{(¢) is obtained by expanding the Legendre transform, Eq. (3.5).
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Fig. 5. Expansion of W and V for the scalar field case. Crosses mean to remove the propagator

The effect of the Legendre transform is shown in Fig. 5. The graphs in W have been classi-
fied as those with one-particle states and those without, see for example d*W/dJ*. The
graphs in ¥ have their external propagators removed and the one particle reducible graphs
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cancelled as in d*V/d¢* leaving just the one-particle-irreducible vertices as shown on the
bottom line. As a check one can easily see that if one restricts the connected Green’s
functions to be just tree graphs, (classical approximation), then the effective potential
is just the negative of the non-derivative terms in the Lagrangian which is just the classical
potential. Let us note how the behavior of V(¢) is related to the question of stability of
the vacuum. From Eq. (3.7a) it follows that
J=20 i 0
= = 7¢; = 0,
and thus FV is stationary in ¢ at the point corresponding to J = 0. Next notice that from
Eq. (3.7b) a positive curvature, d?V/d¢? > 0, corresponds to a positive value of the inverse
propagator at zero momentum. In our convention, that corresponds to a positive mass-
-square pole in the propagator, i.e. a real particle as indicated in Fig. 6. Alternatively,

Fig. 6. A stable local minimum of ¥ (solid line) corresponds to a positive intercept for D! and therefore
a positive mass state. Likewise a local maximum of V (dashed line) corresponds to a negative intercept
and therefore a tachyon

negative curvature of V corresponds to a negative mass-square pole which is a tachyon,
indicating an instability as described in the introduction.

To summarize, V(¢) is a function of the c-number variable ¢, (not to be confused
with the g-number @ which is integrated out in Eq. (3.2)). In the classical approximation
it agrees with the classical potential energy funciion. As the extermal source J is turned
off, ¢ goes to a stationary local minimum of V{(¢). In fact the point must be the global
minimum in order for the vacuum to be stable — but that is a longer story.

4. Phase transitions

The beauty of the effective potential is that it can display phase transitions in the
full quantum theory with the same simplicity as for example, the classical & model case
as explained above. It is not as apparent, but nevertheless true, that if a bound state be-
comes tachyonic, Mz < 0, where My is the bound state mass, due to strong binding in
some channel, the minimum of V(¢) will also shift but in this case onto another branch
of the tunction. I would like to demonstrate in this section what I mean by this and how
this happens. This helps motivate the generalizations of the effective potential T will in-
troduce later and at the same time shows that the new formalism is a convenience, not
a necessity, for studying dynamical symmetry breaking.
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Let us consider a massive ¢* theory. For weak coupling, the effective potential reduces
to the classical or tree approximation:

A

2

TRl
V="¢p’+ =

PR

o (4.1)

If 2 and 2 are positive this potential has a minimum at ¢ = 0 as indicated in Fig. 7a.
Let us assume that the coupling is increased and a deep bound state of two ¢’sis formed.
Even it we can not calculate V{¢) for strong coupling, one can argue that the bound state

(@ V= 7+ X ¢ V=o|_/_ $

) V== 7+ S
V.
V’:éi—¢
+ )‘”ﬁ qSG m82>o

+ ¢3+... Vl:o%(#

2
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Fig. 7. The effective potential in ¢* theory (a) for weak coupling, (b) for,couplihg such that there is a deep
bound state of mass Mp. The graphs indicate the dominant bound state pole contribution to the one-
-particle-irreducible vertices. The resulting branch structure of V is indicated

contribution dominates the behavior of V(¢) for M3 close to zero. To see this, note the .
following: V{(¢) is the generating function for one-¢-particle-irreducible m point functions
at zero momentum I'®(0, 0, ...). Recall that the I'"™(p;) do not have ¢ poles since these
are removed by the Legendre transform. But if there are bound states the corresponding
poles will occur in I'™(p,) because these are two-particle-reducible and the bound states
occur in such channels. A typical pole term would be:

rov = poo L paes, (42)

pi—Mp
as shown, for example, for I'® in Fig. 8. This dominates over background for p;> ~ M3.
Since we are interested in this function at zero momentum, this pole term dominates over
background for M§ = 0. If we isolate the pole structure in I' with the maximum number
of poles, then at zero momentum it will have the maximum power of 1/M3 and will
give the leading bound state contribution to V{(¢).
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To isolate the dominant pole structures, choose a particular pole in I'™ and pick
up the residue as in Eq. (4.2). Then pole-dominate the residue factors and continue until
all possible pole terms are isolated as indicated in the example in Fig. 8. This gives the

S

!

*f?%f

Fig. 8. Exhibiting bound state poles in the manner described in Sec. 4

dominant contribution and it clearly is just the tree structures shown in Fig. 7b. The
first few terms in V are:

2 2 4 3 204 8

e, 3% ¢ 15p8° ¢°  315%6* ¢
V() =—¢2— L P WO TP 9 4.3
2 2¢ M2 41 M5 6! My 8! (43)

where B is the ¢¢ B coupling, y is the BBB coupling and the combinatoric factors count
the number of ways of inserting pole terms. This series can be summed to give:

2 MZ
Vg) =5 '~ T U= - 1438, (4.4
4
where

:ﬁ/

4.5)

The important properties of this function are shown in Fig. 7b. It has a branch point
at §{ = 1 and is complex for £ larger that this value. The interesting features of this result
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are that (i) there is a second branch to V(¢), (ii) the second branch has a minimum at
¢ = 0, denoted by V, in Fig. 7b and (iii) the minimum V/, drops below the old minimum V,
as M3 goes negative. Hence as the theory becomes unstable due to a composite tachyon
aslew vacuum state at lower energy appears. This leading bound state contribution to
V(¢) is sufficient to show the effect.

