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The relativistic wave equations describing the propagation of isentropic sound waves
for an isotropic, ideal fluid moving with an arbitrary fluid velocity are derived. The Green’s
functions are given in closed analytic form, and for supersonic flow we find that there is
a Mach cone. In the Walecka model of infinite nuclear matter, these sound waves are the
elementary excitations of the system and the speed of sound can be calculated explicitly.
Finally, we present a possible application to heavy-ion fission induced by an exactly central
collision based upon a Cherenkov radiation mechanism.

PACS numbers: 21.65.+f, 03.40.Kf

We will present here the results one obtains for the elementary excitations (sound
waves) of infinite nuclear matter, as formulated in the Walecka model [1-5], in the approx-
imation that infinite nuclear matter can be treated as a classical, relativistic fluid. The
Walecka model has three distinct advantages: the theory is explicitly Lorentz covariant
(and thus includes the correct relativistic propagation of the particles); it incorporates
the meson degrees of freedom ab initio; and, when extended to finite nuclei [6-9], success-
fully predicts all of nuclear structure except for the compressibility of nuclear matter.
The relevance of the present approach is that one then has a consistent calculational
framework ~— a relativistic quantum field theory (with all the advantages discussed above)
underlies the relativistic classical approximation. Thus, the theory has the causal propa-
gation of any disturbance already built in. Such an approach, in our opinion, is superior
to treating nuclear matter in a hydrodynamic approximation with nonrelativistic inter-
actions.

After a brief review of the Walecka model, we will therefore discuss the relativistic
propagation of isentropic sound waves in a moving, ideal fluid. We will show that the
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exact Green’s function for the propagation of sound waves has a simple analytic form, and
that for supersonic flow the disturbance is limited to the interior of the Mach cone as
expected from causality. To illustrate the application of the ideas presented here to heavy-
ion physics, we will examine a simple model for induced fission reactions, proposed ori-
ginally by Glassgold et al. {10], based on a Cherenkov radiation mechanism in the context
of a relativistically consistent theory.

The Lagrangian density of the model field theory is given by!

& = §id —M)+4 (3,95"¢—m $*)—% G,.,G*
+5 mV, Vi — g By 0V + g Bpd, (1)
where M, m,, and m, are the nucleon, scalar, and vector meson masses, and G,, = 2.V,
—0,V, is the vector meson field tensor. As discussed by Walecka, in the high density
limit one can make the mean-field approximation and replace the meson fields with their
classical expectation values [1]. With these approximations, the Euler-Lagrange equations
obtained from the Lagrangian of equation (1) can be solved exactly. For a uniform system,

with the Fermi sea filled up to wave number kg, one obtains the following results for the
baryon density g, energy density ¢, and pressure P [1]
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and y is the spin-isospin degeneracy (y = 4 for nuclear matter). The dimensionless coupling
constants C7 = (g2/m?)M? (i = s,v) are fit to the density and binding energy of bulk
nuclear matter and have the values C? = 195.7 and C? = 266.9. With the coupling con-
stants now determined, the model then predicts the energy density and pressure at all
other densities.

In order to make the approximation that nuclear matter can be tieated as a uniform,
isotropic fluid, it is necessary that the baryon density be sufficiently large in order that

! We will use the notations and conventions of Ref. [11].
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the energy density, pressure, and fluid velocity v are well-defined macroscopic quantities.
Since the high density limit is the region where the mean-field approximation to the La-
grangian of equation (1) is valid, a hydrodynamic trea:ment of nuclear matter is consist-
ent with the Walecka model. A suitable average of the microscopic stress-energy tensor
must then be taken to obtain the macroscopic stress-energy tensor for an ideal, isotropic
fluid [12]

T,y = —Pg,+(e+Puu,, 3)

where g, is the metric tensor and u, is the four-velocity of the fluid. For a moving fluid,
the quantities &, P, and ¢ are defined in the rest frame of the fluid, i.e., they are Lorentz
scalar functions. Lorentz covariance then implies that the baryon current is given by

B, = ou,. 4)
The conservations laws

G (5a)

"B, =0 (5b)

then lead to the relativistic generalizations of Euler’s equation. (See for example, Landau
and Lifshitz [12] or McKee and Colgate [13].)

