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It is argued that the electron charge e and the charge ¢’ of the longitudinal electro-
magnetic field are commensurate. The argument is based on the same elementary ideas
which lead to the Dirac relation between the charge e and the magnetic charge g.

PACS numbers: 03.50.De, 03.50.Kk

1. Electrodynamics of a gradient current

Consider the Maxwell equations
0:F,,+0,F,,+0,F,, =0,
0"F,, = 4nj,.

These equations allow to determine the field F,, if the current j, is known i.e. if it is given
as a four-vector function of space-time points. This is the case of an external current and
it is obviously an approximation. A more general scheme is to give the current as a function
of certain dynamical variables whose equations of motion are chosen so that the whole
system i1s dynamically closed. Classical electrodynamics of point particles is an example
of more general scheme; a bad example because the complete system of equations is
self-contradictory.

Now, the dynamical variables which the current depends on and their equations of
motion cannot be arbitrarily given, they have to be consistent with the charge conservation
law

0%, = 0.

A similar situation appears in the general theory of relativity, where conservation laws
of energy and momentum follow from the Einstein equations. It is also known from the
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general theory of relativity, that there are dynamical systems so simple that conservation
laws of energy and momentum determine their motion completely. Let us put forward
the following question: is it possible to have a system, whose motion is determined complete-
ly by the charge conservation law alone? Is it possible to have a pure charge not attached
to a nonelectromagnetic piece of matter?

An affirmative answer to this question is provided by the following consideration.
Assume that the electric current is a gradient of a scalar field F:

4nj, = —0,F.
It follows then from the charge conservation law that
OF = Oa

which is the equation of motion for F.

We come thus to the conclusion that the Maxwell electrodynamics of a gradient
current is a closed dynamical system. The conclusion is further supported by the following
circumstances:

(a) there exists a positive definite, conserved energy momentum tensor;

(b) there exists an action principle.

(a) The positive definite, conserved energy-momentum tensor was derived in [1]; it seems
that Strazhev [2] was the first to discover this remarkable tensor. It has the form

1
Tlu = —4'7‘1‘: (% F“ﬁFuﬂéﬁ_FlvFI“’_{_% Fzég_FFll‘).

(b) The action has the form

1 2
S=—— |ad*%|F,F"+ —F?
16n g

where ¢ is a dimensionless constant,
— — AR
F,, =0d,A,—0,A,, F =¢&0"4,

and A, is the dynamical coordinate to be varied. For ¢ = 1 § is the action first considered
by Dirac, Fock and Podolsky {3]; Heisenberg and Pauli [4] considered arbitrary ¢ with
intention of taking the limit ¢ — 0.

The classical authors considered the additional term in the action as basically unde-
sirable modification introduced ad hoc to make the theory canonically quantizable. We,
on the other hand, interprete the modified action as the total action for the closed dynamical
system comsisting of the electromagnetic field F,, and its source j, = —(1/4m)0,F. This
interpretation, which resembles that of Zwanziger [5], makes intelligible shrinking of the
gauge group i.e. the very thing objectionable to most authors; there is less freedom in
choosing the potential A4, because the same dynamical coordinates are used to describe
the electromagnetic field and its source.
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2. A comment on the Dirac relation between electric and magnetic charges

The Dirac relation between electric and magnetic charges is commonly believed to
be the only known principle of charge quantization [6]. There are numerous derivations
of this relation, with varying degrees of sophistication, but all are ultimately based on two
clementary ideas. The first idea is that angular momentum parallel to a distinguished
axis should be a multiple of 1/2 (Dirac) or 1 (Schwinger). The second idea is that if there
is to be a discontinuity of phase of a wave function, it should be a multiple of 2x.

In Section 4 we present arguments to the effect that the total charge ¢’ of a gradient
current must be a multiple of the charge e of a point particle. We realize that our arguments
are not convincing. For this reason we wish to stress in advance that our arguments,
albeit imperfect, are based solely on the two elementary ideas mentioned above.

3. Two lemmas on solutions of the wave equation

Consider the integral
§ d*xf(x)g(x),

where f and g are solutions of the wave equation:

In general this integral does not exist; below we describe a situation in which this integral
is perfectly well determined.