Let us contrast this with the situation in which the small mass particle is elementary
with a corresponding field . Then the effective potential would be a function of the two
fields ¢ and y of the form:

2 M2 ﬁ y s

y #
Vi) =5 7+ '+ b

> by 3 (4.6)

where f and y are the same as before. For M2 > 0 a local minimum of ¥ is d=x=0.
For M < 0 the minimum shifts in the usual way to ¢ = 0, y # 0 defining a new vacuum
with positive mass excitations.

Any difference between the bound state and elementary-field cases in this discussion
is illusory. The two expressions for V' — Eqs (4.4) and (4.6) — are related simply by the
constraint :

Vig) = V(9 x(9)), @.7
where y(¢) is given by the equation
V(e x
V. 1) =0, M+ L4 ¢*+ i 2 = 0. (4.8)
0y 2 2
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Fig. 9. The constraint curve given by Eq.(4.8) indicating how the local minimum of ¥ shifts as M changes
sign
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In Fig. 9 the parabolic constraint is shown. The function developed in Eq. (4.4) is just
the value of the polynomial, Eq. (4.6), on this constraint. Because the constraint is a sta-
tionary condition in one of the variables all stationary points of V(¢, x) must lic on it.
Hence all the stationary points of ¥{(¢, y) are given by the solution to the equation 8V/0¢
= 0. In other words no stationary points are missed by imposing the constraint and the
two formulations lead to identical conclusions about the vacuum.

In this discussion so far nothing has been said about the symmetry. The generalization
is clear: The effective potential, Eq. (4.6), would be an invariant function of ¢; and y,
and the constraints, Eq. (4.8), would read:

V(¢ 1)
0
The vacuum properties are defined by the stationary points of ¥(¢;, x,) and the Goldstone
phenomenon follows exactly as in the elementary field case.

In summary, the point of this discussion was to show that the effective potential, as
defined in Sec. 3, shows the signal of a phase transition due to a bound state tachyon and
further that the one-variable form, Eq. (4.4) and the two-variables form, Eq. (4.6) give
identical conclusion about the vacuum state. Since Eq. (4.6) is the form of a tree order
effective potential for elementary ¢ and y fields, what then distinguishes it from the case
where ¢ is elementary and y is a bound state? At the level of this discussion, the only
difference is that M3, B, and y are either free or calculable parameters respectively. It is
gratifying to sec that there is a close correspondence in spite of the many dynamical com-
plications of the bound state problem.

As a final remark, I should say that one can include higher powers of fields in Eq.
(4.6). One can casily see that this would correspond to including non-leading terms in
1/M3 in Eq. (4.3). Since the phase transition is second order it is governed by the propertics
of V near the origin in ¢ and y space. The higher powers will no: alter any of these con-
clusions as long as f and y are non-zero. This statement is just the two dimensional gener-
alization of the obvious statement that the position of the local minimum of a function
near the origin is governed by the first few terms in a power series expansion.

= 0. (4.9)

5. Sources and generating functions for DSB

In Section 3 1 reviewed the effective potential formalism for scalar fields. In Section 4
I showed that this potential can exhibit the phase transition caused by a tachyonic bound
state. What we need now is a systematic formalism that implements these ideas. The
effective potential introduced thus far, Sec. 3, is not the optimal starting point for DSB
studies. The discussion of Sec. 4 suggests that we would like the arguments of ¥(¢,, ¢,...)
to be classical fields representing bound states not constituents since it is the shift in the
minimum of ¥V in these variables that signal the phase transition. This can be achieved as
we will see by introducing sources coupled bilinearly to the constituent fields, rather than
linearly as in Eq. (3.1). Further we need to discuss dynamics, i.e. to outline a calculational
scheme which is rich enough to give DSB yet simple enough to be tractible.
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The model 1 will discuss is massless QED but first consider a massless free Dirac
field. Consider the following action:

A = [d*xyiy - Oy — [ d*xd*yp(x)J(x— p)p(y). (5.1)
1 have included an external source term coupled bilinearly to the fermion fields. This
external sources is translation invariant and hence in momentum space it attaches a zero
momentum J line to a fermion propagator S(p), giving S(p) J(p) S(p). J(p) is an arbitrary

4 x4 matrix function of the four-vector p. It is convenient to expand it in a complete_set
of Dirac matrix functions of p:

J(p) =Y J.F.(p). (5.2)

I will specify the particular set of functions later. As we will see, dynamical considerations
will dictate a particular choice in an interesting way. The vacuum to vacuum generating
functional can be defined (analogously to Eq. (3.2)):

eI = | [dydple™. (5.3)

W is the generating functional for connected graphs with external ““J lines” at zero momen-
tum. Because of the expansion, Eq. (5.2), it is in fact an ordinary function of the set of
variables {J,}. Evaluating the gaussian integral gives:

d*k : :
W(Jl, J2,..,) = —i (—Z;?Trin ('}}'1\— J,,Fn(k)). (54)
The N’th derivative of W,

(5.5)

Fig. 10. Graphs generated by a free Dirac field coupled bilinearly to an external field in Eqgs (5.4, 5)

is the N-point function with all external momentum set to zero shown in Fig. 10.