In addition, we must satisty the laws of thermodynamics. At zero temperature, the
thermodynamic potential Q is given by

Q= —PV =E—uB, 6)

where u is the chemical potential. Converting equation (6) into densities, one obtains the
relation

= (s+P)o. M

Evaluating this expression in the mean-field approximation yields the chemical potential
for nuclear matter in the Walecka model [14]

u = g Vo+Epg, ()

with Egp = (M*?>+k2)""* the Fermi energy.
To complete the characterization ot the dynamics, we will use the equation of state
P = P(¢) calculated in the mean-field approximation of the Walecka model [1]. In analogy
with nonrelativistic fluid mechanics, we define the speed of first (isentropic) sound s in
nuclear matter to be
, dP

2 9
S de |.q ©)

in the rest frame of the fluid. Since at zero temperature, only zero sound is allowed to
propogate in a Fermi liquid, we must assume that some mechanism exists which allows
first sound to propagate in nuclear matter [15]. For example, the system could have a finite
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temperature or a finite viscosity. Using the standard model, we calculate for the speed of
sound
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This agrees with a similar calculation due to Matsui [16]. At nuclear matter densities, the
predicted speed of sound is s = 0.256. The fact that the predicted speed of sound is approx-
imately one-fourth the speed of light implies that relativistic effects will be important
and thus justifies using relativistics hydrodynamics. In the high density limit ¢ — co,
5% — 1 from below so that the speed of sound predicted by the Walecka .model is always
less than the speed of light.

Since the speed of sound is related to the compressibility K (K~! = 9us?), we can
obtain an estimate for the speed of sound using the experimentally measured excitation
energy of the giant monopole resonance in 2°8Pb, assuming the measured strength exhausts
the sum rule. Taking into account finite size effects, the experimental estimate for the
compressibility is K=! = 210 MeV [17]. This gives for the speed of sound s.,, = 0.159.
The discrepancy between the theoretical prediction and the experimental estimate implies
thdt the nuclear equation of state calculated in the Walecka model is too stiff.

We wish to study the behavior of huclear matter for small oscillations about equi-
librium. To this end, we will expand the dynamical variables about their equilibrium
values — specifically, we take

@ = Qo+do,
e = gy+0¢,
P = Py+dp,
v = u+tov, (11)

and we will work to first order in the small quantities &g, ¢, p, and év. We will also
separate dv into longitudinal and transverse parts

ov = —Vp+a, (12)

where the vector o is divergenceless. The resulting linearized equations of motion are
then

de = ugop, (13a)
5p = 5% = s2uydo, (13b)

1 (1-5% [0 oY 3
I:D+s—2m<a—t +u V>]5Q—0, (13¢c)
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where u, is the equilibrium value of the chemical potential.

From the structure of the equations of motion (13a) through (13¢), we observe that
the baryon density fluctuation 8¢ completely characterizes the excitation or sound wave.
The energy density and pressure fluctuations are related to the density fluctuation do by
thermodynamic relations while §g acts as the source for the velocity field equations. Thus,
we will concentrate mainly on equation (13c), which we will refer to as the wave equation
for brevity. We do note, however, that the equation of motion for the transverse velocity
field — equation (13¢) — implies that, in general, the fluid motion will be rotational.
In the nonrelativistic limit #*> < 1 and s* < 1, the wave equation takes the form

2
[V2~ Si(j +u- v) ]59 = 0, (14)

which is identical to what one obtains by making a Galilean transtormation on the wave
equation in the rest frame [18). In the high density limit, the Walecka model predicts
s2 =1 [1], and the wave equation becomes

[0 = 0 (15)

as expected.
The Green’s function for the wave equation (13c) is defined by

_ 2
[L__l+ ! —Q—S?-( +u V) ]G(x—x’) = §*(x—=x"), (16)
s* (1—u?)

where we have used translational invariance to write G{x, x') = G(x—x'). Using Fourier
transforms and properties of Bessel tunctions [19], the Green’s function can be obtained
in closed analytic form in cylindrical coordinates where » defines the z-axis. It is simplest
to give the analytic form tor G(w, r), where

Glw,r)y = | die”'G(x). (17)
There are two different regimes of motion — the subsonic case ¥ < s and the supersonic

case # > 5. In the subsonic case, the disturbance will eventually propagate to all points
in space and the explicit form of the Green’s function is

b 1 1\
G =— 't 1 exp{ iouz +1wR (1+ bz—uz) }, (18)

(b2 —u?)"2 42R b2 —u?
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where
1 1 (1-5%)
b= (- (192)
and
b2
R* = x2+y2+ l;‘z_*—uz z2%, (19b)

In the supersonic case, the disturbance is limited to the interior of the forward Mach

cone with opening angle 6,
s [1—u?Y?
sin 6, = ;——[ ] . (20)

1—s?