Suppose that Cauchy data for f are given on the hyperplane X, while Cauchy data
for g are given on the hyperplane X, (Fig. 1); suppose further that the Cauchy data both

G
S

2

Sf ) F
Fig. 1

for f and for g have compact supports S, and S, respectively. I say that solutions f and g
are well separated, when all segments FG, where F is in S; and G is in S, are timelike.
Lemma 1. If two solutions of the wave equation, f and g, are well separated, then

1 0 0
Jd‘*xf(x)g(x) = -z J‘dg‘x%d-fdsx 6%'
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Proof. We put on the left hand side

0 éb
f(x) = de“ {D( X=y)— fm —f(» éx,‘ Y)},
Sy
7 ‘EID " -
o) = [ a5 {ptx—0 8 — o P22,

Sq

where D is the Pauli-Jordan function. If fand g are well separated, all segments y—2z are
timelike and we can integrate over x first. Using the formula

jd“xD(x— PWD(x—z) = — —,
8n

valid for timelike y—2z, one obtains the desired result.
Lemma 2. If a real solution f(x) of the wave equation has Cauchy data of compact support,
then its Fourier transform

flk) £ ds*{e**0, f(x)—f(x)8,€*},
Sy

k being the null, future oriented wave vector, has the zéro frequency limit
)
lim f(k) = ——J-d3 —io = const.
x>0 8n 0x

Proof is given in the Appendix in Ref. [7].

4. Commensurability of e and &'
The positive definite, conserved energy momentum tensor is not symmetric, which
means that the angular momentum and the centre of mass motion are not conserved:
B B 1
6“(XQT). _x;_Ta ) = 2‘_‘ FFQA'
7
The change of angular momentum and centre of mass motion between plus and minus
infinity is
1
AaM,, = — | d*xFF,,.
ei 27{'( s i

If the fields F and F,; are well separated, we have from Lemma 1
1 oF oF 1 oF,;

M, d3x dPx %= —¢ | dPx %,

T x4’ x°

where ¢’ is the total charge.



621

Now, only two components of F;, say F;, and Fy;, can be well separated with F.
This can be seen as follows.
Assuming that the potential A4, fulfils the wave equation (the Dirac-Fock-Podolsky
case) we write
1 (dk —ikx
Ax) = 2—}{{;{—0— a,k)e " +cc..

Calculating F and F,; and applying Lemma 2, we have

lim k*a, (k) = const,
k0-0

lim [kza(k)—k,a,(k)] = const.

k%—0
It is algebraically impossible to fulfil these conditions for all pairs (gA); we can, however,

assume that

’

[4
lim k*a (k) = — = const,
et u( ) 275

lim [kaa,(k)—ka,(k)] £ 2L — const,
K00 2n

e
lim [kyao(k)—koas(k)] £ 2% = const;
LN 2717
then the zero frequency limit of a,(k) is determined up to a gauge transformation. In other
words, the change of M,; is well determined only for M,, and M,;:
4M,; = —¢'ey,,

4 .
AM03 = —C€p3,

note a striking analogy with quantum mechanics which shows up here in a purely classical
context.

Now, since angular momentum parallel to a distinguished axis should be a multiple
of 1/2 (Dirac) or 1 (Schwinger), we postulate the charge quantization condition

ee,=n n=20901, ...

Can one say something about the magnitude of e,,? Without additional assumptions
obviously nothing can be said: since

e, = — — | d°x
12 4n ox°

and doF), is a part of Cauchy data, the integral e,, can be an arbitrary real number.
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Let us calculate the field 4,(x) with the zero frequency limit determined by the con-
ditions

el = 0, €g3 = 0, €12 #’ O
In the Coulomb gauge (ay(k) = 0) the zero frequency limit is easily found to be
aolk) = as(k) = 0,

€2 K?

. —
al( ) I (k1)2+(k2)2
e12 _“kl

k=212 "%
al( ) 2 (k1)2+(k2}2

Since the integral e,, is determined by the zero frequency limit of the Fourier transform,
we assume that the above expressions are valid for all frequencies. Thus we have

Ao(x) = 43(x) = 0,

A(x)) ey [dPk f 1 —kz}
{Axx)} - EJ B (k‘)’+(k2)2{ k!

1 2
= vz sign DL =719 { xl}

x
or
A (x)dx"* = ey, sign (x°)0[(x°)* —(x*)*]6(—xx)d e,

where @ = arctg (x?/x) and 6 is the unit step function. We see that in the domain in which
A, # 0, A,dx" is a perfect differential.

Let us put forward the following condition: it should be possible to transform away
the potential A,(x) by means of the gauge transformation

ieey2¢

>y = ey,
A, — A, = A,—0,e.,9.

The same condition is put forward when one derives the Dirac relation from the postulated
absence of the Aharonov-Bohm effect [8]. The gauge transformation above will preserve
continuity of the wave function o if

ee;, =n n=01,...
Thus we have two conditions
4
€e12 = n,

€3 =1,
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which imply that the charges ¢ and ¢’ are commensurate. In particular, if the charge e
is elementary, then

’

e = ne,

n being an integer.
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