This free field coupled to a classical source serves to introduce the needed sources
and generating functionals for DSB and provides a closed form expression for the limit
in which the interactions are turned off. I will show in the next section that for a judicious



589

choice of expansion functions, F(p), the Legendre transform can be evaluated to give the
generalized effective potential. Of course we must turn on interactions in order to get
DSB effects. The reasons for introducing the above quantities should then become more
apparent because then poles will develop in y F,p channels and the N-point functions
generated by W(J,) will have the pole structure discussed in the previous section. The
next step is to introduce a tractible approximation for the interacting case.

Consider the complete fermion propagator in massless QED:

Sy = A(p*)y - p—B(p?). (5.6)
The manifestation of spontaneous chiral symmetry breaking is a non-zero B(p?). In pertur-
bation theory B = 0 to any finite order. One should instead look at the infinite hierarchy

of Schwinger Dyson (SD) equations. The fermion propagator equation is:
4

- . d*k .
S~ =y p-J(p)+ig’ j (—?;)zns(k)F Sk, p)D*"(k— p), (5.7a)
where J(p) is the external source Eq. (5.1, 2), I', is the y-y-photon vertex and D,, is the
photon propagator. As a first approximation one can truncate the hierarchy by taking
the vertex function and photon propagator to lowest order.

1 K"k’
D*(k) = pE (g‘”+(a— D 72~> , (5.7b)

Iy =v,.

(5.7¢)

~—»—

Fig. 11. The SD equation for the fermion propagator, Eq. (5.7a) with approximations given by Eq. (5.7b,
¢). The typical graph is shown. It is a branching of ladder graphs

This gives a non-linear integral equation tor § which sums an infinite set of graphs, Fig. 11,
and as will see, can exhibit the chiral phase transition. The signal is a non-zero B(p?) in
the limit in which J(p) goes to zero. There are no corrections to the photon propagator
or the fermion-photon vertex in this approximation.

Equations (5.7a, b, ¢) define a starting point for studies of DSB by specifying a subset
of graphs in the propagator and this is the approximation in which I will work in these
lectures. It coincides with the first term in the 1/N . expansion of an SU(N,,,) gauge
theory but for this case N, = 1. As with most bound state approximations this is not
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gauge invariant but it is hoped that the exact solutions presented here will make this
a viable first approximation upon which corrections can be made and for which a “best
gauge” can be determined. Finally, this aproximation is the first term in a systematic
expansion of the SD equations but I will not develop that here. The goal of this section is
to show how to calculate the generating function W{J,) in an approximation that is con-
sistent with the dynamics specified by Egs. (5.7a, b, ¢). In the next section I will give the
generalized effective potential which enables one to choose which of the solutions to the
propagator equation corresponds to lowest energy.

In Fig. 11 I showed a representative graph in the inverse propagator. It is a combi-
nation of ladder graphs connected with the topology shown. To understand why this
approximation is a judicious starting point one should compare this with Fig. 4b,c. In
that case the mass term contains branching tree graphs. The crucial point in what follows
is that the infinite sum of ladder graphs will contain poles corresponding to bound states
and the bound state pole terms will form branching trees in exactly the same way as we will
see.

Although it is not possible to give a closed form expression for W(J,) for the interac-
ting case, it can be conveniently expressed as a variational principle. Consider the follo-

wing:
4
HIS, J.] = —ifﬂz Tr {111 S~ Hk)+ (y- k— z J,,F,,(_k)) S(k)}
(2n)

n

i, d*k d4q .
— 58 (2n)4lJ(2n)4 Tr {S(k)y,S(q)y,}D*'(k—q). (5.3

Fig. 12. A vacuum graph which contributes to #7(S, J,], Eq. (5.8)

# is tunctional of the fermion propagator S(p) (for the moment an independent variable)
and an ordinary function of the set of variables {J,}. The g term in Eq. (5.8) is the vacuum
graph shown in Fig. 12. Calculate now the variational derivative 6#7/3S(p). Setting it zero
gives

- d*k v
S7'(p) =y p—J(p)+ig? f (z—n—)zy,,s(k)va“ (k—p), (5.9)
which is just the SD equation Eq. (5.7a, b, ¢). Hence #  is stationary under first order

variations ot S(p) about the solution, Eq. (5.9), by construction. As I will show in the remain-
der of this section, # evaluated at the stationary point is the generating function W{(J,):

W) = WS, JYlew _ = #[S(p; o), Ja, (5.10)
A
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where S(p; J,) is determined by the stationary condition, Eq. (5.9). If we could solve Eq.
(5.9) we would have a closed form expression for W(J,). We can not but we nevertheless
have a useful expression for deriving the generalized effective potential.

In order to show that Eq. (5.10) gives W{(J,), I will take derivatives and see what
n-point functions are generated. Consider the first derivative:

ow oW + OW 0S(p)
= + bt d'p ——— — (5.11)
aJa OJa explicit 5S(p) aJa
4k S(K)F (k) 312
= T . .
| oy . (5.12)

The second term in Eq. (5.11) is zero because ¥ is stationary. All the higher derivatives
are easily calculated from the simple expression, Eq. (5.12). The second derivative is:

rw (8% (s % s (5.13)
= —1 . .
87,07, et T\ sy,

To evaluate this we need to know 0S-'/0J,. Taking the derivative of Eq. (5.9) gives a Bethe-
-Salpeter equation:

SO _ o i [ o B ® s om0 5.14
A -—-b(p)—tfwv,‘() A (kyy,D**(k— p). (5.14)
25"
F

adg a

» ¢ TILIIO

Fig. 13. (a) Graphical form of the BS equation, Eq. (5.14); (b) Typical graphs summed by this equation