Outside the forward Mach cone the Green’s function is zero, and inside it is given by

b 1 iouz 1 1/2
G(w, r) = =59 2aiR| exp 8 cos { wiR| NESE —1 . @n

In the nonrelativistic limit, the above Green’s functions agree with the result given by
Fetter and Walecka [18]. For both the subsonic and supersonic cases, the surfaces of con-
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Fig. 1. Surface of constant phase of the Green’s function for three successive times. (a) Subsonic case
(b) Supersonic case with the Mach cone and opening angle 0, indicated with solid lines

stant amplitude are ellipsoidal and figures 1a and 1b show how the Green’s function
evolves in time for two representative cases.

As an application of the above ideas, we will calculate the density fluctuation induced
by a source moving with velocity # in the rest frame of the fluid, i.e. Cherenkov radiation
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[20]. The relevant wave equation is
2 1 az 3
vV — G52 80 = 4np,gd(x—ut), (22)

which is just the wave equation (13¢) in the rest frame of the fluid with an additional
source term. The constant g is a model-dependent coupling constant that we will not
evaluate. As for the Green’s functions, the solution can be obtained in closed analytic

z-ut a

L

Fig. 2. Typical Cherenkov radiation patterns. Solid lines indicate surfaces of constant amplitude. The
cross indicates the position of the source. (a) Subsonic case (b) Supersonic case with the Cherenkov cone
and opening angle 0¢ indicated with dashed lines
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form with two distinct regimes of flow: subsonic and supersonic. As in the electromagnetic
case, for supersonic flow the disturbance is restricted to the interior of the Cherenkov
cone, with opening angle 8¢ given by

sin fg = —. (23)
u

The surface of the Cherenkov cone is a shock front for the disturbance. In figure 2, we
show some representatiye radiation patterns.

As suggested originally by Glassgold, Heckrotte, and Watson, we can use the Cheren-
kov radiation process as a simple reaction mechanism for heavy-ion fission induced by
bombardment with relativistic protons [10]. The difference between their work and ours
is that we have a consistent relativistic microscopic theory. The model for the reaction
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Fig. 3. Proposed reaction mechanism for heavy-ion fission induced by a relativistic projeéti!e in an exactly
central collision. (a) Before the collision (b) During the collision showing the Cherenkov shock front (c)
After the collision showing the correlation angle @ between the two fragments

mechanism is that, in an exactly central collision, the target nucleus fissions into two
equal-mass fragments whose momenta are normal to the induced shock fronts (see figure 3).
The incident proton is then the source for the Cherenkov radiation. The angle « between
the momenta of the two fragments is then related to the Cherenkov angle

o ) s
cos — = sin o = — (24)
2 u

where u is now the velocity of the incident proton. For 11.5 GeV protons and taking
for the speed of sound the value predicted in the Walecka model, the predicted angle
is o, = 150.3°. Wilkins et al. have measured « for 11.5 GeV protons on 23®U [21]. For
equal mass fragments, the experimental distribution for a peaks at «.,, = 179°. A smaller
value for the speed of sound than the one predicted by the Walecka model (which is indica-
ted from experiment) will increase the theoretical prediction for a. One would expect
that the distribution for « will be smeared out due to the Fermi motion of the nucleons
and from surface effects in finite nuclei [10]. A calculation of the effect of the Fermi motion
is given by Glassgold et al. [10] while the effects of surface refraction are discussed in detail
by Gleeson and Raha [22] and by Amsden et al. [23].
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In an attempt to study the excitations of nuclear matter as formulated in the Walecka
model [1], we have investigated the relativistic propagation of sound waves in a uniform,
isotropic fluid moving with an arbitrary velocity. We have calculated the Green’s function
in closed analytic form and shown that for supersonic flow, the disturbance is limited to
interior of the Mach cone. Finally, as an application of these ideas to heavy ion reactions,
we have considered a simple model for central collision induced fission reactions based
on a Cherenkov radiation mechanism that agrees with experiment to about 20%.

The author wishes to thank J. D. Walecka, A. L. Fetter, and B. D. Serot for many
valuable discussions.
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