This equation generates ladder graphs as shown in Fig. 13. From Eq. (5.14), we see that
the fermion propagators on the sides of the ladder are not the free propagators but are
the solutions to the SD equation Eq. (5.9). Higher derivatives of W will require higher
derivatives of S-1. The second derivative gives:
st [ d*%k s~ 987! N
=i 2 VuS S Sy, D" +(b = ¢)
0J.0J, (2n) oJ, aJ,
[ d*k s st
Yl 2ot T s,

Sy,D"". (5.15)
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This is also a Bethe-Salpeter equation as shown in Fig. 14 and in fact has the same kernel
as the first one: y,S ... Sy,D"". The inhomogeneous term in Eq. (5.15) is presumed known
from the solution of Eq. (5.14). A little thought will convince the reader that in this hier-

(a) :@j bm«a +}:@

]

Fig. 14. (a) Graphical form of the BS equation, Eq. (5.15); (b) Typical graphs summed by this equation

archy of Bethe-Salpeter equations all have the same kernel and are soluble when taken in
turn if the first one, Eq. (5.14), is soluble. We will see in Section 7 that it is soluble for the
case that is needed.

Calculation of the N-th derivative of W evaluated at J, = 0 is straightforward: in the
Bethe-Salpeter equations and the formulas for 8" W, S is replaced everywhere by S,, where
S, is the solution of the SD equation with the source off, J, = 0,

- d*k
So(py ' =y p+ig? _f(Tz?)—“ 7.So(k)y,D**(k— p). (5.16)

0w

aSw
84>

%W
3

Fig. 15. Typical graphs in the N-point functions a¥W/aJ¥ generated from Eq. (5.10)
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The first few derivatives are shown in Fig. 15. The graphs can be characterized as follows:
The N-point function has N factors of F, on the single fermion loop. Photon exchange ladder
graphs occur in the manner shown in Fig. 15. Poles corresponding to bound states in those
channels will occur in the sum of ladder graphs as we will see and this provides the mech-
anism for the phase transition as discussed in Section 4.

Thus far the expansion functions, F, in Eq. (5.2), are unspecified. If we choose them
to be cigenfunctions of the Bethe-Salpeter kernel encountered in Eq. (5.14) and (5.15)
great simplification occurs. Hence one should choose the F(p)’s to be the complete set
of solutions to the following homogencous BS equation.

4

d*k
F(p) = —ig: f

@ny*

O - e IO

Fig. 16, BS eigenvalue equation, Eq. (5.17)

SUF(K)S(K)yy, D" (k — p). (5.17)

This is an eigenvalue problem in g2 with eigenvalue gZ shown in Fig. 16. The orthogonality
relation for this eigenvalue problem is

4
i j % Tr F(k)So(K)F(k)So(k) = 125, (5.18)
n

The completeness relation is
Y. [Fu(k)1as[SolPIFAp)So(P)]ys = —i(20)*1*05,8,50"(k— p). (5.19)

Taking the eigenfunctions to be dimensionless we note that it is necessary to introduce
a normalization constant u? with dimensions of [mass?]. I will break the scale invariance
of this model with cut-offs and this parameter p? is calculable in terms of these dimension-
ful cutoffs but it requires us to go the bound state poles at finite momentum in order to
normalize the bound state wave functions to one particle. This is straight-forward but
will not be given here.

Having defined the F, as eigenfunctions, it is very informative to do a Hilbert-Schmidt
expansion of the BS equations, i.e. to expand the 8" W/aJ" in terms of eigenfunctions.
Consider the following expansion

681 -
=y capF (D). (5.20)
al, : :

b
Insert this into the BS equation, Eq. (5.14), and we obtain
os™! g

T (5.21)
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Putting this result in Eq. (5.13) and using orthogonality, Eq. (5.18), gives

aZW: R
a7y, = K (5.22)
b a
where
2
g
he= 5 (5.23)
g.—-g
Similarly the three point function is:
Iw [ d*k
a0y, = " lahhe 20 (Tr FoSoFySoFcSo+(b <> ). (5.24)
¢ b a
C}ZW . qoz 5
8d,dJ z_ gz ot
oYV 9 - 9 a
33w
3793dy 53¢ 2 x S,
2
% 2
92-g°

2
dw 9
E Ii tA4r G

Fig. 17. (a) Graphical form of the Hilbert Schmidt expansion of the graphs in W, Eq. (5.10) and Fig. 15.
(b) Graphs in the generalized effective potential, Eq. {6.2). Crosses indicate the poles are removed

These graphs are shown in Fig. 17a. The fourth and higher derivatives involve a sum over
the eigenfunctions. We can now characterize these N-point functions as follows: They
are tree graph structures of bound state poles coupled at vertices made up of a closed fermion
loop. The »’th bound state couples to the loop with a wave function F,(p). This approxi-
mation has led to a bound-state-analog of W(J) for scalar fields that was described in Sec.
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3. The one particle decomposition of the N-point functions in Fig. 17 has the same struc-
ture shown in Fig. 5.

In summary, the important steps are: (i) We chose a complete set of sources F,, Eq.
(5.2). (i) We wrote a variational expression for W(J,) which defines a subset of Feynman
graphs, Eqgs. (5.8, 9, 10). (iii) We further choose the F, to be eigenfunctions of the Bethe-
-Salpeter kernel, Eq. (5.17). And (i) A Hilbert-Schmidt expansion led to the results sum-
marized in Fig. 17a. In the next section I will show that the Legendre transform gives the
generating function of one-particle-irreducible bound state structures analogous to the
scalar field case shown in Fig. 17b.

6. Generalized effective potential

The effective potential for this model is defined in the same way as for the scalar
field case described in Section 3.

(I)_EW 6.1
a“aJa" (a)

V(¢a) = zb: d)b‘]b_ W(Ja) (61b)

There are now an infinite number of variables J, and ¢, corresponding to the bound states
of v and . The effective potential thus defined can be evaluated in closed form to give:

3= i [ S (B0 LS [ S s o £5]
a) = Q ) uz 'uz : Qn)* ol'p20) * b 2g§ .

(6.2)

This is the result given in Section 2. The function F,(p) and g are the eigenfunctions and
eigenvalues given by Eq. (5.17), So(p) is given by the solution to Eq. (5.16), and u? is a scale
parameter arising in the Bethe-Salpeter normalization, Eq. (5.18). The N’th derivative
NVjep™ generates a fermion loop graphs shown in Fig. 17b. The simple result, Eq.
(6.2), is not surprising. V(¢,) generates one bound state irreducible graphs and these are
just the N bound state vertices that go to make up the connected graphs in say Fig. 17a.
Fig. 17 is the bound state version ot Fig. 5. I would like to derive Eq. (6.2) by showing that
it follows from an interesting property of Legendre transforms and complete orthonormal
functions. I will first consider the free field result obtained by setting g = 0 in Eq. (5.8,
9, 10) and Eq. (6.2):

W= —i ik- Tr ln( Z J,,F,,), (6.3a)
@n)*

a

d*k Z oFy Z &oFy
Ve —i—_Tr {m( b ) - (so e Soy * k)} (6.3b)

(2n) u
To derive this let us consider the following:
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Theorem: Let {G,(x)} be a complete orthonormal set of functions on the interval
[0, 1] with an arbitrary, positive weight function So(x)*:

fG,,,G,,Sédx = Opn (6.4a)
()]

E : _o(x—y)
Gn(x)Gm(x) - Sg(x)— . (64b)

"

Consider the following generating function:

w{J,) = — jidx In(1-Sc Y J.G)— ¥ J, i dxG,S,. (6.5)
With the conjugate variables and Legendre transform defined by Eq. (6.1) then

Vign) = — _i dxIn(14S, Y. $,G)+ > ¢u§ dxG,S,. (6.6)

Proof: Evaluate ¢, using Eq. (6.1a). Use completeness to obtain:
1=50(x) Z JuGu(x) = {1+ So(x) Z $.Gu(x)} . (6.7

Using orthogonality one can obtain J,, as a function of ¢,. Substituting this into Eq.
(6.1b) gives the result Eq. (6.6).

It is instructive to expand out W and V in order to see the role of completeness in
the Legendre transform. Expanding W about J, = 0 gives:

ow .
37 =0 (by construction), {6.8a)
o’w 1
YT D, = jGaGbsgdx = 85 (6.8b)
[ A e ] 3
1
oNw
5 5= (N—l)!JGal ... G, SYdx. (6.8¢c)
anN . at S
Expanding V about ¢, = 0 gives:
v _ 0 6.9
o, " ©9%)
o’V s
Dy = da (6.9b)

09,00.
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1

~2 deGaG,,Gcsg (6.9¢)

[

v >*w
000,00,  0J.0J,0J,

o'V ew >*w } o*w
= +2 perm.p — ———
a(ﬁdad)cﬁ(bba(ﬁa L aJanbaJ, (3.]43.],,6.7, 6Jd aee aJa
i

otw
+t o A AT
a0J ;04 .04,0J,

(6.9d)

The things to note are the following: The N'th derivative of ¥ generates quantities involving
all the derivatives of W up to the N’th. However if the set of functions G, are complete,
then the sums, as in the fourth derivative, are completeness sums and the derivatives reduce
to simple expressions. Without completeness 1 suspect that one could not evaluate ¥ in
closed form.

The generalization to our case Eq. (6.3 b) where the set of functions also have matrix
indices is straightforward.

Let us now alter this example so that it corresponds to the interacting case. Consider
the following BS equation:

1
T(x, y) = g°D(x, y)+ g { dzD(x, 2)S3()T(z, y), (6.10)
0
and the corresponding eigenvalue problem:
1
G(x) = g7 [ dzD(x, 2)S§(2)G(2). (6.11)
0
Now make a Hilbert-Schmidt expansion of these quantities in eigenfunctions.
g’
T(x, y) = E Gy(x) 53 G, (6.12a)
8n—8&
gZ
D(x,y) = Z G,(x) e G- (6.12b)

n

Consider now the following generating functions:

W(Jn) = W[S, Jn]stationary pointy (6'13)

where
1

I G G
= — |dx|—-In= +(8—Sp)[ 55— J,G,
So

B

+3 ¢ de j dy{S(x)D(x, y)S(y) = So(x)D(x, y)So(y)}- (6.14)
¢ 0
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The stationary requirement, 6%7/6S(x) = 0, gives a constraint between S and J,.

1
2
S7H(x) = 85 '(x)— Z G.(x) {Jﬁ %J‘dyG..(y)S(y)} (6.15)
S, is the value of S with J, = 0 and g2 = 0. This is the analog of the SD equation, Eq.
(5.9), except that we have used the eigenfunction expansion of D, Eq. (6.12a). Sy(x) is
defined by Eq. (6.15) with J, = 0.
Theorem: The Legendre transform, Eq. (6.1), of the interacting W(J,), Eq. (6.13)
and Eg. (6.14) is

2
V(da) = V(®n)ltree field"% Z 'gf ¢3a (6.16)

n

where the first term is given by Eq. (6.6).
Proof: Because ¥ is stationary in S, (cf. Eq. (5.11,12)) the derivative of W with
respect to J, gets a contribution only from its explicit J, dependence:
1

. oW *
b= = J dxG,(x) (S(x) = So(x). ©.17)

C

Using Eq. (6.15) and Eq. (6.17) and completeness, Eq. (6.4b), we obtain

1—=So(x) Z G,(x) <J..+ éz— ¢,.) = {1'*”50(") Z ¢..G..(x)}~ . (6.18)

Using orthogonality, Eq. (6.4a), one can obtain J, as a function of {¢,}. This allows
a straightforward evaluation of V, giving Eq. (6.16).

Again I will expand out W and V in order to see the role of completeness. Expanding
W about J = 0 gives:

oW .
EYR = 0 (by construction), (6.19a)
W b b= B (6.19b)
arad, o e T g g '
oW 2h,hyh(abe) (6.19¢)
e = , 19¢
0J 00,00, “lemtaane
aw hohyh by d 6(abed)
—— i = C
0J2J 20500,  erltena ) O

2
+4 E [(abl)h,%(lcd)+2perm]}, (6.19d)
1
]
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where

1
(a,a, ... ay) = | dxG, G,, ... G, S5, (6.20)
V]

Expanding out ¥ about ¢, = 0 gives:

=0, (6.21a)

Dl =22 (6.21b)

The second derivative differs from the free case in that the propagator D,, has a pole
in g%. However in all the higher derivatives all the g2 dependence drops out. The N’th
derivative gives:

otV

m = (N—l)! (alaz‘ GN) (6.22)

which is the same as for the free case, Eq. (6.9). All the intermediate state sums in W,
as for example in Eq. (6.19d), become completeness sums in V. Hence without complete-
ness, none of this simplification would occur.

The generalization of this interacting case to the effective potential result Eq. (6.2)
is straightforward. The result is indicated in Fig. 17b. Note that in Eq. (6.2) the effect of
interactions is to add the g2 dependent quadratic term. There is also a g? dependence coming
from the fact that S, is the solution of a SD equation which depends on g2. Further F,(p)
are eigenfunctions of a Bethe-Salpeter kernel which involves S,. For a particular case in
which we are interested, that in which the vacuum is chiral invariant, and for the Landau
gauge, S, ' is just y - p then the only g* dependence is in the quadratic term and it occurs
in the trivial form.

7. Solutions to the SD and BS equations

I wish to show here that these equations can be solved in the chiral invariant vacuum.
This allows the evaluation of the effective potential as an expansion in powers of ¢,. I will
restrict the external source J(p) here to be of the form

J(p) = 1Y J.fE(p, (7.1)

where I is the 4 x4 Dirac identity and f,(p?) is an invariant function of p. The solutions
given here can be easily generalized for arbitrary J(p).
Using the 4, B decomposition of the propagator, Eq. (5.6), in the SD equation, Eq.
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(5.9), gives the tollowing coupled equations after Wick rotating and integrating over
angles.

x A2
2 2
ag® (1 dyy°A [' dyA
Ax) = 1+ ——{— + , 7.2
) 16n2{x2fA2y+B2 | 42+ B (7.22)
22 x
) x A2
(B+a)g® (1 dyyB ‘- dyB
B(x) = J.f9%) + — + ) 7.2b
(x) E, PO e 3 ) a2y T | B (7.2)
n A2 x

The variables x, y are the euclidean variables, p? and k2, « is the gauge parameter in the
photon propagator, Eq. (5.7b). I have introduced cut-offs at both ends. These will be dis-
cussed further in the next section. Let us turn off the source, J(p) = 0, and look for solu-
tions with vanishing B(x):

x A2
NP S dy
=14 S J it ol )

In the Landau gauge, (¢ = 0), 4 = 1. In other gauges this is a non-linear equation which
can be solved. First note that this can be converted to a differential equation by applying

d d -
the operator = x3 e By the change of variables x = x exp (¢), this becomes:
X x

d’A _dA ag® 1.

il = e . 7.4
d12+ dt 872 A (7-4)

The solution to this equation is given in the paper by Mercader and myself [4]. We have
found the general solution ot this equation in parametric form A(¢) and #(£). For the two
cases a > 0 and o < 0 we have respectively 4+ and 4-:

Au(®) = 1 \/%—ye**z/Hi(é), (7.52)
¢ -

O =1 ap—, 7.5

t+(%) J UHi(n) (7.59)

Hi(®) = ‘}e”zdn, (7.5¢)

no

where y = ag?/8n% and 7, and &, are integration constants.

I will not go into a detailed discussion of this sclution here, my main point is that
this non-linear equation is soluble. A(p?) is quite a complicated function of p*. It has an
infinite number of branch points with two of them occurring in the real euclidean region,
making A(p?) unexpectedly complex there. These pathologies have been noted before
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[13] and are presumably a consequence of the approximation, Eq. (5.7b, ¢). There are
delicate questions as to how to impose cut-offs and how to renormalize. The cutoffs we
introduced in fact automatically select a region where A is real between them. That is,
one can see without sclving the integral equations that the solutions are real for
A2 < x < A2 There are hints that as the cut-offs are removed « must go to zero and hence
the Landau gauge is forced on us. There is much to clarify here which will be published
elsewhere. .

Next let us look at the BS eigenvalue equation for this model. A complete set of
Dirac matrix-0(4) spherical harmonics will block-diagonalize Eq. (5.17) to a radial problem.
Here T will only look for solutions of the form Eq. (7.1). Wick rotating and using the same
variables as for the SD equations, Eq. (5.17) becomes after integrating over angles:

x A2

3 g (1 (dyf(y) | [ dufuly)
= [0 o o

x

This involves the A(x) given implicitly in the above solution. However in the Landau
gauge A = | and this equation is homogeneous in x and is trivially soluble and will be
given below. In other gauges this can be solved by a change of variables close to the one
for the SD equations. Convert Eq. (7.6) to a differential equation using the operator

O leotwln A)
A
Fig. 18. Graphical solution to the eigenvalue condition, Eq. (7.8)
d . ~
o x? i Now make a different change of variables x = x exp (—¢). Now change to
X x

the variable ¢ using Eq. (7.5b) where the + sign refers to the sign cf y. This gives the
following differential equation for f,:
d*f, df, oa+3

qz g T k=0 (1.7)
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This is the confluent hypergeometric equation and reduces to Hermite’s equation for
special gauges. Therefore this BS differential equation is soluble for arbitrary values of
the gauge parameter. Similar changes of variables will cover the more general cases of
more general Dirac matrices and more general angular dependence. The branch point
problems mentioned for the SD equations must be addressed here also.

Returning to Eq. (7.4) in the Landau gauge, note that the equation is homogeneous

. 3g?
in x(4 = 1). The two solutions are x " ** where w? = _l6g_2 —%. The boundary con-
n
2
VA
ditions can be satisfied only if @? > 0 which means that A > E The eigenvalue con-
TC

dition is
1, A
—(w°—3) =cot|wln— |, (7.8)
w A

The graphical solution of this is shown in Fig. 18.

8. Conclusions

It was my aim in these lectures to focus attention on the close correspondence be-
tween the problems of dynamical symmetry breaking and the simple intuitive ideas of sym-
metry breaking in ¢ models. I have given an example of a system that exhibits DSB and
shown that the stability of the vacuum state is governed by an effective potential function
that can be evaluated in closed form. As input to this function one needs to solve a linear
eigenvalue problem. Further the kernel for the eigenvalue problem involves the solution
of a non-linear Schwinger-Dyson equation. For the example at hand these equations can
be solved. .

Let us look at the result, Eq. (2.6) or (6.2), in a little more detail by expanding it out

in a power series in ¢,:
gZ
V= E (1——g2>¢3+0(¢3). (8.1)

n

As pointed out in the previous section, in the Landau gauge, the only g* dependence is
that explicitly given in the quadratic term. Notice that for g2 less than the smallest eigen-
value, the origin is a local minimum. As g2 is increased and passes the first eigenvalue, the
origin is no longer a stable minimum but becomes a saddle point. Hence the only effect of
interactions on ¥V in the Landau gauge is to change the sign of each quadratic term in turn
as the coupling constant is increased. The whole question of stability is governed by the
interplay between the g2 dependent quadratic term and the effective potential of a free
field theory (which has been perversely expanded in terms of these BS eigenfunctions).

There are a number of interesting questions that T would like to discuss but either
I do not have time or I do not know the answers. Juan Perez-Mercader, Piotr Rembiesa,
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and I are presently pursuing further some of the questions raised by this approach. In
closing I would like to mention a few:

(i) Surveying ¥ for minima: We would like to find the trajectory of the minimum as
a function of g and look for possible bifurcation of the trajectory. This determines the
pattern of symmetry breaking. Recall that the source J(p) is expanded in a complete set
of Dirac matrix functions of p, Eq. (5.2). In Sec. 7 I discussed the special case in which
J(p) is proportional to the Dirac identity matrix Eq. (7.1). But this expansion also includes
terms proportional to the y, matrices, e.g.

I(p) = yu LI, (8.2)

Corresponding to each J% there is a Legendre transform variable ¢). If the minimum of
V occurs for non-zero ¢4 then Lorentz invariance will be spontaneously broken. This
seems certain to be the case if g2 is larger than the smallest eigenvalue g? corresponding
to a vector source, but it may also occur for smaller values of g2. If it does occur, well then
back to the drawing boards but it may be connected with the next point.

(ii) There are problems with unphysical singularities in the particular model I discussed
here. The propagator S(p) should be analytic in the complex p? plane except for poles
and normal thresholds for p? > 0. However the solutions to the propagator equation,
Eq. (7.5), can have singularities in the space-like region, p? < 0. Without looking at the
details of the solution one can see an example of this by noting that the differential equation
for A, Eq. (7.4), has a classical mechanical analog. Rewrite it in the form:

2
Fh2f = — (°£>i, (8.3)

872/ r

A

De
"
o

A -R=2(1-A)

[ \ :
Branch// ')‘ tA Branch
Point Point

Fig. 19. Qualitative behavior of A(z) Eq. (8.3)

where I substituted r for A. For positive « this describes the motion of a particle subject
to dissipation and to an attractive 1/r force. Starting with the initial conditions of a finite r
and finite velocity # such a particle will fall into the origin (r = 0) in a finite time dissipating
all its energy (no bounce). There are no real solutions for larger times (unless the initial
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conditions are changed) but there are complex solutions. That is, r(¢) has a branch point
on the real 7 axis and translating into the old variables, A(p?) has a branch point in the p?
plane in the space-like region. The complex interval extends from the branch point to
— oo. A recurring theme in these lectures is that unphysical singularities e.g. tachyons,
are associated with instabilities. Could it be that these singularities are also signals of
an instability?

(iif) Removal of the cut-offsz The cut-offs were imposed on the coupled propagator
equation, Eq. (7.2) to make them finite. Beside the divergence problem there are other
complications in letting A/A — co. It is clear from Eq. (7.8) and Fig. 18 that the eigen-
values become dense in this limit. The spectrum is continuous because we are looking at
the states of two massless constituents at total energy zero which is the normal threshold.
Another complication in removing the cut-offs is connected with the singularity problem
Jjust mentioned. Let us write the integral equation for 4, Eq. (7.3) in terms of the ¢ variable
x = Xe':

t ta

1€ [ s [ ds
A = 1+ o {e f ol fA(s)}. (8.4)

ta t

The qualitative behavior of the solution is shown in Fig. 19. In the language of the me-
chanical analog, the particle starts at the left branch point with an infinite positive energy.
It rises out of the well and fails back in. The boundary conditions implied by Eq. (8.3)
are indicated on the curve. It is clear that if t, — co the branch point is pushed in front
of it, and similarly for t;, = — oo. We have a hunch that this limit forces us into the Landau
gauge (4 = 1).

(iv) Gauge invariance: The set of graphs I have summed in these lectures is not
a gauge invariant subset of all graphs. Problems with gauge invariance are ever-present
with bound state problems. As with other bound state problems we hope that the scheme
itself will reveal to us the “"best” gauge or possibly the gauge will be chosen in the manner
just described above. Since we now have an exact solution for any value of the gauge
parameter we are in a poéition to look for these effects. We clearly also want to see if
these techniques could possibly be applied to find a gauge invariant approximation.

(v) Non-Abelian Gauge Theories: Nothing in the presentation here restricted us to
abelian gauge theories. However the set of graphs that are summed here clearly do not
include gauge particle self interactions. One could partly correct for this defect by putting
in a modified propagator (e.g. a confining propagator in QCD). The techniques developed
here will unfortunately not sum the leading term in the 1/N expansion of an SU(N) gauge
theory since the gauge particle self interactions contribute to this.

I wish to thank J. Perez-Mercader, A. K. Rajagopal and P. Rembiesa for helpful
discussions when preparing these lectures and J. Groeneveld when preparing these notes.
I wish to give special thanks to J. Perez-Mercader for reading an early version of these
notes. I also wish to thank Professor A. Bialas, Professor J. Wosiek, and Professor K. Za-
lewski and other organizers of the Cracow Summer School for their warm hospitality.



605

REFERENCES

[11 Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

{2] J. Schwinger, Phys. Rev. 125,397 (1962); 128, 245 (1962); H. Pagels, Phys. Rev. D7, 3689 (1973);
R.Jackiw, K.Johnson, Phys. Rev. D8, 2386 (1973);J. Cornwall, R. Norton, Phys. Rev. D8, 3338
(1973); K. Lane, Phys. Rev. D10, 1353 (1974).

[3]1 H. Pagels, Phys. Rev. D21, 2336 (1980).

[4] R. Haymaker, J. Perez-Mercader, Phys. Lett. 106B, 201 (1981).

[5]1 E. Farhi, L. Susskind, Phys. Rep. 74, 277 (1981) (Review).

[6] J. Ellis, Grand Unified Theories, CERN Preprint TH. 2942, Sept. 1980. (Review).

[7]1 D. J. Gross, A. Neveu, Phys. Rev. D10, 3235 (1974); C. Bender, F. Cooper, G. S. Guralink,
Ann. Phys. 109, 165 (1977).

[8]1 K. Johnson, M. Baker, R. Wiley, Phys. Rev. 136B, 1111 (1964); H. Pagels, Phys. Rev. D17,
3689 (1973); J. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D10, 2428 (1974).

[91 T. Banks, S. Raby, Phys. Rev. D14, 2182 (1976); H. Kleinert, Phys. Lett. 62B, 429 (1976);

E. Schrauner, Phys. Rev. D16, 1877 (1977); T. Kugo, Phys. Lett. 76B, 625 (1978); R. Cahill,
R. Janus, Phys. Rev. D22, 1979 (1980).

{10] R. Haymaker, Phys. Rev. D16, 1211 (1977).

[11] A. Casher, Phys. Lett. 83B, 395 (1979); B. Svetitsky, S. Drell, H. Quinn, M. Weinstein, Phys.
Rev. D22, 490 (1980); M. Weinstein, S. Drell, M. Quinn, B. Svetitsky, Phys. Rev. D22, 1190
(1980); J. Cornwall, Phys. Rev. D22, 1452 (1980).

[12] H. Pagels, S. Stokar, Phys. Rev. D20, 2947 (1979); T. J. Goldman, R. W. Haymaker, Phys. Lert.
100B, 276 (1981).

[13] R. Haag, Th. A.J. Maris, Phys. Rev. 132, 2325 (1963); Th. A. J. Maris, V. E. Herscovitz, G. Ja-
cob, Phys. Rev. Lett. 12, 313 (1964); R. Fukuda, T. Kugo, Nucl. Phys. B117, 250 (1976); D. Atkin-
son, M. P. Fry, E. J. Luit, Nuovo Cimento Lett. 26, 413 (1979); D. Atkinson, D. W, E. Blatt,
Nucl. Phys. B151, 342 (1979); D. Atkinson, M. P. Fry, Nucl. Phys. B156, 301 (1979). '

[141 M. Gell-Mann, M. Levy, Nuovo Cimento 16, 705 (1960).

[15] J. Illiopoulos, C. Ttzykson, A. Martin, Rev. Mod. Phys. 47, 165 (1975).



